CN104899876A - 一种基于自适应高斯差分的眼底图像血管分割方法 - Google Patents
一种基于自适应高斯差分的眼底图像血管分割方法 Download PDFInfo
- Publication number
- CN104899876A CN104899876A CN201510258992.2A CN201510258992A CN104899876A CN 104899876 A CN104899876 A CN 104899876A CN 201510258992 A CN201510258992 A CN 201510258992A CN 104899876 A CN104899876 A CN 104899876A
- Authority
- CN
- China
- Prior art keywords
- mrow
- image
- gaussian
- msub
- blood vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 71
- 230000011218 segmentation Effects 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000009792 diffusion process Methods 0.000 claims abstract description 20
- 230000008878 coupling Effects 0.000 claims abstract description 9
- 238000010168 coupling process Methods 0.000 claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 claims abstract description 9
- 230000003044 adaptive effect Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000003902 lesion Effects 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims 1
- 230000001965 increasing effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 238000012935 Averaging Methods 0.000 abstract description 2
- 238000005303 weighing Methods 0.000 abstract 1
- 238000001914 filtration Methods 0.000 description 8
- 231100000915 pathological change Toxicity 0.000 description 5
- 230000036285 pathological change Effects 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009978 visual deterioration Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
- G06T7/41—Analysis of texture based on statistical description of texture
- G06T7/44—Analysis of texture based on statistical description of texture using image operators, e.g. filters, edge density metrics or local histograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20004—Adaptive image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510258992.2A CN104899876B (zh) | 2015-05-18 | 2015-05-18 | 一种基于自适应高斯差分的眼底图像血管分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510258992.2A CN104899876B (zh) | 2015-05-18 | 2015-05-18 | 一种基于自适应高斯差分的眼底图像血管分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104899876A true CN104899876A (zh) | 2015-09-09 |
CN104899876B CN104899876B (zh) | 2018-04-06 |
Family
ID=54032521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510258992.2A Active CN104899876B (zh) | 2015-05-18 | 2015-05-18 | 一种基于自适应高斯差分的眼底图像血管分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104899876B (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105701829A (zh) * | 2016-01-16 | 2016-06-22 | 常州大学 | 一种套袋绿色果实图像分割方法 |
CN106407657A (zh) * | 2016-08-31 | 2017-02-15 | 无锡雅座在线科技发展有限公司 | 事件捕获方法和装置 |
CN109544525A (zh) * | 2018-11-15 | 2019-03-29 | 北京工业大学 | 一种基于自适应窗口模型匹配的眼底图片血管识别方法 |
CN110136089A (zh) * | 2019-05-23 | 2019-08-16 | 大连理工大学 | 一种人类胚胎心脏超声图像增强方法 |
CN110348541A (zh) * | 2019-05-10 | 2019-10-18 | 腾讯医疗健康(深圳)有限公司 | 眼底血管图像分类方法、装置、设备及存储介质 |
CN110517274A (zh) * | 2019-08-30 | 2019-11-29 | 集美大学 | 一种图像阈值分割方法、终端设备及存储介质 |
CN111476810A (zh) * | 2020-06-28 | 2020-07-31 | 北京美摄网络科技有限公司 | 图像边缘检测方法、装置、电子设备及存储介质 |
CN112669439A (zh) * | 2020-11-23 | 2021-04-16 | 西安电子科技大学 | 基于迁移学习的颅内血管造影增强三维模型的建立方法 |
CN112669256A (zh) * | 2020-11-23 | 2021-04-16 | 西安电子科技大学 | 一种基于迁移学习的医学图像分割与显示方法 |
CN112770660A (zh) * | 2018-09-07 | 2021-05-07 | 安布股份有限公司 | 增强彩色图像中的血管可见性 |
CN113269756A (zh) * | 2021-05-28 | 2021-08-17 | 长春大学 | 基于多尺度匹配滤波与粒子群优化视网膜血管分割方法、装置 |
CN115409765A (zh) * | 2021-05-28 | 2022-11-29 | 南京博视医疗科技有限公司 | 一种基于眼底视网膜图像的血管提取方法及装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110037651B (zh) * | 2018-01-15 | 2022-03-25 | 江威 | 眼底图像的质量控制方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102982542A (zh) * | 2012-11-14 | 2013-03-20 | 天津工业大学 | 一种基于相位一致性的眼底图像血管分割方法 |
CN102999905A (zh) * | 2012-11-15 | 2013-03-27 | 天津工业大学 | 基于自适应pcnn的眼底图像血管自动检测方法 |
JP2014083095A (ja) * | 2012-10-19 | 2014-05-12 | Canon Inc | 眼科撮影装置、眼科撮影装置の制御方法、プログラム |
-
2015
- 2015-05-18 CN CN201510258992.2A patent/CN104899876B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014083095A (ja) * | 2012-10-19 | 2014-05-12 | Canon Inc | 眼科撮影装置、眼科撮影装置の制御方法、プログラム |
CN102982542A (zh) * | 2012-11-14 | 2013-03-20 | 天津工业大学 | 一种基于相位一致性的眼底图像血管分割方法 |
CN102999905A (zh) * | 2012-11-15 | 2013-03-27 | 天津工业大学 | 基于自适应pcnn的眼底图像血管自动检测方法 |
Non-Patent Citations (2)
Title |
---|
DIETRICH PAULUS等: "Vessel Segmentation in Retinal Images", 《PROCEEDINGS OF SPIE》 * |
SUBHASIS CHAUDHURI等: "Detection of Blood Vessels in Retinal Images Using Two-Dimensional Matched Filters", 《IEEE TRANSACTIONS ON MEDICAL IMAGINE》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105701829B (zh) * | 2016-01-16 | 2018-05-04 | 常州大学 | 一种套袋绿色果实图像分割方法 |
CN105701829A (zh) * | 2016-01-16 | 2016-06-22 | 常州大学 | 一种套袋绿色果实图像分割方法 |
CN106407657A (zh) * | 2016-08-31 | 2017-02-15 | 无锡雅座在线科技发展有限公司 | 事件捕获方法和装置 |
CN112770660A (zh) * | 2018-09-07 | 2021-05-07 | 安布股份有限公司 | 增强彩色图像中的血管可见性 |
US11978184B2 (en) | 2018-09-07 | 2024-05-07 | Ambu A/S | Method for enhancing the visibility of blood vessels in color images and visualization systems implementing the method |
CN112770660B (zh) * | 2018-09-07 | 2022-07-12 | 安布股份有限公司 | 增强彩色图像中的血管可见性 |
CN109544525A (zh) * | 2018-11-15 | 2019-03-29 | 北京工业大学 | 一种基于自适应窗口模型匹配的眼底图片血管识别方法 |
CN110348541A (zh) * | 2019-05-10 | 2019-10-18 | 腾讯医疗健康(深圳)有限公司 | 眼底血管图像分类方法、装置、设备及存储介质 |
CN110348541B (zh) * | 2019-05-10 | 2021-12-10 | 腾讯医疗健康(深圳)有限公司 | 眼底血管图像分类方法、装置、设备及存储介质 |
CN110136089A (zh) * | 2019-05-23 | 2019-08-16 | 大连理工大学 | 一种人类胚胎心脏超声图像增强方法 |
CN110517274A (zh) * | 2019-08-30 | 2019-11-29 | 集美大学 | 一种图像阈值分割方法、终端设备及存储介质 |
CN110517274B (zh) * | 2019-08-30 | 2022-04-01 | 集美大学 | 一种图像阈值分割方法、终端设备及存储介质 |
CN111476810A (zh) * | 2020-06-28 | 2020-07-31 | 北京美摄网络科技有限公司 | 图像边缘检测方法、装置、电子设备及存储介质 |
CN111476810B (zh) * | 2020-06-28 | 2020-10-16 | 北京美摄网络科技有限公司 | 图像边缘检测方法、装置、电子设备及存储介质 |
CN112669256A (zh) * | 2020-11-23 | 2021-04-16 | 西安电子科技大学 | 一种基于迁移学习的医学图像分割与显示方法 |
CN112669256B (zh) * | 2020-11-23 | 2024-02-20 | 西安电子科技大学 | 一种基于迁移学习的医学图像分割与显示方法 |
CN112669439B (zh) * | 2020-11-23 | 2024-03-19 | 西安电子科技大学 | 基于迁移学习的颅内血管造影增强三维模型的建立方法 |
CN112669439A (zh) * | 2020-11-23 | 2021-04-16 | 西安电子科技大学 | 基于迁移学习的颅内血管造影增强三维模型的建立方法 |
CN113269756A (zh) * | 2021-05-28 | 2021-08-17 | 长春大学 | 基于多尺度匹配滤波与粒子群优化视网膜血管分割方法、装置 |
CN115409765A (zh) * | 2021-05-28 | 2022-11-29 | 南京博视医疗科技有限公司 | 一种基于眼底视网膜图像的血管提取方法及装置 |
CN115409765B (zh) * | 2021-05-28 | 2024-01-09 | 南京博视医疗科技有限公司 | 一种基于眼底视网膜图像的血管提取方法及装置 |
CN113269756B (zh) * | 2021-05-28 | 2024-02-27 | 长春大学 | 基于多尺度匹配滤波与粒子群优化视网膜血管分割方法、装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104899876B (zh) | 2018-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104899876B (zh) | 一种基于自适应高斯差分的眼底图像血管分割方法 | |
CN113436168B (zh) | 一种用于工业焊缝x光图中的裂纹缺陷检测方法 | |
CN102982542B (zh) | 一种基于相位一致性的眼底图像血管分割方法 | |
CN102156996B (zh) | 一种图像边缘检测的方法 | |
CN106651888B (zh) | 基于多特征融合的彩色眼底图像视杯分割方法 | |
CN108986106A (zh) | 面向青光眼临床诊断的视网膜血管自动分割方法 | |
CN104899862A (zh) | 基于全局与局部阈值的视网膜血管分割算法 | |
CN106780486A (zh) | 一种钢板表面缺陷图像提取方法 | |
CN102324109A (zh) | 基于模糊隶属度模型的非实质性肺结节三维分割方法 | |
CN106096491B (zh) | 一种眼底彩色照相图像中微动脉瘤自动化识别方法 | |
CN117557460B (zh) | 一种血管造影图像增强方法 | |
He et al. | Retinal image denoising via bilateral filter with a spatial kernel of optimally oriented line spread function | |
CN111583286B (zh) | 基于Flow-XDoG算子的腹部MRI图像轮廓提取方法 | |
Khordehchi et al. | Automatic lung nodule detection based on statistical region merging and support vector machines | |
CN110084796B (zh) | 一种复杂纹理ct图像的分析方法 | |
Dharmawan et al. | A new two-dimensional matched filter based on the modified Chebyshev type I function for retinal vessels detection | |
CN113763404A (zh) | 基于优化标记和边缘约束分水岭算法的泡沫图像分割方法 | |
CN113269764A (zh) | 颅内动脉瘤自动分割方法、系统、样本处理及模型训练方法 | |
Choukikar et al. | Segmenting the optic disc in retinal images using thresholding | |
Zhou et al. | A novel approach for red lesions detection using superpixel multi-feature classification in color fundus images | |
Essaf et al. | An improved lung parenchyma segmentation using the maximum inter-class variance method (OTSU) | |
Kabir | A rule based segmentation approaches to extract retinal blood vessels in fundus image | |
Biradar et al. | A survey on blood vessel segmentation and optic disc segmentation of retinal images | |
CN113362346A (zh) | 基于机器学习双区域轮廓演化模型的视盘和视杯分割方法 | |
Mohammad et al. | Automated detection of microaneurysm for fundus images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201201 Address after: A226, No. 42, Baidi Road, Wanxing street, Nankai District, Tianjin 300110 Patentee after: Tianjin Suowei Intellectual Property Service Co., Ltd Address before: 300160 Tianjin City Hedong District Forest Road No. 63 Patentee before: TIANJIN POLYTECHNIC University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201224 Address after: Room 614, 65 Chifeng Road, Yangpu District, Shanghai 200082 Patentee after: SHANGHAI NEW EYES MEDICAL Inc. Address before: 300110 a226, 42 Baidi Road, Wanxing street, Nankai District, Tianjin Patentee before: Tianjin Suowei Intellectual Property Service Co., Ltd |
|
TR01 | Transfer of patent right |