CN104894132B - 一种鼻咽癌抑制剂及其应用 - Google Patents

一种鼻咽癌抑制剂及其应用 Download PDF

Info

Publication number
CN104894132B
CN104894132B CN201510290993.5A CN201510290993A CN104894132B CN 104894132 B CN104894132 B CN 104894132B CN 201510290993 A CN201510290993 A CN 201510290993A CN 104894132 B CN104894132 B CN 104894132B
Authority
CN
China
Prior art keywords
mir
mirna
nasopharyngeal carcinoma
expression
pcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510290993.5A
Other languages
English (en)
Other versions
CN104894132A (zh
Inventor
杨承刚
宋宏涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Yangshen Biomedical Co Ltd
Original Assignee
Beijing Medintell Bioinformatic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Medintell Bioinformatic Technology Co Ltd filed Critical Beijing Medintell Bioinformatic Technology Co Ltd
Priority to CN201510290993.5A priority Critical patent/CN104894132B/zh
Publication of CN104894132A publication Critical patent/CN104894132A/zh
Application granted granted Critical
Publication of CN104894132B publication Critical patent/CN104894132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种鼻咽癌抑制剂及其应用,更具体的涉及mir‑363和/或miR‑363在诊治鼻咽癌中的新用途。发明通过高通量测序分析鼻咽癌组织,获得其miRNA表达数据,进而进行生物信息学分析,选取miR‑363进行分子生物学验证及靶标基因验证,结果显示,miR‑363和鼻咽癌密切相关,可用于临床诊断及预防检测,具有很好的实际应用价值。

Description

一种鼻咽癌抑制剂及其应用
技术领域
本发明涉及分子生物学领域,具体的涉及一种鼻咽癌抑制剂及其应用,更具体的涉及mir-363和/或miR-363在诊治鼻咽癌中的新用途。
背景技术
鼻咽癌(Nasopharyngeal carcinoma,NPC)是一种发生于鼻咽粘膜,具有较高恶性程度和极强转移能力的恶性肿瘤。鼻咽癌是多基因遗传性疾病,其发病与遗传因素(遗传易感性)、EB病毒感染、环境因素、饮食习惯等多种因素有关,早期诊断、早期治疗是挽救患者生命和提高生活质量的最有效手段。遗憾的是,鼻咽癌起病隐匿,具有强烈的转移倾向。据统计,约75%的患者在就诊时就已到达晚期,发生局部淋巴结和/或远处转移,治疗后复发或转移则预后极差,成为鼻咽癌治疗失败的主要原因。因此,筛查鼻咽癌的肿瘤标记物,争取早期发现、选择最佳治疗方案、预测预后、监测复发或转移对鼻咽癌诊疗具有重要的临床意义。
miRNA通常由RNA聚合酶II(Pol II)转录生成。Pol II结合在以后形成发夹结构的颈环DNA序列附近。生成的转录本经修饰添加5’帽子结构和3’末端多腺苷酸尾巴结构,并剪切,生成的产物称为初级miRNA(pri-miRNA),该产物可能长达数千或数百核苷酸,可能包含多个miRNA环结构。
单个pri-miRNA可能含一到六个miRNA前体。这些发夹结构每个由约70nt左右的核苷酸组成。每个发卡结构附以部分序列以利于有效剪切处理。pri-miRNA中的双链发夹RNA结构被叫做DGCR8的核蛋白(DiGeorge Syndrome Critical Region 8)辨认,DGCR8同Drosha酶一起形成微处理(microprocessor)复合体。在该复合体中,DGCR8组织Drosha蛋白的RNase III结构域使其在距离发卡结构约11个核苷酸处切割pri-miRNA,使其释放发卡结构。释放的发卡结构即为前miRNA(pre-miRNA),pre-miRNA在3’存在两个悬空的核苷酸,pre-miRNA 5’为磷酸集团,3’为羟基集团。
在胞浆中,pre-miRNA发夹结构经RNase III Dicer切割处理。这种内源性核糖核酸酶(endoribonuclease)与发夹结构的3’相互作用并在环的3’和5’臂上完成切割,产生长约22nt并不完美匹配的miRNA:miRNA*双链结构。
miRNA与靶mRNA的典型作用方式主要有两种。在大多数情况下,复合物中的单链miRNA与靶mRNA的3’UTR不完全互补配对,阻断靶基因的翻译,从而调节基因表达。这种方式主要影响蛋白表达水平,并不影响mRNA的稳定性。近来,有研究对翻译抑制理论提出质疑,发现被抑制的靶mRNAs和miRNAs共同聚集于胞浆中被称为P小体(processing bodies,P-bodies)的区域,这个区域还浓缩了许多参与mRNA降解的酶类。P小体可能是作为未翻译mRNA进行暂时的可逆储存的容器,减少一些特定P小体组成蛋白的表达能够缓和miRNA介导的基因表达抑制作用。P小体是胞浆中的一定区域,它包含参与多种转录后过程的蛋白质,例如:mRNA降解(mRNA degradation)、无义介导mRNA衰退(nonsense-mediated mRNAdecay,NMD),转录抑制及RNA介导的基因沉默(RNA-mediated gene silencing)。
另一种作用方式与siRNA类似,当miRNA与mRNA完全互补配对时,Ago2蛋白通过切割mRNA直接导致其降解,实现基因沉默。以siRNA参与的RNAi为例:siRNA可与RISC结合,作为模板识别mRNA靶子,通过碱基互补配对原则,mRNA与siRNA中的反义链结合,置换出正义链。双链mRNA在Dicer酶、ATP和解旋酶共同作用下产生22nt左右的siRNA,siRNA继续同RISC形成复合体,与siRNA互补的mRNA结合,使mRNA被RNA酶裂解。这个过程也称为转录后基因沉默(PTGS)。
总之,当前认为miRNA以何种方式与目的基因作用和miRNA与目的基因的配对程度有关。miRNA与目的基因配对不完全时,miRNA就以抑制目的基因的表达发挥作用;miRNA与目的基因某段序列配对完全时,就可能引起目的基因在互补区断裂而导致基因沉默。另外,miRNAs有时候也导致组氨酸修饰和启动子区的DNA甲基化,从而影响靶基因的表达。除此外,近来发现快速脱腺苷酸化(accelerated deadenylation)是miRNA抑制基因表达的新机制。在哺乳动物细胞中发现miR-125b和let-7能够促进mRNA聚腺苷酸尾巴(polyA tail)的去除。用3’组蛋白茎-环结构取代聚腺苷酸尾巴,不但可以消除miR-125b对mRNA含量的影响,还可以降低对蛋白质合成的作用,可见miRNA能通过降低翻译效率和聚腺苷酸化mRNA的浓度来抑制基因表达。
本发明通过高通量测序分析鼻咽癌组织,获得其miRNA表达数据,进而进行生物信息学分析,选取后备miRNA进行分子生物学验证及靶标验证,结果显示,本发明提供的miRNA和鼻咽癌密切相关,可用于临床诊断及预防检测,具有很好的实际应用价值。
发明内容
本发明的目的还在于提供mir-363和/或miR-363在制备预防、诊断和/或治疗鼻咽癌试剂中的应用。mir-363的序列见序列表SEQ ID NO 1。mir-363的成熟miRNA为miR-363序列见序列表SEQ ID NO 2。
进一步,所述的预防、诊断鼻咽癌试剂包括基于高通量测序方法和/或基于定量PCR方法和/或基于探针杂交方法检测鼻咽癌样本中mir-363和/或miR-363的转录或基于免疫检测方法检测鼻咽癌样本中miR-363调控的靶基因的表达情况,优选采用northern杂交方法、miRNA表达谱芯片、核酶保护分析技术、RAKE法、原位杂交、基于微球的流式细胞术检测鼻咽癌样本中mir-363和/或miR-363的转录;采用ELISA和/或胶体金试纸条检测鼻咽癌样本中miR-363调控的靶基因的表达情况。优选所述miR-363调控的靶基因为ARMC1、ATP6V1B2、C12orf5、C5orf30、CAND1、CCND2、CCNE2,更优选的miR-363调控的靶基因为ARMC1、ATP6V1B2、C12orf5、CCND2、CCNE2。
优选的,所述的基于定量PCR方法包括特异性扩增mir-363和/或miR-363的引物,进一步优选特异性扩增mir-363引物序列为SEQ ID NO 18和SEQ ID NO 19,特异性扩增miR-363引物序列为SEQ ID NO 3;所述的基于探针杂交方法包括与mir-363和/或miR-363的核酸序列杂交的探针;所述免疫检测方法包括与miR-363调控基因表达蛋白特异性结合的抗体,进一步优选调控的靶基因为ARMC1、ATP6V1B2、C12orf5、C5orf30、CAND1、CCND2、CCNE2蛋白特异性结合的抗体,更优选的,调控的靶基因为ARMC1、ATP6V1B2、C12orf5、CCND2、CCNE2。
进一步,所述的治疗鼻咽癌试剂包括上调mir-363和/或miR-363的转录和/或促进miR-363的活性的试剂。优选的,采用基于RNA的microRNA功能获得性技术和/或基因特异性miR Mimics技术上调mir-363和/或miR-363的转录和/或促进miR-363的活性。更优选人工合成mir-363成熟miRNA的短发夹RNA(short hairpin RNA,shRNA)或通过调控启动子上调mir-363。
本发明的目的在于提供一种治疗鼻咽癌药物组合物,其特征在于,所述药物组合物包含:
(a)上调mir-363和/或miR-363的转录和/或促进miR-363的活性的试剂;
(b)药剂学上能接受的载体。
进一步,采用基于RNA的microRNA功能获得性技术和/或基因特异性miR Mimics技术上调mir-363和/或miR-363的转录和/或促进miR-363的活性。优选人工合成mir-363成熟miRNA的短发夹RNA(short hairpin RNA,shRNA)或通过调控启动子上调mir-363。
本发明的目的在于提供一种鼻咽癌诊断试剂,所述鼻咽癌诊断试剂能够检测鼻咽癌样本中mir-363和/或miR-363的转录或免疫检测方法检测鼻咽癌样本中miR-363调控的靶基因的表达情况。
进一步,所述鼻咽癌诊断试剂基于高通量测序方法和/或基于定量PCR方法和/或基于探针杂交方法检测鼻咽癌样本中mir-363和/或miR-363的转录或基于免疫方法检测鼻咽癌样本中miR-363调控的靶基因的表达情况,优选采用northern杂交方法、miRNA表达谱芯片、核酶保护分析技术、RAKE法、原位杂交、基于微球的流式细胞术检测鼻咽癌样本中mir-363和/或miR-363的转录;采用ELISA和/或胶体金试纸条检测鼻咽癌样本中miR-363调控的靶基因的表达情况。优选所述mir-363的成熟miRNA调控的靶基因为ARMC1、ATP6V1B2、C12orf5、C5orf30、CAND1、CCND2、CCNE2蛋白特异性结合的抗体,更优选的,调控的靶基因为ARMC1、ATP6V1B2、C12orf5、CCND2、CCNE2。
优选的,所述的用于定量PCR方法包括特异性扩增mir-363和/或miR-363的引物;所述的基于探针杂交方法包括与mir-363和/或miR-363的核酸序列杂交的探针;所述免疫检测方法包括与miR-363调控基因表达蛋白特异性结合的抗体,进一步优选调控的靶基因为ARMC1、ATP6V1B2、C12orf5、C5orf30、CAND1、CCND2、CCNE2蛋白特异性结合的抗体,更优选的,调控的靶基因为ARMC1、ATP6V1B2、C12orf5、CCND2、CCNE2蛋白特异性结合的抗体。
定义:
现阶段检测miRNA的表达水平的方法主要包括基于高通量测序技术、基于核苷酸杂交和基于PCR的miRNA检测方法。基于探针杂交技术的miRNA检测方法是一种直接检测法,不需要对样本RNA进行预扩增,包括northern杂交方法、miRNA表达谱芯片、核酶保护分析技术、RAKE法、原位杂交、基于微球的流式细胞术等技术。
(1)Northern杂交
又称RNA印迹技术为最经典的检测真核生物RNA大小,估计其丰度的实验方法。基本原理如下:首先在载体(如硅片、微球或膜等)上固定miRNA样本,再与经过标记的探针杂交,洗涤多余的杂交探针后进行信号检测;也可以在载体上先固定与靶miRNA序列互补的DNA探针,然后与经过标记的样本miRNA杂交,再进行信号检测。信号标记的方法包括同位素标记、荧光标记和纳米金标记等。
(2)miRNA表达谱芯片
原理同样是使用标记探针检测固相支持物上的目标分子。通过设计芯片上miRNA基因及内参序列,可精确分析出样品中相应miRNA的表达水平。基因芯片具有高通量的优点,可以一次在同一样本中检测出几百个基因的全部表达。Luminex公司研制的液相芯片(Liquid chip)又称多功能悬浮点阵(Multi analyte suspension array,MASA),是出的新一代生物芯片技术。液相芯片体系由许多小球体为主要基质构成,每种小球体上固定有不同的探针分子,为了区分不同的探针,每一种用于标记探针的球形基质都带有一个独特的色彩编号,将这些小球体悬浮于一个液相体系中,就构成了液相芯片系统。该系统可以对同一个微量样本中的多个不同分子同时进行快速的定性、定量分析,这种检测技术被称为FMAP(Flexible multianalyte profiling)技术。分子杂交在悬浮溶液中进行,检测速度极快。
(3)核酶保护分析技术(RPA)
miRNA的检测还可以采用核酶保护分析技术,将标记好的探针和待测RNA样本混合,热变性后杂交,未杂交的RNA和多余的探针用单链核酸酶消化,热失活核酸酶后纯化受保护的RNA分子,最后通过变性PAGE电泳分离探针,显色。这种基于液相杂交的新方法简单快速,灵敏度高,但也只能用于分析已知miRNA。
(4)RAKE法
RAKE法(RNA primed array based Klenow emzyme)是在miRNA microarray的基础上利用DNA聚合酶I的Klenow片段,使miRNA与固定的DNA探针杂交的方法。RAKE可以敏感特异地检测miRNA,适用于大量快速的筛选所有己知的miRNA。能够在特定的细胞和肿瘤中检测miRNA表达谱情况。不仅如此,RAKE法还可以从由福尔马林固定了的石蜡包埋的组织中分离出miRNA并对其进行分析,为从存档标本中分析miRNA开启了希望之门。
(5)原位杂交(in situ hybridization)
原位杂交技术可直观了解miRNA表达方式,是观测miRNA时空表达的一种较简便的方法,常标记方式包括地高辛、生物素、荧光标记等。锁定核酸基础上的原位杂交(LockedNucleic Acid(LNA)based in situ hybridization(LNA-ISH))是当前应用较多的探针方式。
(6)基于微球的流式细胞术(bead-based flow cytometry)
是一种液相芯片技术,该方法将流式细胞检测与芯片技术有机地结合起来,兼有通量大、检测速度快、灵敏度高和特异性好等特点。
(7)实时荧光定量PCR技术(Real-time PCR,RT-PCR)
荧光检测PCR仪可对整个PCR过程中扩增序列的累积速率绘制动态变化曲线。在反应混合体系中靶序列的起始浓度越大,要求获得扩增产物某特定产量的PCR循环数(一般用特定阈值循环数Ct来表达)越少。由于miRNA长度仅为22nt,传统的qRT-PCR不适合扩增如此短的片段。现今有几种用于miRNA的实时定量PCR方法,如加尾法、颈环法等。颈环法是一种理想的miRNA检测qRT-PCR方法:首先设计特殊的茎环结构引物,以待测miRNA为模板逆转录合成cDNA第一链,该cDNA一端为茎环状引物,茎环状结构被打开便增加了cDNA的长度,随后以合成的cDNA为模板设计引物进行实时定量PCR扩增。qRT-PCR具有特异性高、灵敏度好、快速简单等多种优点。
(8)测序法
大部分已知的miRNA都是通过cDNA克隆测序发现和鉴定的。该法需要先构建miRNA的cDNA文库,再进行PCR扩增,扩增产物随后克隆到表达载体上测序。Takada开发了一种改进的扩增克隆法(miRNA amplification profiling,mRAP),mRAP法先在miRNA的3’端连上接头,然后用与接头互补的反转录引物反转录。因为特定的反转录酶具有末端脱氧核苷酸转移酶活性,一些核苷酸(主要是脱氧胞苷酸)会连接到反转录出的cDNA链的3’末端。当5’端接头与cDNA链的poly(C)粘性末端退火后,加入一对共用引物即可实现对cDNA的PCR扩增。由于mRAP高度灵敏,可以直接用克隆和测序技术检测少量组织中miRNA的表达量。标签序列克隆法是一种在在基因表达系列分析(SAGE)技术的基础上发展了检测效率更高的miRAGE(miRNA SAGE)克隆法,该法通过生成大的串联子,通过单个测序反应可检测多个miRNA,明显提高了检测效率。
高通量测序(High-throughput sequencing)又称下一代测序技术(nextgeneration sequencing)是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,极大提高了测序效率。这类大规模测序技术极大的提高了多个物种遗传信息的解读速度,为获取所有miRNA的序列信息,解密miRNA图谱提供了保证。同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。高通量测序平台的代表是罗氏公司(Roche)的454测序仪(RochGSFLX sequencer),Illumina公司的Solexa基因组分析仪(Illumina Genome Analyzer)和ABI的SOLiD测序仪(ABI SOLiD sequencer)。
免疫检测方法是以一种抗体或多种抗体作为分析试剂,对待测物进行定量或定性分析的检测方法。其基本原理是抗体和抗原之间的相互作用。为提高抗原和抗体检测的敏感性,将已知抗体或抗原标记上易显示的物质,通过检测标记物,反映有无抗原抗体反应,从而间接测出微量的抗原或抗体。常用的标记物有酶、荧光素、放射性同位素、胶体金及电子致密物质等。这种抗原或抗体标记上显示物所进行的特异性反应称为免疫标记技术(immunolabelling technique)。目前应用最广的免疫检测技术主要有:酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA),胶体金免疫层析法等。
酶联免疫吸附试验原理是将抗原或抗体与底物(酶)结合,使其保持免疫反应和酶的活性。把标记的抗原或抗体与包被于固相载体上的配体结合,再使之与相应的无色底物作用而显示颜色,根据显色深浅程度目测或用酶标仪测定OD值判定结果。
胶体金试纸条一般由样品垫、金标垫、层析膜、吸水垫四部分组成。层析材料有硝化纤维膜(NC)、聚酯膜、尼龙膜和PVDF膜等,根据试验需要可选择不同要求的膜,其中NC膜最为常用,使用前可根据试验具体情况确定是否需要活化或处理,多数情况下无需处理,即可直接使用。将金标蛋白溶液均匀喷涂在金标垫上,于室温下晾干备用。NC膜可捕获一定量的包被(抗体)和二抗作为检测线和质控线。最后将样品垫、金标垫、NC膜和吸水纸依次固定于PVC板,即成试纸条。
基于RNA的microRNA功能获得性技术即通过外源性补充miRNAs合成的前体物质来升高miRNAs的水平。例如,可以人工合成与内源性miRNA序列一致的短发夹样RNA(shorthairpin RNA,shRNA),由聚合酶II或III做启动子,以病毒为载体转染细胞,被Dicer酶修饰后载入RISC发挥作用,相当于升高pre-miRNA的水平,作用效果稳定而持久。
基因特异性miR Mimics技术该技术避免了miRNA与基因的非特异性作用。这种人工合成的与靶基因3’UTR互补结合的特异性寡核苷酸链,能够起到与miRNA相同的转录后调节作用。
包含在本发明的药剂学组合物的药剂学上许可的载体为在制剂时通常利用的载体,该载体包含乳糖(lactose)、右旋糖(dextrose)、蔗糖(sucrose)、山梨醇(sorbitol)、甘露醇(mannitol)、淀粉、阿拉伯橡胶、磷酸钙、藻酸盐(alginate)、凝胶(gelatin)、硅酸钙、微晶纤维素、聚乙烯吡咯烷酮(polyvinylpyrrolidone)、纤维素(cellulose)、水、糖浆、甲基纤维素(methyl cellulose)、羟基苯甲酸甲酯(methyl hydroxybenzoate)、丙基羟基苯甲酸丙酯(propyl hydroxybenzoate)、滑石、硬脂酸镁(stearic acid magnesium)及矿物油(mineral oil)等,但并非局限于此。
本发明的药剂学组合物除了上述成分以外还可以包含润滑剂、湿润剂、甜味剂、香味剂、乳化剂、悬浮剂、防腐剂等。药剂学上许可的适合的载体和制剂详细记载于雷明登氏药学全书。
本发明的药剂学组合物能通过口服或非口服进行给药,作为非口服给药时,能通过静脉内注射,鼻腔内注射,局部注射,脑室内注射,脊髓腔注射,皮下注射,腹腔注射,经皮给药等方式进行给药。
本发明的药剂学组合物的适合的给药剂量根据制剂化方法、给药方式、患者的年龄、体重、性别、病态、食物、给药时间、给药途径、排泄速度及反应灵敏性之类的因素而可以进行多种处方,通常,熟练的医生能够容易地决定及处方对所希望的治疗或预防有效的给药剂量。
本发明的药剂学组合物根据本发明所属技术领域的普通技术人员可以容易实施的方法,利用药剂学上能接受的载体和/或赋形剂来进行制剂化,从而能够以单位用量形态制备或者内装在多容量容器内来制备。此时,剂型是油性或者水性介质中的溶液、悬浮液或乳化液形态,或者也可以是浸膏剂、粉末剂、颗粒剂、片剂或者胶囊剂形态,还可以包括分散剂或者稳定剂。
附图说明
图1RT-PCR检测鼻咽癌组织miR-363表达水平
图2RT-PCR检测转染miR-363后预测靶基因mRNA水平变化
具体实施方式
下面结合具体实施例,进一步阐述本发明,仅用于解释本发明,而不能理解为对本发明的限制。本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照厂商所建议的条件实施检测。
实施例1 样品的收集及总RNA提取
组织均来自北京友谊医院(2010年1月-2011年12月),实验组选择病检确诊为鼻咽癌的9例患者,对照组选取同期5例正常人的鼻咽组织。
实验方法:
1提取方法
1)取80mg组织块,加入800μl Lysis/Binding缓冲液,使用匀浆器对组织块进行匀浆。匀浆的过程中样品要置于冰上保持低温状态。
2)再加入1/10体积Homogenate Additive到上述已经匀浆的组织样品中,冰上放置10min。
3)加入与Lysis/Binding缓冲液等量体积的水饱和酚,震荡45s,10,000×g室温离心5min。
4)小心取出上清到新的试管中,加入1.25倍体积的无水乙醇,混匀后,移入纯化柱中,10,000×g,离心15s,倒掉收集管中的液体。由于柱子的最大的体积只有700μl,因此重复此步操作,直到所有的上清都过滤完成。
5)向离心柱子中加入700μl miRNA洗脱液1,室温,10,000×g,离心15s,倒掉收集液,换用新的收集管。
6)再用500μl洗脱液2/3加入离心柱中,10,000×g,离心10s,重复这一步骤一次。
7)离心1min,10,000×g,弃去多余的液体。
8)将上述液体转移到新的离心管,加100μl 95℃预热的DEPC处理30s,10,000×g,离心。
9)使用nanodrop测定RN A浓度和260nm/280nm的比值。
10)得到的RNA保存于-80℃冰箱。
2提取标准
测定RNA浓度和260nm/280nm的比值:总RNA的纯度要求是OD260/OD280值应在1.8至2.2之间;RNA完整性的检测:用1%琼脂糖凝胶电泳检测RNA的完整性;
根据测序公司的要求,小RNA测序总量3μg以上,浓度在300ng/μl以上。
实施例2 测序及数据分析
由测序公司进行测序文库的建立及上机测序,所使用的测序仪为Illumina公司的HiSeq2000测序仪。
根据公司提供的数据分析结果:肿瘤组(9例)和正常对照组(5例)进行统计学分析,P值小于0.05,并且肿瘤组与正常对照组的差异至少要超过2倍以上的差异表达miRNA,对差异表达miRNA人为挑选过滤中下调表达明显的has-mir-363进入我们的研究范围。
实施例3 电子验证miR-363与鼻咽癌的关系
限制研究类型为“expression profiling by array”、“non-coding RNAprofiling by array”符合以下标准的数据集将纳入我们的研究中:①所选数据集必须同时包括全基因组的mRNA转录组数据和miRNA表达数据;②这些数据来自于鼻咽癌病例组和对照组的鼻咽组织;③本研究均考虑经标准化或者原始数据集;经筛选将5套miRNA数据集(表1)纳入我们的研究中。
表1 数据的选择
通过转录组数据分析软件对5套miRNA原始数据进行背景校正和标准化后进行t-test得到P值,计算效应量,然后利用Fisher检验合并P值,采用随机效应模型合并效应量,筛选差异表达miRNA,设定F.D.R.值<0.05,共筛选出27个差异表达的miRNA,其中表达水平上调的miRNA有12个,表达水平下调的miRNA有15个。在下调的基因中miR-363下调表达明显。
实施例4 Real-time PCR检测鼻咽癌组织中miR-363的表达
1样品采集:
78例鼻咽癌肿瘤组织和21例正常鼻咽组织均来自北京友谊医院(采集时间2009年6月-2011年12月),78例肿瘤组织经两位病理科医生确定病理性质和组织学分化程度,21例对照组病理标本都证实为正常的鼻咽组织。
2miRNA提取:
相关实验物品的去Rnase的处理:
①将所有玻璃器皿应用前均用DEPC冲洗侵泡,120℃高压20min,180℃高温烤干2小时以上。
②将塑料器皿(如:EP管/枪头)使用前需用0.1%DEPC水侵泡过夜,后控干液体,120℃高压20min,烤箱烤干备用。
(1)从液氮中取出冻存肿瘤组织,称重,放入离心管中,按50-100mg组织/mlTrizol的量加入Trizol,组织体积不能超过Trizol体积的10%,充分匀浆约1-2min;
(2)组织加入Trizol后,15-30℃孵育5min,使其充分裂解;
(3)加入1/10体积的miRNA匀浆添加剂,漩涡数下混合均匀,冰上放置10分钟;
(4)向裂解物中加入同体积的三氯甲烷,漩涡30-60s混匀;
(5)室温最大转速(10000g)离心5分钟,使水相有机相分离,中间相析出;中间相如果没有析出,再次离心;
(6)小心吸取上层水相至新的收集管中,记录水相体积;
(7)向收集管中加入1/3体积的无水乙醇,漩涡或颠倒数下混匀;
(8)将裂解液/乙醇混合液加入过滤芯过滤,过滤芯放入新的收集管中,每个样本用一个过滤芯;
(9)用移液管将上步中的混合液移入过滤芯,一次可容纳体积700μl。超过700μl继续用同样的过滤芯再次过滤;
(10)10000g离心15s使液体通过滤芯;
(11)收集滤液,如果裂解液/乙醇体积多于700μl,继续过滤时用新的收集管,直到所有裂解液/乙醇混合液过滤完毕,收集过滤液,记录体积;
(12)向上一步中收集到的过滤液中加入2/3体积的室温无水乙醇;
(13)将过滤液/乙醇混合液加入第二个过滤芯中过滤,弃去过滤液,每个样本用一个过滤芯,将过滤芯放入提供的收集管中;
(14)用移液管将上步中的混合液移入过滤芯,一次可容纳体积700μl时。超过700μl继续用同样的过滤芯再次过滤;
(15)10000g离心15s使液体通过滤芯;
(16)弃去过滤出的液体,留过滤芯用于下一步洗脱;
(17)向过滤芯中加入700μl的miRNA洗液1(工作液中加入乙醇),离心5-10s,弃去洗脱出的液体,收集管继续使用;
(18)向过滤芯中加入500μl的miRNA洗液2/3(工作液中加入乙醇),离心5-10s,弃去洗脱出的液体;
(19)重复上一步骤;
(20)将过滤芯放入新的收集管(试剂盒中提供)中。向过滤芯中心加入100μl95℃预热的洗脱液或不含核酸酶的水,最大转速离心20-30s收集RNA溶解液。
3miRNA逆转录
RT体系的配制:
组分 浓度 体积(μl)
Total RNA - 1μg
miScript HiSpec Buffer 4
Nucleics Mix 10× 2
miScript Reverse Transcriptase Mix - 2
Nuclease-free H2O - Up to 20
Total Volume - 20
ABI 9700型PCR仪上37℃保温60min使逆转录反应完全后,95℃5min终止反应。
加入80μl Nuclease-free H2O稀释至100μl储存在-20℃冰箱,用于后续实验。
4荧光定量PCR
RT-PCR体系的配制:
miRNAs的表达检测每次设置3个平行管反应,以snRNA U6作为内参。
PCR程序:
95℃10min;40个循环(95℃10s,60℃30s)。循环结束后利用熔解曲线检测产物特异性:从60℃缓慢升温至97℃,每℃采集5次荧光信号。
5统计学分析
采用OriginPro8.1软件进行分析。统计方法均数间比较采用t检验,P<0.05(差异显著)和P<0.01(差异非常显著)定为有统计学意义,分析肿瘤组织和正常组织中miR-363表达水平,结果显示正常组织中miR-363的表达明显高于肿瘤组织,前者是后者的近5倍,具体见图1。
实施例5 一种鼻咽癌检测试剂盒
小RNA提取试剂盒:mirVanaTM miRNA Isolation Kit
miRNA逆转录
RT体系的配制:
组分 浓度 体积(μl)
Total RNA - 1μg
miScript HiSpec Buffer 4
Nucleics Mix 10× 2
miScript Reverse Transcriptase Mix - 2
Nuclease-free H2O - Up to 20
Total Volume - 20
荧光定量PCR
RT-PCR体系的配制:
miRNAs的表达检测每次设置3个平行管反应,以snRNA U6作为内参。
实施例6 一种鼻咽癌检测试剂盒
试剂盒包括:UltraSYBR一步法荧光定量PCR试剂盒(With ROX)(货号:CW0660,康为世纪)内参使用actin。
引物:
进一步还可以包括miRNA提取试剂盒(货号:CW0627,康为世纪)
实施例7 miR-363靶基因的预测及验证
靶基因预测:
利用六种广泛使用且能够准确预测miRNA靶基因的算法,包括DIANAmT,miRanda,miRDB,miRWalk,PICTAR5及Targetscan预测差异表达miR-363的靶基因,同时结合我们测序结果,我们选定miR-363可能的7个靶基因:ARMC1、ATP6V1B2、C12orf5、C5orf30、CAND1、CCND2、CCNE2。
引物设计:
ARMC1扩增引物:
正向引物:5’-GGCATCAGCAATAGCATCAA-3’SEQ ID NO 4
反向引物:5’-ACCAACATCTCTTCTCCACTT-3’SEQ ID NO 5
扩增产物长度78bp。
ATP6V1B2扩增引物:
正向引物:5’-AAGGCAGTAGTTCAGGTA-3’SEQ ID NO 6
反向引物:5’-CGGTGTTCGGAGAATATC-3’SEQ ID NO 7
扩增产物长度90bp。
C12orf5扩增引物:
正向引物:5’-TGGAGCAGAAGATAGAAGAA-3’SEQ ID NO 8
反向引物:5’-GTTAGATAAGAAGCAAGTGGATA-3’SEQ ID NO 9
扩增产物长度113bp。
C5orf30扩增引物:
正向引物:5’-TTCCACTGAAGCACTTAT-3’SEQ ID NO 10
反向引物:5’-GAACAGGTCTCATAGGTAA-3’SEQ ID NO 11
扩增产物长度175bp。
CAND1扩增引物:
正向引物:5’-GCACATAACAAGCCATCA-3’SEQ ID NO 12
反向引物:5’-AGACCATCATCAACCGTAT-3’SEQ ID NO 13
扩增产物长度137bp。
CCND2扩增引物:
正向引物:5’-AGTCCAACCTTGAGAATAG-3’SEQ ID NO 14
反向引物:5’-GAGTCCACACCAATAGAA-3’SEQ ID NO 15
扩增产物长度118bp。
CCNE2扩增引物:
正向引物:5’-GTTCTTCTACCTCAGTATTCTC-3’SEQ ID NO 16
反向引物:5’-AGCAGCAGTCAGTATTCT-3’SEQ ID NO 17
扩增产物长度114bp。
材料准备:
人鼻咽癌细胞株CNE购于中国科学院细胞库/中国科学院上海生命科学研究院细胞资源中心。
1.细胞培养
鼻咽癌细胞株采用含10%胎牛血清和1%青链霉素双抗的RPMI 1640培养基,在37℃,5%CO2、饱和湿度的条件下传代培养,细胞生长状态良好时用于RNA抽提或下一步实验。
2.miRNA瞬时转染
采用阳离子脂质体法进行瞬时转染,操作按照LipofectaminTM2000试剂说明书进行。转染前24h将生长状态良好的5-8F及6-10B细胞接种到12孔板中,细胞计数约2×104,常规培养至转染当天,细胞融合度为50-60%是进行试验。将20nM/40nM/80nM miRNA mimic加入到100u1Opti-MEM培养基中,轻柔混匀;另用100u1Opti-MEM培养基稀释2u1LipofectaminTM2000脂质体,轻柔混匀,室温孵育5min;混合Opti-MEM-脂质体与Opti-MEM-miRNAs,室温孵育20min,以形成转染复合物;然后将上述混合物加到细胞培养基中,轻轻混匀,培养6h后更换完全培养基。其中,非特异性的miR序列作为阴性对照。培养48h后提取细胞总RNA或进行下一步实验。
3.实验结果:
将miR-363mimics转染至人鼻咽癌细胞株中,48h后提取细胞总RNA,空白对照为未转入miRNA的人鼻咽癌细胞株细胞,非特异性的miR序列作为阴性对照。定量PCR检测上述7个预测靶基因mRNA的水平变化。结果显示7个基因都有不同水平的下调(具体见图2),其中ARMC1、ATP6V1B2、C12orf5、CCND2、CCNE2下调最为明显,所以我们认为ARMC1、ATP6V1B2、C12orf5、C5orf30、CAND1、CCND2、CCNE2都是miR-363的靶基因,其中ARMC1、ATP6V1B2、C12orf5、CCND2、CCNE2是miR-363主要靶标基因。
虽然已参考各种优选实施方案描述了本发明,但本领域技术人员理解,可进行各种变化,并且可用等同物替代其组件而不背离本发明的基本范围。此外,可进行许多改动来使特定情况或材料适合于本发明的教导而不背离其基本范围。
因此,本发明无意限定于本文中公开的用于进行本发明的特定实施方案;相反地,本发明意欲包括落在权利要求书范围内的所有实施方案。

Claims (4)

1.miR-363在制备诊断鼻咽癌试剂中的应用,其特征在于,所述miR-363序列为序列表SEQ ID NO 2。
2.根据权利要求1所述的应用,其特征在于,诊断鼻咽癌试剂采用包括高通量测序方法和/或定量PCR方法和/或探针杂交方法检测样本中miR-363的表达。
3.根据权利要求2所述的应用,其特征在于,采用northern 杂交方法、miRNA表达谱芯片、核酶保护分析技术、RAKE法、原位杂交、基于微球的流式细胞术检测样本中miR-363的表达。
4.根据权利要求2所述的应用,其特征在于,定量PCR方法包括特异性扩增miR-363的引物;探针杂交方法包括与miR-363的核酸序列杂交的探针。
CN201510290993.5A 2015-06-01 2015-06-01 一种鼻咽癌抑制剂及其应用 Active CN104894132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510290993.5A CN104894132B (zh) 2015-06-01 2015-06-01 一种鼻咽癌抑制剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510290993.5A CN104894132B (zh) 2015-06-01 2015-06-01 一种鼻咽癌抑制剂及其应用

Publications (2)

Publication Number Publication Date
CN104894132A CN104894132A (zh) 2015-09-09
CN104894132B true CN104894132B (zh) 2018-07-17

Family

ID=54027091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510290993.5A Active CN104894132B (zh) 2015-06-01 2015-06-01 一种鼻咽癌抑制剂及其应用

Country Status (1)

Country Link
CN (1) CN104894132B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381329B (zh) * 2016-08-29 2019-07-26 北京泱深生物信息技术有限公司 C18orf8基因及其表达产物作为下咽癌的诊治靶标

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ⅱ级膀胱尿路上皮癌microRNA差异表达及意义;程文等;《医学研究生学报2010年1月》;20100131;48-52 *
Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases;Ma et al;《cell Res》;20081231;997-1006 *
鼻咽癌特异性血清miRNA筛选与鉴定;熊伟明;《中国优秀硕士论文全文数据库》;20140315;摘要,2.4部分,第26页表5 *

Also Published As

Publication number Publication date
CN104894132A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN103003442B (zh) 一种通过微小rna表达水平评估人同种异体移植物状况的方法
CN105561341A (zh) mir-1292及其靶基因在预防和治疗骨肉瘤转移中的应用
CN105543389B (zh) 脑卒中的miRNA分子标志物及其应用
CN105483275B (zh) mir-1299及其成熟miRNA的新用途
CN107519193A (zh) 食管鳞癌早期分子诊断标志物及其应用
CN108624693A (zh) miR-577在制备肾病诊断标志物中的应用
CN107475441B (zh) 一种预测乳腺癌患者对at方案新辅助化疗的反应性的生物标记物
CN106244688B (zh) 一种评估结肠腺癌患病风险的标志物
CN105343896B (zh) 鼻咽癌的新诊治靶点及其应用
CN107058579A (zh) 肺腺癌相关的miRNA、组合物及其应用
CN107312851A (zh) 心肌梗死生物标志物miR‑1283
CN104894132B (zh) 一种鼻咽癌抑制剂及其应用
CN104784704A (zh) 肺腺癌转移相关的组合物及其应用
CN104857513B (zh) 鼻咽癌诊治标志物及其应用
CN104789683B (zh) 用于诊治癌转移的生物标志物及其用途
CN105664163B (zh) mir-5010及其成熟miRNA在制备骨肉瘤诊疗制剂的应用
CN104826133B (zh) 一种与肺腺癌有关的miRNA及其药物组合物
CN105505936B (zh) 一种抗骨肉瘤转移生物制剂及其应用
CN109161596B (zh) miR-129及其靶基因在检测肺腺癌中的应用
CN105603117B (zh) miR-3613用于区分肺鳞癌转移与非转移的miRNA标志物
CN105734155A (zh) 软骨母细胞型骨肉瘤致病基因及其应用
CN105597109B (zh) 原发骨肉瘤的诊治分子标记
CN109652529A (zh) 骨质疏松特异性miRNA、组合物及其诊疗用途
CN108384855A (zh) 非编码rna及其在骨肉瘤转移检测中的应用
CN108384856B (zh) 调控c4b基因表达的非编码rna及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Nasopharynx cancer inhibitor and application thereof

Effective date of registration: 20181225

Granted publication date: 20180717

Pledgee: Huaxia Bank Beijing branch Wanliu Limited by Share Ltd

Pledgor: Beijing Yang Shen biology information technology company limited

Registration number: 2018990001252

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20191206

Granted publication date: 20180717

Pledgee: Huaxia Bank Beijing branch Wanliu Limited by Share Ltd

Pledgor: Beijing Yang Shen biology information technology company limited

Registration number: 2018990001252

PC01 Cancellation of the registration of the contract for pledge of patent right
TR01 Transfer of patent right

Effective date of registration: 20210401

Address after: 266000 room 2503, Qianshan building, D2, Qingdao International Innovation Park Phase II, No.1 Keyuan Weiyi Road, Laoshan District, Qingdao City, Shandong Province

Patentee after: Qingdao Yangshen biomedical Co.,Ltd.

Address before: 100080 3103, fangting building, No.1 Shanyuan street, Haidian District, Beijing

Patentee before: BEIJING MEDINTELL BIOMED INFORMATION TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right