CN104898149A - 一种智能雨水放射性测量系统及测量方法 - Google Patents

一种智能雨水放射性测量系统及测量方法 Download PDF

Info

Publication number
CN104898149A
CN104898149A CN201510187582.3A CN201510187582A CN104898149A CN 104898149 A CN104898149 A CN 104898149A CN 201510187582 A CN201510187582 A CN 201510187582A CN 104898149 A CN104898149 A CN 104898149A
Authority
CN
China
Prior art keywords
rainwater
water
water container
solenoid valve
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510187582.3A
Other languages
English (en)
Other versions
CN104898149B (zh
Inventor
何志杰
乐仁昌
陈健俤
陈清华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201510187582.3A priority Critical patent/CN104898149B/zh
Publication of CN104898149A publication Critical patent/CN104898149A/zh
Application granted granted Critical
Publication of CN104898149B publication Critical patent/CN104898149B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种智能雨水放射性测量系统及测量方法。通过雨滴传感模块智能检测是否降水,及时启动智能雨水放射性测量系统,该系统由STM32主控芯片、雨滴传感器、电机模块、PC端放射性测量软件、GSM模块、测量工作室、雨水收集器、盛水容器A和B、电磁阀、若干引水管、高低水位探针组成,该装置能根据降水情况,通知测试终端是否启动测量。本发明能够根据测试终端反馈的信息指令,自动选择测量或不测量,整个系统相当方便、智能。

Description

一种智能雨水放射性测量系统及测量方法
技术领域
本发明涉及一种智能雨水放射性测量系统及测量方法。
背景技术
雨水的短寿命放射性是普遍存在的一种自然现象,虽然其存在时间很短,但是,对我们身边所出现的这一自然现象进行研究,掌握这一现象的自然规律,本身就具有科学意义。雨水来源于大气,因而携带了大量的有关大气甚至宇宙的信息。研究雨水的短寿命天然放射性可以揭示放射性物质在大气环境中的迁移变化规律,为大气环境影响评价、环境治理等提供依据。
雨水易取样、且雨水中的短寿命放射性易检测,但是降水的过程较为随机,特别是在晚上或特定时间不方便收集雨水,或者方便收集雨水但身边没有测量仪器的情况下,容易使我们散失很多机会,失去宝贵的研究时机。通过专利检索系统,目前为止并未有相关的专利或实用新型涉及雨水自动收集和测量。传统的雨水收集和测量,有很大的缺点,主要依靠人工进行,不够智能化,有一定的使用障碍和缺陷。
为克服以上缺陷,为保证能实时地、不受时间限制地收集和测量雨水放射性,我们需要一种能自动测量雨水放射性的系统。
因此,我们发明了一种能自动测量雨水放射性的系统,该系统能根据降水情况,通知测试终端是否启动测量。根据测试终端反馈的信息指令,自动选择测量或不测量,整个系统相当智能。
发明内容
本发明的目的在于提供一种智能雨水放射性测量系统及测量方法。
为实现上述目的,本发明的技术方案是:一种智能雨水放射性测量系统,包括STM32主控芯片、雨滴传感模块、电机模块、GSM模块、雨水收集器、测量工作室、PC机采集卡及PC端测量软件;
所述雨滴传感模块与所述STM32主控芯片连接,用于检测是否有降雨情况发生;
所述电机模块与所述STM32主控芯片连接,并用于控制雨滴传感模块的转动;
所述GSM模块用于实现STM32主控芯片与测试终端的通信;
所述雨水收集器用于进水雨水收集,该收集的雨水经一引水管引流至一盛水容器A,以便于所述测量工作室测量取用;
所述测量工作室包括盛水容器B和放射性探测器,所述盛水容器B的进水口与盛水容器A的出水口连接,所述放射性探测器用于检测盛水容器B中雨水的放射性,并通过所述PC机采集卡传输至所述PC端测量软件进行放射性测量。
在本发明一实施例中,还包括一自来水进水口,自来水经该自来水进水口及第二引水管进入盛水容器A,以便于通过自来水对盛水容器A、B进行清洗。
在本发明一实施例中,还包括与所述STM32主控芯片连接的电磁阀A、B、C、D、E,所述电磁阀A设置于所述雨水收集器的出水口处,所述电磁阀B设置于自来水进水口处,所述电磁阀C设置于所述盛水容器A的废水出水口处,所述电磁阀D设置于所述盛水容器A的出水口处,所述电磁阀E设置于所述盛水容器E的废水出水口处。
在本发明一实施例中,所述盛水容器A设置有高低水位探针A、B,以便于测量盛水容器A中的雨水量。
在本发明一实施例中,所述雨水收集器为漏斗。
在本发明一实施例中,所述雨滴传感模块带有转盘,所述电机模块通过该转盘控制雨滴传感模块转动。
在本发明一实施例中,所述GSM模块为短信报警模块,具有短信发送和接收功能。
本发明还提供了一种基于上述所述系统的雨水放射性测量方法,包括如下步骤,
步骤S1:控制系统上电,初始化工作参数,状态复位,PC端测试测量软件处于待命状态;
步骤S2:STM32主控芯片通过雨滴传感模块实时监测降雨情况,若雨滴传感模块输出高电平时,表示降雨发生,并唤醒STM32主控芯片,执行步骤S3;若雨滴传感模块输出低电平时,表示没有降雨,则继续等待;
步骤S3:STM32主控芯片通过所述GSM模块通知测试终端,并等待测试终端返回指令信息;若测试终端返回的指令为测量指令,则执行步骤S4,进入测量;否则,继续等待测试终端指令信息;
步骤S4:启动电机,将雨滴传感模块朝向地面,轻微甩动,使之变干,以便下回测量使用;开始测量时,先打开电磁阀B、D,将自来水引进盛水容器A、B,清洗盛水容器A、B;清洗完毕,关闭电磁阀B、D,打开电磁阀C、E,排出盛水容器A、B中的废水;
步骤S5:关闭电磁阀C、E,打开电磁阀A准备放雨水至盛水容器A;启动雨水收集时间判断,即预定时间内盛水容器A中收集到预定量的雨水,则判断为有效雨水,并关闭电磁阀A,打开电磁阀D,将雨水放入盛水容器B,当雨水进入盛水容器B后,关闭电磁阀D,同时STM32主控芯片控制PC端测量软件开始雨水样品测量;PC机测量软件通过PC机采集卡进行数据采集分析和处理;测量完毕,打开电磁阀C、E,排出废水;
步骤S6:测量完毕后,判断设定的测量次数是否完成,若未完成,则重新执行步骤S4至步骤S5;若测量次数完成,则通过GSM模块通知测试终端,是否进行下一轮测量;若测试终端返回测量指令,控制电机模块使雨滴感应模块朝上,继续判断是否降雨发生,重新开始测量。
在本发明一实施例中,所述预定时间内收集到预定量的雨水,是通过高低水位探针A、B来测量盛水容器A中的雨水量。
相较于现有技术,本发明具有以下有益效果:本发明方便测试者不受时间约束,及时根据降雨情况决定是否进行雨水的自动收集和测量,系统的实用性和智能性得到了很大的提高。
附图说明
图1为本发明的系统结构示意图。
图2为本发明的主工作流程示意图。
图3为本发明的测量工作流程示意图。
图中,101-STM32主控芯片,102-雨滴传感模块,103-电机模块,104-GSM模块,105-测量工作室,106-盛水容器B,107-盛水容器A,108-雨水收集器(漏斗)。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
如图1至3所示,本发明的一种智能雨水放射性测量系统,包括STM32主控芯片、雨滴传感模块(所述雨滴传感模块带有转盘,所述电机模块通过该转盘控制雨滴传感模块转动)、电机模块、GSM模块(所述GSM模块为短信报警模块,具有短信发送和接收功能)、雨水收集器(所述雨水收集器为漏斗)、测量工作室、PC机采集卡及PC端测量软件;
所述雨滴传感模块与所述STM32主控芯片连接,用于检测是否有降雨情况发生;
所述电机模块与所述STM32主控芯片连接,并用于控制雨滴传感模块的转动;
所述GSM模块用于实现STM32主控芯片与测试终端的通信;
所述雨水收集器用于进水雨水收集,该收集的雨水经一引水管引流至一盛水容器A(所述盛水容器A设置有高低水位探针A、B,以便于测量盛水容器A中的雨水量),以便于所述测量工作室测量取用;
所述测量工作室包括盛水容器B和放射性探测器,所述盛水容器B的进水口与盛水容器A的出水口连接,所述放射性探测器用于检测盛水容器B中雨水的放射性,并通过所述PC机采集卡传输至所述PC端测量软件进行放射性测量。
为了对盛水容器A、B进行清洗,还包括一自来水进水口,自来水经该自来水进水口及第二引水管进入盛水容器A,以便于通过自来水对盛水容器A、B进行清洗。
为了对进出水口及废水排出的控制,还包括与所述STM32主控芯片连接的电磁阀A、B、C、D、E,所述电磁阀A设置于所述雨水收集器的出水口处,所述电磁阀B设置于自来水进水口处,所述电磁阀C设置于所述盛水容器A的废水出水口处,所述电磁阀D设置于所述盛水容器A的出水口处,所述电磁阀E设置于所述盛水容器E的废水出水口处。
本发明还提供了一种基于上述所述系统的雨水放射性测量方法,包括如下步骤,
步骤S1:控制系统上电,初始化工作参数,状态复位,PC端测试测量软件处于待命状态;
步骤S2:STM32主控芯片通过雨滴传感模块实时监测降雨情况,若雨滴传感模块输出高电平时,表示降雨发生,并唤醒STM32主控芯片,执行步骤S3;若雨滴传感模块输出低电平时,表示没有降雨,则继续等待;
步骤S3:STM32主控芯片通过所述GSM模块通知测试终端,并等待测试终端返回指令信息;若测试终端返回的指令为测量指令,则执行步骤S4,进入测量;否则,继续等待测试终端指令信息;
步骤S4:启动电机,将雨滴传感模块朝向地面,轻微甩动,使之变干,以便下回测量使用;开始测量时,先打开电磁阀B、D,将自来水引进盛水容器A、B,清洗盛水容器A、B;清洗完毕,关闭电磁阀B、D,打开电磁阀C、E,排出盛水容器A、B中的废水;
步骤S5:关闭电磁阀C、E,打开电磁阀A准备放雨水至盛水容器A;启动雨水收集时间判断,即预定时间内盛水容器A中收集到预定量的雨水(所述预定时间内收集到预定量的雨水,是通过高低水位探针A、B来测量盛水容器A中的雨水量),则判断为有效雨水,并关闭电磁阀A,打开电磁阀D,将雨水放入盛水容器B,当雨水进入盛水容器B后,关闭电磁阀D,同时STM32主控芯片控制PC端测量软件开始雨水样品测量;PC机测量软件通过PC机采集卡进行数据采集分析和处理;测量完毕,打开电磁阀C、E,排出废水;
步骤S6:测量完毕后,判断设定的测量次数是否完成,若未完成,则重新执行步骤S4至步骤S5;若测量次数完成,则通过GSM模块通知测试终端,是否进行下一轮测量;若测试终端返回测量指令,控制电机模块使雨滴感应模块朝上,继续判断是否降雨发生,重新开始测量。
以下通过具体实施例讲述本发明的技术方案。
图1中,一种能自动测量雨水放射性的装置,由STM32主控芯片、雨滴传感模块(雨滴传感器)、电机模块、PC端放射性测量软件、GSM模块、测量工作室、雨水收集器、盛水容器A和B、电磁阀、若干引水管、高低水位探针组成。各模块的工作过程结合图2,图3进行阐述。
1.控制系统上电,初始化工作参数,状态复位,PC端测试测量软件处于待命状态。
2.STM32主控芯片通过雨滴传感器实时监测降雨情况,当雨滴传感器输出高电平时,表示降雨发生;当雨滴传感器输出低电平时,表示没有降雨。雨滴传感器通过中断引脚接入主控芯片STM32,如果没有降雨,则继续等待;如果发生降雨情况,则唤醒主控芯片STM32,进行后续处理;
3.当降雨情况发生时,主机通过GSM模块通知测试终端,并等待测试终端返回指令信息。若测试终端返回的指令为测量指令,则进入测量工作流程图3;若测试终端返回的指令为不测量,则继续等待测试终端其他命令。
4.当接收到测量指令时,转入测量工作流程,同时启动电机,将雨滴传感模块朝向地面,轻微甩动,使之变干,以便下回测量使用。
5.当测量开始时,先打开电磁阀B、D,将自来水引进盛水容器A、B,将容器A、B清洗干净。清洗完毕,关闭电磁阀B、D,打开电磁阀C、E放空容器A、B,将废水放干净。
6.关闭电磁阀C、E,打开电磁阀A准备放雨水至容器A。启动雨水收集时间判断,如果某个特定的时间内收集到一定量的雨水,则判断为有效雨水(因为雨水的短寿命放射性现象,必须确保雨水收集的时间不能太长),关闭电磁阀A,直接打开电磁阀D,将雨水放入容器B,当一定量雨水进入容器B后,关闭电磁阀D,同时主机通过串口通知PC端测量软件开始测量雨水样品。PC机测量软件通过数据采集卡进行数据采集分析和处理。测量完毕,打开电磁阀C,E,将废水排出。
7. 有效雨水的判断是通过特定时间内高低水位探针是满足要求,进行相应的识别。
8.测量完毕后,判断设定的测量次数是否结束,如果未结束,则继续测量工作过程,从放自来水清洗容器A、B开始。
9.如果测量结束,则短信通知测试终端,是否进行下一轮测量。如果测试终端返回不测量指令,则等待测试终端发回其他指令;如果测试终端返回测量指令,则转动电机,使雨滴模块朝上,继续判断是否雨水发生,以上过程循环进行。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (9)

1.一种智能雨水放射性测量系统,其特征在于:包括STM32主控芯片、雨滴传感模块、电机模块、GSM模块、雨水收集器、测量工作室、PC机采集卡及PC端测量软件;
所述雨滴传感模块与所述STM32主控芯片连接,用于检测是否有降雨情况发生;
所述电机模块与所述STM32主控芯片连接,并用于控制雨滴传感模块的转动;
所述GSM模块用于实现STM32主控芯片与测试终端的通信;
所述雨水收集器用于进水雨水收集,该收集的雨水经一引水管引流至一盛水容器A,以便于所述测量工作室测量取用;
所述测量工作室包括盛水容器B和放射性探测器,所述盛水容器B的进水口与盛水容器A的出水口连接,所述放射性探测器用于检测盛水容器B中雨水的放射性,并通过所述PC机采集卡传输至所述PC端测量软件进行放射性测量。
2.根据权利要求1所述的一种智能雨水放射性测量系统,其特征在于:还包括一自来水进水口,自来水经该自来水进水口及第二引水管进入盛水容器A,以便于通过自来水对盛水容器A、B进行清洗。
3.根据权利要求2所述的一种智能雨水放射性测量系统,其特征在于:还包括与所述STM32主控芯片连接的电磁阀A、B、C、D、E,所述电磁阀A设置于所述雨水收集器的出水口处,所述电磁阀B设置于自来水进水口处,所述电磁阀C设置于所述盛水容器A的废水出水口处,所述电磁阀D设置于所述盛水容器A的出水口处,所述电磁阀E设置于所述盛水容器E的废水出水口处。
4.根据权利要求3所述的一种智能雨水放射性测量系统,其特征在于:所述盛水容器A设置有高低水位探针A、B,以便于测量盛水容器A中的雨水量。
5.根据权利要求1至4任意一项所述的一种智能雨水放射性测量系统,其特征在于:所述雨水收集器为漏斗。
6.根据权利要求1至4任意一项所述的一种智能雨水放射性测量系统,其特征在于:所述雨滴传感模块带有转盘,所述电机模块通过该转盘控制雨滴传感模块转动。
7.根据权利要求1至4任意一项所述的一种智能雨水放射性测量系统,其特征在于:所述GSM模块为短信报警模块,具有短信发送和接收功能。
8.一种基于权利要求4所述系统的雨水放射性测量方法,其特征在于:包括如下步骤,
步骤S1:控制系统上电,初始化工作参数,状态复位,PC端测试测量软件处于待命状态;
步骤S2:STM32主控芯片通过雨滴传感模块实时监测降雨情况,若雨滴传感模块输出高电平时,表示降雨发生,并唤醒STM32主控芯片,执行步骤S3;若雨滴传感模块输出低电平时,表示没有降雨,则继续等待;
步骤S3:STM32主控芯片通过所述GSM模块通知测试终端,并等待测试终端返回指令信息;若测试终端返回的指令为测量指令,则执行步骤S4,进入测量;否则,继续等待测试终端指令信息;
步骤S4:启动电机,将雨滴传感模块朝向地面,轻微甩动,使之变干,以便下回测量使用;开始测量时,先打开电磁阀B、D,将自来水引进盛水容器A、B,清洗盛水容器A、B;清洗完毕,关闭电磁阀B、D,打开电磁阀C、E,排出盛水容器A、B中的废水;
步骤S5:关闭电磁阀C、E,打开电磁阀A准备放雨水至盛水容器A;启动雨水收集时间判断,即预定时间内盛水容器A中收集到预定量的雨水,则判断为有效雨水,并关闭电磁阀A,打开电磁阀D,将雨水放入盛水容器B,当雨水进入盛水容器B后,关闭电磁阀D,同时STM32主控芯片控制PC端测量软件开始雨水样品测量;PC机测量软件通过PC机采集卡进行数据采集分析和处理;测量完毕,打开电磁阀C、E,排出废水;
步骤S6:测量完毕后,判断设定的测量次数是否完成,若未完成,则重新执行步骤S4至步骤S5;若测量次数完成,则通过GSM模块通知测试终端,是否进行下一轮测量;若测试终端返回测量指令,控制电机模块使雨滴感应模块朝上,继续判断是否降雨发生,重新开始测量。
9.根据权利要求8所述的雨水放射性测量方法,其特征在于:所述预定时间内收集到预定量的雨水,是通过高低水位探针A、B来测量盛水容器A中的雨水量。
CN201510187582.3A 2015-04-21 2015-04-21 一种智能雨水放射性测量系统及测量方法 Expired - Fee Related CN104898149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510187582.3A CN104898149B (zh) 2015-04-21 2015-04-21 一种智能雨水放射性测量系统及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510187582.3A CN104898149B (zh) 2015-04-21 2015-04-21 一种智能雨水放射性测量系统及测量方法

Publications (2)

Publication Number Publication Date
CN104898149A true CN104898149A (zh) 2015-09-09
CN104898149B CN104898149B (zh) 2018-02-02

Family

ID=54030909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510187582.3A Expired - Fee Related CN104898149B (zh) 2015-04-21 2015-04-21 一种智能雨水放射性测量系统及测量方法

Country Status (1)

Country Link
CN (1) CN104898149B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223601A (zh) * 2015-10-20 2016-01-06 江门市腾飞科技有限公司 一种快速检测水中放射线的装置
CN105824040A (zh) * 2016-03-17 2016-08-03 福建师范大学 一种自来水辐射污染自动检测及报警系统及其方法
CN110006963A (zh) * 2019-04-03 2019-07-12 广东嘉仪仪器集团有限公司 一种罐内涂膜完整性测定仪
CN113624561A (zh) * 2021-07-30 2021-11-09 成都新核泰科科技有限公司 一种气溶胶监测系统及其监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033240A (zh) * 2009-09-30 2011-04-27 长春博信光电子有限公司 实时、现场水中痕量放射性物质和辐射远程无线监测系统
JP2014009977A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 放射性漏洩水モニタリングシステム及び放射性漏洩水モニタリング方法
KR20140115779A (ko) * 2013-03-22 2014-10-01 주식회사 오리온이엔씨 방사능 자동 측정 및 실시간 모니터링 방법
JP2014228365A (ja) * 2013-05-22 2014-12-08 鹿島建設株式会社 放射性汚染物質の貯蔵施設および貯蔵方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033240A (zh) * 2009-09-30 2011-04-27 长春博信光电子有限公司 实时、现场水中痕量放射性物质和辐射远程无线监测系统
JP2014009977A (ja) * 2012-06-28 2014-01-20 Hitachi Ltd 放射性漏洩水モニタリングシステム及び放射性漏洩水モニタリング方法
KR20140115779A (ko) * 2013-03-22 2014-10-01 주식회사 오리온이엔씨 방사능 자동 측정 및 실시간 모니터링 방법
JP2014228365A (ja) * 2013-05-22 2014-12-08 鹿島建設株式会社 放射性汚染物質の貯蔵施設および貯蔵方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈健俤 等: "雨水放射性监测自动化系统设计", 《福建电脑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223601A (zh) * 2015-10-20 2016-01-06 江门市腾飞科技有限公司 一种快速检测水中放射线的装置
CN105824040A (zh) * 2016-03-17 2016-08-03 福建师范大学 一种自来水辐射污染自动检测及报警系统及其方法
CN110006963A (zh) * 2019-04-03 2019-07-12 广东嘉仪仪器集团有限公司 一种罐内涂膜完整性测定仪
CN110006963B (zh) * 2019-04-03 2024-05-03 广东嘉仪仪器集团有限公司 一种罐内涂膜完整性测定仪
CN113624561A (zh) * 2021-07-30 2021-11-09 成都新核泰科科技有限公司 一种气溶胶监测系统及其监测方法

Also Published As

Publication number Publication date
CN104898149B (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
CN104898149A (zh) 一种智能雨水放射性测量系统及测量方法
CN104880542B (zh) 一种水污染状况、污染物浓度实时检测装置及检测方法
CN104062325A (zh) 一种重金属工业废水超标排放预判与留样系统
CN105044370A (zh) 一种无人值守的重金属污水监测设备
CN103149212A (zh) 纽扣电池在线质量检测系统
CN106338948A (zh) 一种物流管理终端的工作方法
CN205403854U (zh) 湖泊水质多传感器在线监测终端
CN206070005U (zh) 一种用于监测阴极保护测试桩中交流干扰的装置
CN206583484U (zh) 一种用于河水样品采集及现场分析装置
CN205049469U (zh) 一种河流水质自动监测系统
CN107192584B (zh) 一种水土保持监测小区径流泥沙连续取样保存系统和方法
CN109297763A (zh) 水体污染物采样监测系统及控制方法
CN105931454A (zh) 低功耗无线通信探测装置及探测方法
CN106525508A (zh) 一种工业污水防偷排监测报警系统
CN204789556U (zh) 一种水污染状况、污染物浓度实时检测装置
CN212301736U (zh) 一种基于边缘计算的线损检测设备
CN105911109A (zh) 一种水中溶解氧在线测量方法及装置
CN206892365U (zh) 一种自动化雪重测量装置
CN206378323U (zh) 一种工业污水防偷排监测报警系统及装置
CN210803439U (zh) 一种防污水偷排智能监测终端
CN106089675B (zh) 一种便携式水泵能耗评估仪
CN111756325A (zh) 一种基于dsp的光伏组件监测系统及方法
CN215375207U (zh) 一种高寒地区地下水水质智能化监测数据分析预警系统
CN113152586B (zh) 一种基于在线水质监测的屋面雨水自动收集系统
CN211179792U (zh) 一种水质监测仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180202

CF01 Termination of patent right due to non-payment of annual fee