CN104900747A - Photoelectric integrated device based on GaN, and preparing method and epitaxial structure thereof - Google Patents
Photoelectric integrated device based on GaN, and preparing method and epitaxial structure thereof Download PDFInfo
- Publication number
- CN104900747A CN104900747A CN201510353140.1A CN201510353140A CN104900747A CN 104900747 A CN104900747 A CN 104900747A CN 201510353140 A CN201510353140 A CN 201510353140A CN 104900747 A CN104900747 A CN 104900747A
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- algan
- schottky barrier
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 18
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 123
- 230000004888 barrier function Effects 0.000 claims abstract description 63
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 229910002601 GaN Inorganic materials 0.000 claims description 154
- 238000002955 isolation Methods 0.000 claims description 42
- 230000005693 optoelectronics Effects 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 11
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 11
- 238000001465 metallisation Methods 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910003465 moissanite Inorganic materials 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 238000005468 ion implantation Methods 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims 4
- 230000010354 integration Effects 0.000 abstract description 18
- 239000010410 layer Substances 0.000 description 190
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 63
- 230000006911 nucleation Effects 0.000 description 21
- 238000010899 nucleation Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 11
- 238000000206 photolithography Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003305 oil spill Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/223—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PIN barrier
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/103—Integrated devices the at least one element covered by H10F30/00 having potential barriers, e.g. integrated devices comprising photodiodes or phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1246—III-V nitrides, e.g. GaN
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造技术领域,特别是涉及一种基于GaN的光电集成器件及其制备方法、外延结构。The invention relates to the technical field of semiconductor manufacturing, in particular to a GaN-based optoelectronic integrated device, a preparation method thereof, and an epitaxial structure.
背景技术Background technique
GaN(氮化镓)作为第三代半导体的典型代表,具有高功率、高效率、高工作温度等特点,已广泛地应用于电力转换、微波通信等各个领域。目前,太空通信、长距离的无线传感大多采用微波通信方式。As a typical representative of the third-generation semiconductor, GaN (gallium nitride) has the characteristics of high power, high efficiency, and high operating temperature, and has been widely used in various fields such as power conversion and microwave communication. At present, space communication and long-distance wireless sensing mostly use microwave communication.
GaN基PIN光电探测器具有以下优点:不吸收可见光,不需要滤光系统,可探测紫外光;不需要做成浅结,可大大提高量子效率;耐高温,抗辐射能力强,可在极端环境下正常工作。因此,GaN基PIN光电探测器可广泛应用于宇宙探测、火灾预警、海面漏油探测、工业温度控制等领域,而这些领域一直以来是人们关注的重点。GaN-based PIN photodetectors have the following advantages: do not absorb visible light, do not require a filter system, and can detect ultraviolet light; do not need to make a shallow junction, which can greatly improve quantum efficiency; high temperature resistance, strong radiation resistance, and can be used in extreme environments work normally. Therefore, GaN-based PIN photodetectors can be widely used in space detection, fire warning, sea oil spill detection, industrial temperature control and other fields, and these fields have always been the focus of attention.
为了进一步增加芯片功能,提高集成度,简化系统,降低尺寸和成本,目前采用光集成技术。光光集成和光电集成是光集成技术的两种方式。光光集成以集成光路为代表,从体结构的组合到以光波导形式实现光调制器和光开关等。光电集成指光子器件和电子器件均集成在同一衬底上得到光电集成电路。光光集成相对难度较小,而光电集成由于涉及结构兼容性、材料兼容性、工艺兼容性等一系列问题,一直是研究难点和重点。而将GaN基PIN光电探测器与GaN基HEMT(高功率电子迁移晶体管)集成在一起,使得以下无线探测技术路线成为可能:由PIN光电探测器作为紫外光探测器,进行太空探测、海面漏油探测、工业温度控制、火灾预警等安防探测,最后由晶圆级集成的GaN基HEMT将信号放大后通过天线发射出去,以传递相关信息。In order to further increase chip functions, improve integration, simplify the system, reduce size and cost, optical integration technology is currently used. Optical-optical integration and optoelectronic integration are two ways of optical integration technology. Optical-optical integration is represented by integrated optical circuits, from the combination of bulk structures to the realization of optical modulators and optical switches in the form of optical waveguides. Optoelectronic integration refers to the integration of photonic devices and electronic devices on the same substrate to obtain an optoelectronic integrated circuit. Optical-optical integration is relatively less difficult, while optoelectronic integration has always been a research difficulty and focus due to a series of issues related to structural compatibility, material compatibility, and process compatibility. The integration of GaN-based PIN photodetectors and GaN-based HEMTs (high-power electron mobility transistors) makes the following wireless detection technology routes possible: use PIN photodetectors as ultraviolet light detectors for space detection, sea oil spills Detection, industrial temperature control, fire warning and other security detection, and finally the GaN-based HEMT integrated at the wafer level amplifies the signal and transmits it through the antenna to transmit relevant information.
然而,GaN虽然在快速发展,但是仅为短短10年,加之光电集成难度较大,因此,目前GaN基PIN光电探测器方面的研究刚刚兴起,亟需在GaN基PIN光电探测器与GaN基HEMT的光电集成方面取得突破。However, although GaN is developing rapidly, it has only been 10 years, and optoelectronic integration is difficult. Therefore, the current research on GaN-based PIN photodetectors has just emerged, and there is an urgent need for GaN-based PIN photodetectors and GaN-based photodetectors. A breakthrough has been made in the optoelectronic integration of HEMTs.
发明内容Contents of the invention
本发明主要解决的技术问题是提供一种基于GaN的光电集成器件及其制备方法、外延结构,能够实现GaN基PIN光电探测器与GaN基HEMT之间的集成。The technical problem mainly solved by the present invention is to provide a GaN-based optoelectronic integrated device and its preparation method and epitaxial structure, which can realize the integration between GaN-based PIN photodetectors and GaN-based HEMTs.
为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于GaN的光电集成器件,包括:衬底;成核层,所述成核层形成在所述衬底上;GaN沟道层,所述GaN沟道层形成在所述成核层上;AlGaN肖特基势垒层,所述AlGaN肖特基势垒层形成在所述GaN沟道层上,且所述AlGaN肖特基势垒层和所述GaN沟道层之间形成二维电子气;隔离区,所述隔离区从所述AlGaN肖特基势垒层的上表面嵌入延伸至所述GaN沟道层内部;其中,在所述隔离区一侧的所述AlGaN肖特基势垒层上由下而上依次形成有器件隔离层、N+-GaN层、i-AlGaN层、P-AlGaN层和P+-GaN层,所述N+-GaN层上形成有N型电极,所述P+-GaN层上形成有P型电极,在所述隔离区另一侧的所述AlGaN肖特基势垒层上形成有栅电极、源电极和漏电极,并且所述N型电极与所述N+-GaN层之间、所述P型电极与所述P+-GaN层之间以及所述源电极和漏电极与所述AlGaN肖特基势垒层之间均形成欧姆接触。In order to solve the above-mentioned technical problems, a technical solution adopted by the present invention is to provide a GaN-based optoelectronic integrated device, comprising: a substrate; a nucleation layer, the nucleation layer is formed on the substrate; a GaN channel layer, the GaN channel layer is formed on the nucleation layer; the AlGaN Schottky barrier layer, the AlGaN Schottky barrier layer is formed on the GaN channel layer, and the AlGaN Schottky A two-dimensional electron gas is formed between the base barrier layer and the GaN channel layer; an isolation region is embedded and extended from the upper surface of the AlGaN Schottky barrier layer to the inside of the GaN channel layer; Wherein, a device isolation layer, an N + -GaN layer, an i-AlGaN layer, a P-AlGaN layer and a P + - A GaN layer, an N-type electrode is formed on the N + -GaN layer, a P-type electrode is formed on the P + -GaN layer, and on the AlGaN Schottky barrier layer on the other side of the isolation region A gate electrode, a source electrode, and a drain electrode are formed, and between the N-type electrode and the N + -GaN layer, between the P-type electrode and the P + -GaN layer, and between the source electrode and the drain electrode An ohmic contact is formed between the electrode and the AlGaN Schottky barrier layer.
优选地,所述衬底的厚度为50~1000微米,且所述衬底材料为Si、SiC、GaN、Diamond和蓝宝石中的一种或多种。Preferably, the thickness of the substrate is 50-1000 microns, and the substrate material is one or more of Si, SiC, GaN, Diamond and sapphire.
优选地,所述成核层的厚度为10~500纳米,且所述成核层材料为AlN和/或AlGaN。Preferably, the thickness of the nucleation layer is 10-500 nanometers, and the material of the nucleation layer is AlN and/or AlGaN.
优选地,所述GaN沟道层的厚度为1~3微米,且所述GaN沟道层与所述成核层构成异质结。Preferably, the thickness of the GaN channel layer is 1-3 micrometers, and the GaN channel layer and the nucleation layer form a heterojunction.
优选地,所述AlGaN肖特基势垒层的厚度5~200纳米,所述AlGaN肖特基势垒层与所述GaN沟道层构成异质结,且所述AlGaN肖特基势垒层中AlGaN的化学式为AlXGa1-XN,其中,X为0.1~0.5。Preferably, the thickness of the AlGaN Schottky barrier layer is 5 to 200 nanometers, the AlGaN Schottky barrier layer and the GaN channel layer form a heterojunction, and the AlGaN Schottky barrier layer The chemical formula of AlGaN is Al X Ga 1-X N, where X is 0.1-0.5.
优选地,所述器件隔离层的厚度为20~1000纳米,且所述器件隔离层材料为氮化物介质薄膜。Preferably, the thickness of the device isolation layer is 20-1000 nanometers, and the material of the device isolation layer is a nitride dielectric thin film.
优选地,所述N+-GaN层的厚度为500~1500纳米,掺杂浓度大于或等于1×1017cm-3;所述P+-GaN层的厚度小于或等于50纳米,掺杂浓度大于或等于1×1018cm-3。Preferably, the thickness of the N + -GaN layer is 500-1500 nanometers, and the doping concentration is greater than or equal to 1×10 17 cm -3 ; the thickness of the P + -GaN layer is less than or equal to 50 nanometers, and the doping concentration is Greater than or equal to 1×10 18 cm -3 .
优选地,所述i-AlGaN层的厚度为100~1500纳米,杂质浓度小于或等于1×1016cm-3,且所述i-AlGaN层中AlGaN的化学式为AlYGa1-YN,其中,Y为0~1;所述P-AlGaN层的厚度为50~800纳米,掺杂浓度大于或等于1×1017cm-3,且所述P-AlGaN层中AlGaN的化学式为AlZGa1-ZN,其中,Z为0.1~0.5。Preferably, the thickness of the i-AlGaN layer is 100-1500 nanometers, the impurity concentration is less than or equal to 1×10 16 cm -3 , and the chemical formula of AlGaN in the i-AlGaN layer is Al Y Ga 1-Y N, Wherein, Y is 0-1; the thickness of the P-AlGaN layer is 50-800 nanometers, the doping concentration is greater than or equal to 1×10 17 cm -3 , and the chemical formula of AlGaN in the P-AlGaN layer is Al Z Ga 1-Z N, wherein Z is 0.1-0.5.
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于GaN的光电集成器件的外延结构,包括由下而上依次形成的衬底、成核层、GaN沟道层、AlGaN肖特基势垒层、器件隔离层、N+-GaN层、i-AlGaN层、P-AlGaN层和P+-GaN层,其中,所述AlGaN肖特基势垒层和所述GaN沟道层之间形成二维电子气。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide an epitaxial structure of a GaN-based optoelectronic integrated device, including a substrate, a nucleation layer, a GaN channel layer, an AlGaN Schottky barrier layer, device isolation layer, N + -GaN layer, i-AlGaN layer, P-AlGaN layer and P + -GaN layer, wherein, the AlGaN Schottky barrier layer and the GaN channel A two-dimensional electron gas is formed between the layers.
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种根据上述任一种的基于GaN的光电集成器件的制备方法,包括以下步骤:在衬底上由下而上依次形成成核层、GaN沟道层、AlGaN肖特基势垒层、器件隔离层、N+-GaN层、i-AlGaN层、P-AlGaN层和P+-GaN层,同时在所述AlGaN肖特基势垒层和所述GaN沟道层之间形成二维电子气;采用离子注入或刻蚀工艺在所述P+-GaN层上形成隔离区,所述隔离区从所述P+-GaN层的上表面嵌入延伸至所述GaN沟道层内部;采用光刻、刻蚀、金属沉积或剥离工艺在所述隔离区一侧的P+-GaN层上形成P型电极,并通过快速退火使所述P型电极与所述P+-GaN层之间形成欧姆接触;采用光刻或刻蚀工艺露出所述隔离区另一侧的所述AlGaN肖特基势垒层以及在所述i-AlGaN层两侧露出所述N+-GaN层;采用光刻、金属沉积或剥离工艺在所述N+-GaN层上形成N型电极,以及在所述AlGaN肖特基势垒层上形成源电极和漏电极,并通过快速退火使所述N型电极与所述N+-GaN层之间以及所述源电极和漏电极与AlGaN肖特基势垒层之间形成欧姆接触;采用光刻、金属沉积或剥离工艺在所述AlGaN肖特基势垒层上的源电极和漏电极之间形成栅电极。In order to solve the above-mentioned technical problems, another technical solution adopted by the present invention is to provide a method for preparing a GaN-based optoelectronic integrated device according to any one of the above-mentioned methods, which includes the following steps: sequentially forming a substrate on a substrate from bottom to top core layer, GaN channel layer, AlGaN Schottky barrier layer, device isolation layer, N + -GaN layer, i-AlGaN layer, P-AlGaN layer and P + -GaN layer, while the AlGaN Schottky A two-dimensional electron gas is formed between the barrier layer and the GaN channel layer; an isolation region is formed on the P + -GaN layer by ion implantation or etching, and the isolation region is formed from the P + -GaN layer The upper surface of the upper surface is embedded and extended to the inside of the GaN channel layer; a P-type electrode is formed on the P + -GaN layer on the side of the isolation region by photolithography, etching, metal deposition or lift-off process, and the rapid annealing is used to make the An ohmic contact is formed between the P-type electrode and the P + -GaN layer; a photolithography or etching process is used to expose the AlGaN Schottky barrier layer on the other side of the isolation region and the i- The N + -GaN layer is exposed on both sides of the AlGaN layer; an N-type electrode is formed on the N + -GaN layer by photolithography, metal deposition or lift-off process, and a source is formed on the AlGaN Schottky barrier layer electrode and drain electrode, and form an ohmic contact between the N-type electrode and the N + -GaN layer and between the source electrode and the drain electrode and the AlGaN Schottky barrier layer by rapid annealing; using photolithography , metal deposition or lift-off process to form a gate electrode between the source electrode and the drain electrode on the AlGaN Schottky barrier layer.
区别于现有技术的情况,本发明的有益效果是:通过在同一衬底上集成GaN基PIN光电探测器和GaN基HEMT,并通过隔离区隔离,从而能够实现GaN基PIN光电探测器与GaN基HEMT之间的集成,可以增加芯片功能,提高集成度,简化系统,降低尺寸和成本。Different from the situation in the prior art, the beneficial effect of the present invention is: by integrating GaN-based PIN photodetectors and GaN-based HEMTs on the same substrate, and isolating them through isolation regions, it is possible to realize GaN-based PIN photodetectors and GaN-based HEMTs. The integration between base HEMTs can increase chip functions, improve integration, simplify the system, and reduce size and cost.
附图说明Description of drawings
图1是本发明实施例基于GaN的光电集成器件的结构示意图。FIG. 1 is a schematic structural diagram of a GaN-based optoelectronic integrated device according to an embodiment of the present invention.
图2~图6是本发明实施例基于GaN的光电集成器件的制备流程图。2 to 6 are the flow charts of the fabrication of the GaN-based optoelectronic integrated device according to the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
请参见图1,是本发明实施例基于GaN的光电集成器件的结构示意图。本发明实施例的基于GaN的光电集成器件包括:衬底10、成核层20、GaN沟道层30、AlGaN肖特基势垒层40、隔离区50、器件隔离层60、N+-GaN层70、i-AlGaN层80、P-AlGaN层90和P+-GaN层100。Please refer to FIG. 1 , which is a schematic structural diagram of a GaN-based optoelectronic integrated device according to an embodiment of the present invention. The GaN-based optoelectronic integrated device of the embodiment of the present invention includes: a substrate 10, a nucleation layer 20, a GaN channel layer 30, an AlGaN Schottky barrier layer 40, an isolation region 50, a device isolation layer 60, an N + -GaN layer 70 , i-AlGaN layer 80 , P-AlGaN layer 90 and P + -GaN layer 100 .
成核层20形成在衬底10上。GaN沟道层30形成在成核层20上。AlGaN肖特基势垒层40形成在GaN沟道层30上,且AlGaN肖特基势垒层40和GaN沟道层30之间形成二维电子气31。隔离区50从AlGaN肖特基势垒层40的上表面嵌入延伸至GaN沟道层30内部。其中,可以采用注入离子方式注入离子形成隔离区50或者采用刻蚀工艺形成刻蚀出隔离区50,隔离区50将AlGaN肖特基势垒层40和二维电子气31隔离为相互绝缘的两部分。Nucleation layer 20 is formed on substrate 10 . GaN channel layer 30 is formed on nucleation layer 20 . The AlGaN Schottky barrier layer 40 is formed on the GaN channel layer 30 , and a two-dimensional electron gas 31 is formed between the AlGaN Schottky barrier layer 40 and the GaN channel layer 30 . The isolation region 50 is embedded and extends from the upper surface of the AlGaN Schottky barrier layer 40 to the inside of the GaN channel layer 30 . Wherein, the isolation region 50 can be formed by implanting ions in the manner of implanting ions or etched out by using an etching process. The isolation region 50 isolates the AlGaN Schottky barrier layer 40 and the two-dimensional electron gas 31 into two mutually insulated part.
其中,在隔离区50一侧的AlGaN肖特基势垒层40上由下而上依次形成有器件隔离层60、N+-GaN层70、i-AlGaN层80、P-AlGaN层90和P+-GaN层100。N+-GaN层70上形成有N型电极71,P+-GaN层100上形成有P型电极101。在隔离区50另一侧的AlGaN肖特基势垒层40上形成有栅电极41、源电极42和漏电极43,并且N型电极71与N+-GaN层70之间、P型电极101与P+-GaN层100之间以及源电极42和漏电极43与AlGaN肖特基势垒层40之间均形成欧姆接触。其中,N型电极71和P型电极101均为两个,两个N型电极71分别位于i-AlGaN层80两侧的N+-GaN层70上。源电极42位于隔离区50和漏电极43之间,栅电极41位于源电极42和漏电极43之间。Wherein, a device isolation layer 60, an N + -GaN layer 70, an i-AlGaN layer 80, a P-AlGaN layer 90 and a P + -GaN layer 100. An N-type electrode 71 is formed on the N + -GaN layer 70 , and a P-type electrode 101 is formed on the P + -GaN layer 100 . On the AlGaN Schottky barrier layer 40 on the other side of the isolation region 50, a gate electrode 41, a source electrode 42, and a drain electrode 43 are formed, and between the N-type electrode 71 and the N + -GaN layer 70, the P-type electrode 101 Ohmic contacts are formed between the P + -GaN layer 100 and between the source electrode 42 and the drain electrode 43 and the AlGaN Schottky barrier layer 40 . Wherein, there are two N-type electrodes 71 and two P-type electrodes 101 , and the two N-type electrodes 71 are respectively located on the N + -GaN layer 70 on both sides of the i-AlGaN layer 80 . The source electrode 42 is located between the isolation region 50 and the drain electrode 43 , and the gate electrode 41 is located between the source electrode 42 and the drain electrode 43 .
在本实施例中,衬底10的厚度为50~1000微米,且衬底10材料为Si、SiC、GaN、Diamond和蓝宝石中的一种或多种。衬底10主要作用为基础支撑。In this embodiment, the thickness of the substrate 10 is 50-1000 microns, and the material of the substrate 10 is one or more of Si, SiC, GaN, Diamond and sapphire. The substrate 10 mainly functions as a basic support.
成核层20的厚度为10~500纳米,且成核层20材料为AlN和/或AlGaN。成核层20主要作用是封闭来自衬底10的缺陷,减小衬底10对产品的影响。The thickness of the nucleation layer 20 is 10-500 nanometers, and the material of the nucleation layer 20 is AlN and/or AlGaN. The main function of the nucleation layer 20 is to seal defects from the substrate 10 and reduce the influence of the substrate 10 on the product.
GaN沟道层30的厚度为1~3微米,且GaN沟道层30与成核层20构成异质结。The GaN channel layer 30 has a thickness of 1-3 micrometers, and the GaN channel layer 30 and the nucleation layer 20 form a heterojunction.
AlGaN肖特基势垒层40的厚度5~200纳米,AlGaN肖特基势垒层40与GaN沟道层30构成异质结,且AlGaN肖特基势垒层40中AlGaN的化学式为AlXGa1-XN,其中,X为0.1~0.5。The thickness of the AlGaN Schottky barrier layer 40 is 5-200 nanometers, the AlGaN Schottky barrier layer 40 and the GaN channel layer 30 form a heterojunction, and the chemical formula of AlGaN in the AlGaN Schottky barrier layer 40 is Al X Ga 1-X N, wherein X is 0.1-0.5.
器件隔离层60的厚度为20~1000纳米,且器件隔离层60材料为氮化物介质薄膜,氮化物包括但不限于AlN和SiN。也就是说,氮化物可以为AlN、SiN中的一种,也可以同时包含两种。The thickness of the device isolation layer 60 is 20-1000 nanometers, and the material of the device isolation layer 60 is a nitride dielectric film, and the nitride includes but not limited to AlN and SiN. That is to say, the nitride may be one of AlN and SiN, or may contain both.
N+-GaN层70的厚度为500~1500纳米,掺杂浓度大于或等于1×1017cm-3;P+-GaN层100的厚度小于或等于50纳米,掺杂浓度大于或等于1×1018cm-3。The thickness of the N + -GaN layer 70 is 500-1500 nanometers, and the doping concentration is greater than or equal to 1×10 17 cm -3 ; the thickness of the P + -GaN layer 100 is less than or equal to 50 nanometers, and the doping concentration is greater than or equal to 1×10 17 cm -3 . 10 18 cm -3 .
i-AlGaN层80的厚度为100~1500纳米,杂质浓度小于或等于1×1016cm-3,且i-AlGaN层80中AlGaN的化学式为AlYGa1-YN,其中,Y为0~1;P-AlGaN层90的厚度为50~800纳米,掺杂浓度大于或等于1×1017cm-3,且P-AlGaN层90中AlGaN的化学式为AlZGa1-ZN,其中,Z为0.1~0.5。The thickness of the i-AlGaN layer 80 is 100-1500 nm, the impurity concentration is less than or equal to 1×10 16 cm -3 , and the chemical formula of AlGaN in the i-AlGaN layer 80 is Al Y Ga 1-Y N, where Y is 0 ~1; the thickness of the P-AlGaN layer 90 is 50-800 nanometers, the doping concentration is greater than or equal to 1×10 17 cm -3 , and the chemical formula of AlGaN in the P-AlGaN layer 90 is Al Z Ga 1-Z N, wherein , Z is 0.1-0.5.
本发明实施例还提供一种基于GaN的光电集成器件的制备方法,请参见图2至图6,该制备方法包括以下步骤:The embodiment of the present invention also provides a method for preparing a GaN-based optoelectronic integrated device, please refer to FIG. 2 to FIG. 6 , the preparation method includes the following steps:
S1:在衬底10上由下而上依次形成成核层20、GaN沟道层30、AlGaN肖特基势垒层40、器件隔离层60、N+-GaN层70、i-AlGaN层80、P-AlGaN层90和P+-GaN层100,同时在AlGaN肖特基势垒层40和GaN沟道层30之间形成二维电子气31。S1: Form a nucleation layer 20, a GaN channel layer 30, an AlGaN Schottky barrier layer 40, a device isolation layer 60, an N + -GaN layer 70, and an i-AlGaN layer 80 sequentially from bottom to top on the substrate 10 , P-AlGaN layer 90 and P + -GaN layer 100 , and at the same time form a two-dimensional electron gas 31 between the AlGaN Schottky barrier layer 40 and the GaN channel layer 30 .
其中,衬底10、成核层20、GaN沟道层30、AlGaN肖特基势垒层40、器件隔离层60、N+-GaN层70、i-AlGaN层80、P-AlGaN层90和P+-GaN层100为依次层叠的结构,如图2所示。Among them, substrate 10, nucleation layer 20, GaN channel layer 30, AlGaN Schottky barrier layer 40, device isolation layer 60, N + -GaN layer 70, i-AlGaN layer 80, P-AlGaN layer 90 and The P + -GaN layer 100 is a sequentially stacked structure, as shown in FIG. 2 .
衬底10的厚度为50~1000微米,且衬底10材料为Si、SiC、GaN、Diamond和蓝宝石中的一种或多种。衬底10主要作用为基础支撑。The thickness of the substrate 10 is 50-1000 microns, and the material of the substrate 10 is one or more of Si, SiC, GaN, Diamond and sapphire. The substrate 10 mainly functions as a basic support.
成核层20的厚度为10~500纳米,且成核层20材料为AlN和/或AlGaN。成核层20主要作用是封闭来自衬底10的缺陷,减小衬底10对产品的影响。The thickness of the nucleation layer 20 is 10-500 nanometers, and the material of the nucleation layer 20 is AlN and/or AlGaN. The main function of the nucleation layer 20 is to seal defects from the substrate 10 and reduce the influence of the substrate 10 on the product.
GaN沟道层30的厚度为1~3微米,且GaN沟道层30与成核层20构成异质结。The GaN channel layer 30 has a thickness of 1-3 micrometers, and the GaN channel layer 30 and the nucleation layer 20 form a heterojunction.
AlGaN肖特基势垒层40的厚度5~200纳米,AlGaN肖特基势垒层40与GaN沟道层30构成异质结,且AlGaN肖特基势垒层40中AlGaN的化学式为AlXGa1-XN,其中,X为0.1~0.5。The thickness of the AlGaN Schottky barrier layer 40 is 5-200 nanometers, the AlGaN Schottky barrier layer 40 and the GaN channel layer 30 form a heterojunction, and the chemical formula of AlGaN in the AlGaN Schottky barrier layer 40 is Al X Ga 1-X N, wherein X is 0.1-0.5.
器件隔离层60的厚度为20~1000纳米,且器件隔离层60材料为氮化物介质薄膜,氮化物包括但不限于AlN和SiN。也就是说,氮化物可以为AlN、SiN中的一种,也可以同时包含两种。The thickness of the device isolation layer 60 is 20-1000 nanometers, and the material of the device isolation layer 60 is a nitride dielectric film, and the nitride includes but not limited to AlN and SiN. That is to say, the nitride may be one of AlN and SiN, or may contain both.
N+-GaN层70的厚度为500~1500纳米,掺杂浓度大于或等于1×1017cm-3;P+-GaN层100的厚度小于或等于50纳米,掺杂浓度大于或等于1×1018cm-3。The thickness of the N + -GaN layer 70 is 500-1500 nanometers, and the doping concentration is greater than or equal to 1×10 17 cm -3 ; the thickness of the P + -GaN layer 100 is less than or equal to 50 nanometers, and the doping concentration is greater than or equal to 1×10 17 cm -3 . 10 18 cm -3 .
i-AlGaN层80的厚度为100~1500纳米,杂质浓度小于或等于1×1016cm-3,且i-AlGaN层80中AlGaN的化学式为AlYGa1-YN,其中,Y为0~1;P-AlGaN层90的厚度为50~800纳米,掺杂浓度大于或等于1×1017cm-3,且P-AlGaN层90中AlGaN的化学式为AlZGa1-ZN,其中,Z为0.1~0.5。The thickness of the i-AlGaN layer 80 is 100-1500 nm, the impurity concentration is less than or equal to 1×10 16 cm -3 , and the chemical formula of AlGaN in the i-AlGaN layer 80 is Al Y Ga 1-Y N, where Y is 0 ~1; the thickness of the P-AlGaN layer 90 is 50-800 nanometers, the doping concentration is greater than or equal to 1×10 17 cm -3 , and the chemical formula of AlGaN in the P-AlGaN layer 90 is Al Z Ga 1-Z N, wherein , Z is 0.1-0.5.
S2:采用离子注入或刻蚀工艺在P+-GaN层100上形成隔离区50,隔离区50从P+-GaN层100的上表面嵌入延伸至GaN沟道层30内部。S2: Form an isolation region 50 on the P + -GaN layer 100 by ion implantation or an etching process, and the isolation region 50 is embedded and extended from the upper surface of the P + -GaN layer 100 to the inside of the GaN channel layer 30 .
其中,隔离区50将AlGaN肖特基势垒层40和二维电子气31隔离为相互绝缘的两部分,如图3所示。Wherein, the isolation region 50 isolates the AlGaN Schottky barrier layer 40 and the two-dimensional electron gas 31 into two parts insulated from each other, as shown in FIG. 3 .
S3:采用光刻、刻蚀、金属沉积或剥离工艺在隔离区50一侧的P+-GaN层100上形成P型电极101,并通过快速退火使P型电极101与P+-GaN层100之间形成欧姆接触。S3: Form a P-type electrode 101 on the P + -GaN layer 100 on the side of the isolation region 50 by photolithography, etching, metal deposition or lift-off process, and make the P-type electrode 101 and the P + -GaN layer 100 by rapid annealing Ohmic contact is formed between them.
其中,P型电极101为两个,均位于隔离区50一侧的P+-GaN层100上,如图4所示。Wherein, there are two P-type electrodes 101 , both of which are located on the P + -GaN layer 100 on one side of the isolation region 50 , as shown in FIG. 4 .
S4:采用光刻或刻蚀工艺露出隔离区50另一侧的AlGaN肖特基势垒层40以及在i-AlGaN层80两侧露出N+-GaN层70。S4: Exposing the AlGaN Schottky barrier layer 40 on the other side of the isolation region 50 and exposing the N + -GaN layer 70 on both sides of the i-AlGaN layer 80 by photolithography or etching.
其中,经过光刻或刻蚀后,器件隔离层60、N+-GaN层70、i-AlGaN层80、P-AlGaN层90和P+-GaN层100全部位于隔离区50的一侧,而隔离区50的另一侧仅仅露出AlGaN肖特基势垒层40,如图5所示。Wherein, after photolithography or etching, the device isolation layer 60, the N + -GaN layer 70, the i-AlGaN layer 80, the P-AlGaN layer 90 and the P + -GaN layer 100 are all located on one side of the isolation region 50, and The other side of the isolation region 50 only exposes the AlGaN Schottky barrier layer 40 , as shown in FIG. 5 .
S5:采用光刻、金属沉积或剥离工艺在N+-GaN层70上形成N型电极71,以及在AlGaN肖特基势垒层40上形成源电极42和漏电极43,并通过快速退火使N型电极71与N+-GaN层70之间以及源电极42和漏电极43与AlGaN肖特基势垒层40之间形成欧姆接触。S5: Form N-type electrode 71 on N + -GaN layer 70 by photolithography, metal deposition or lift-off process, and form source electrode 42 and drain electrode 43 on AlGaN Schottky barrier layer 40, and make Ohmic contacts are formed between the N-type electrode 71 and the N + -GaN layer 70 and between the source electrode 42 and the drain electrode 43 and the AlGaN Schottky barrier layer 40 .
其中,N型电极71为两个,两个N型电极71分别位于i-AlGaN层80两侧的N+-GaN层70上。源电极42位于隔离区50和漏电极43之间,栅电极41位于源电极42和漏电极43之间,如图6所示。Wherein, there are two N-type electrodes 71 , and the two N-type electrodes 71 are respectively located on the N + -GaN layer 70 on both sides of the i-AlGaN layer 80 . The source electrode 42 is located between the isolation region 50 and the drain electrode 43 , and the gate electrode 41 is located between the source electrode 42 and the drain electrode 43 , as shown in FIG. 6 .
S6:采用光刻、金属沉积或剥离工艺在AlGaN肖特基势垒层40上的源电极42和漏电极43之间形成栅电极41。S6: Forming the gate electrode 41 between the source electrode 42 and the drain electrode 43 on the AlGaN Schottky barrier layer 40 by photolithography, metal deposition or lift-off process.
其中,形成栅电极41后,即得到前述实施例的基于GaN的光电集成器件,如图1所示。Wherein, after the gate electrode 41 is formed, the GaN-based optoelectronic integrated device of the foregoing embodiment is obtained, as shown in FIG. 1 .
本发明实施例还提供一种基于GaN的光电集成器件的外延结构,该外延结构即为本发明实施例制备方法中步骤S1所得产物。该外延结构包括由下而上依次形成的衬底10、成核层20、GaN沟道层30、AlGaN肖特基势垒层40、器件隔离层60、N+-GaN层70、i-AlGaN层80、P-AlGaN层90和P+-GaN层100,其中,AlGaN肖特基势垒层40和GaN沟道层30之间形成二维电子气31。The embodiment of the present invention also provides an epitaxial structure of a GaN-based optoelectronic integrated device, and the epitaxial structure is the product obtained in step S1 in the preparation method of the embodiment of the present invention. The epitaxial structure includes substrate 10, nucleation layer 20, GaN channel layer 30, AlGaN Schottky barrier layer 40, device isolation layer 60, N + -GaN layer 70, i-AlGaN layer 80 , P-AlGaN layer 90 and P + -GaN layer 100 , wherein a two-dimensional electron gas 31 is formed between the AlGaN Schottky barrier layer 40 and the GaN channel layer 30 .
通过上述方式,本发明具有芯片功能丰富,集成度高,系统简化,尺寸和成本低等优点,可用于太空探测、海面漏油探测、工业温度控制、火灾预警等方面。Through the above method, the present invention has the advantages of rich chip functions, high integration, simplified system, low size and cost, etc., and can be used in space detection, sea surface oil spill detection, industrial temperature control, fire warning and other aspects.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, all of which are equally included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510353140.1A CN104900747B (en) | 2015-06-24 | 2015-06-24 | Photoelectric integrated device based on GaN, and preparing method and epitaxial structure thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510353140.1A CN104900747B (en) | 2015-06-24 | 2015-06-24 | Photoelectric integrated device based on GaN, and preparing method and epitaxial structure thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104900747A true CN104900747A (en) | 2015-09-09 |
CN104900747B CN104900747B (en) | 2017-03-22 |
Family
ID=54033283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510353140.1A Active CN104900747B (en) | 2015-06-24 | 2015-06-24 | Photoelectric integrated device based on GaN, and preparing method and epitaxial structure thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104900747B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105679779A (en) * | 2016-03-22 | 2016-06-15 | 中国电子科技集团公司第三十八研究所 | Red spot response detector |
CN106783744A (en) * | 2016-12-27 | 2017-05-31 | 成都海威华芯科技有限公司 | A kind of preparation method of InP PIN photoelectric detectors integrated device |
CN109244038A (en) * | 2018-07-23 | 2019-01-18 | 西安电子科技大学 | A kind of gallium nitride sound stage width amplitude of oscillation linearisation device and production method |
CN112071869A (en) * | 2020-08-28 | 2020-12-11 | 深圳市奥伦德元器件有限公司 | Photovoltaic driver for solid-state relay and preparation method thereof |
CN112635453A (en) * | 2020-12-24 | 2021-04-09 | 华南理工大学 | Photoelectric detector structure |
CN113948604A (en) * | 2021-10-18 | 2022-01-18 | 中国科学院长春光学精密机械与物理研究所 | Three-dimensional structure high-gain AlGaN solar blind ultraviolet detector and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0536962A (en) * | 1991-07-25 | 1993-02-12 | Sumitomo Electric Ind Ltd | Optoelectronic integrated circuit |
JP2001298210A (en) * | 2000-04-11 | 2001-10-26 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor light receiving element |
CN1419713A (en) * | 2000-02-04 | 2003-05-21 | 美商克立光学公司 | Group III nitride based fets and hemts with reduced trapping and method for producing the same |
CN101188256A (en) * | 2007-12-10 | 2008-05-28 | 厦门大学 | Strain-free InAlGaN/GaN PIN photodetector |
-
2015
- 2015-06-24 CN CN201510353140.1A patent/CN104900747B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0536962A (en) * | 1991-07-25 | 1993-02-12 | Sumitomo Electric Ind Ltd | Optoelectronic integrated circuit |
CN1419713A (en) * | 2000-02-04 | 2003-05-21 | 美商克立光学公司 | Group III nitride based fets and hemts with reduced trapping and method for producing the same |
JP2001298210A (en) * | 2000-04-11 | 2001-10-26 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor light receiving element |
CN101188256A (en) * | 2007-12-10 | 2008-05-28 | 厦门大学 | Strain-free InAlGaN/GaN PIN photodetector |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105679779A (en) * | 2016-03-22 | 2016-06-15 | 中国电子科技集团公司第三十八研究所 | Red spot response detector |
CN106783744A (en) * | 2016-12-27 | 2017-05-31 | 成都海威华芯科技有限公司 | A kind of preparation method of InP PIN photoelectric detectors integrated device |
CN109244038A (en) * | 2018-07-23 | 2019-01-18 | 西安电子科技大学 | A kind of gallium nitride sound stage width amplitude of oscillation linearisation device and production method |
CN109244038B (en) * | 2018-07-23 | 2021-08-13 | 西安电子科技大学 | Gallium nitride-based wide-swing linear device and manufacturing method thereof |
CN112071869A (en) * | 2020-08-28 | 2020-12-11 | 深圳市奥伦德元器件有限公司 | Photovoltaic driver for solid-state relay and preparation method thereof |
CN112071869B (en) * | 2020-08-28 | 2022-09-30 | 深圳市奥伦德元器件有限公司 | Photovoltaic driver for solid-state relay and preparation method thereof |
CN112635453A (en) * | 2020-12-24 | 2021-04-09 | 华南理工大学 | Photoelectric detector structure |
CN113948604A (en) * | 2021-10-18 | 2022-01-18 | 中国科学院长春光学精密机械与物理研究所 | Three-dimensional structure high-gain AlGaN solar blind ultraviolet detector and preparation method thereof |
CN113948604B (en) * | 2021-10-18 | 2024-05-17 | 中国科学院长春光学精密机械与物理研究所 | Three-dimensional structure high-gain AlGaN solar blind ultraviolet detector and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104900747B (en) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104900747B (en) | Photoelectric integrated device based on GaN, and preparing method and epitaxial structure thereof | |
US8933461B2 (en) | III-nitride enhancement mode transistors with tunable and high gate-source voltage rating | |
CN103094334B (en) | Electrode structure, GaN-based semiconductor device and its manufacturing method | |
TWI540648B (en) | Group III nitride HEMT with increased buffer breakdown voltage | |
CN111816702A (en) | A hole channel semiconductor transistor, manufacturing method and application thereof | |
JP5805276B2 (en) | Vertical transistor having p-type gallium nitride current barrier layer and manufacturing method thereof | |
US9059199B2 (en) | Method and system for a gallium nitride vertical transistor | |
CN106549038B (en) | A kind of gallium nitride heterojunction HEMT of vertical structure | |
KR102071019B1 (en) | Nitride high electron mobility transistor and manufacturing method thereof | |
TW201426976A (en) | Semiconductor device and its manufacturing method, power supply and high frequency amplifier | |
US8723222B2 (en) | Nitride electronic device and method for manufacturing the same | |
US20140191241A1 (en) | Gallium nitride vertical jfet with hexagonal cell structure | |
CN204668309U (en) | Based on integrated optoelectronic device and the epitaxial structure thereof of GaN | |
Klein et al. | Al‐rich algan transistors with regrown P‐algan gate layers and ohmic contacts | |
CN119922973A (en) | A wide bandgap semiconductor composite chip structure and preparation method thereof | |
CN113035783B (en) | Graphene device and GaN device hetero-integrated structure and preparation method | |
CN106601792A (en) | Gallium nitride transistor of high electron mobility and preparation method of transistor | |
KR102087941B1 (en) | Power Semiconductor Device | |
CN112993033B (en) | GaN device structure and preparation method thereof | |
Lu et al. | Monolithic integration of GaN LEDs with vertical driving MOSFETs by selective area growth and band engineering of the p-AlGaN electron blocking layer though TCAD simulation | |
KR20240035105A (en) | Power semiconductor device and manufacturing method thereof | |
CN115332249A (en) | Transistor and method of making the same | |
KR101480068B1 (en) | Nitride based semiconductor device and Method of manufacturing thereof | |
CN106783613A (en) | A kind of III V races semiconductor MOS HEMT device and preparation method thereof | |
Ji et al. | Ridge-channel AlGaN/GaN normally-off high-electron mobility transistor based on epitaxial lateral overgrowth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 610000 Sichuan, Shuangliu County, Southwest Airport Economic Development Zone, the Internet of things industry park Applicant after: CHENGDU HIWAFER TECHNOLOGY CO., LTD. Address before: 610000 Sichuan, Shuangliu County, Southwest Airport Economic Development Zone, the Internet of things industry park Applicant before: CHENGDU GASTONE TECHNOLOGY CO., LTD. |
|
COR | Change of bibliographic data | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |