CN1048911A - 发电的方法和设备 - Google Patents
发电的方法和设备 Download PDFInfo
- Publication number
- CN1048911A CN1048911A CN90103974A CN90103974A CN1048911A CN 1048911 A CN1048911 A CN 1048911A CN 90103974 A CN90103974 A CN 90103974A CN 90103974 A CN90103974 A CN 90103974A CN 1048911 A CN1048911 A CN 1048911A
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- equipment
- fuel
- gas
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000000446 fuel Substances 0.000 claims abstract description 86
- 239000011435 rock Substances 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 39
- 238000010304 firing Methods 0.000 claims description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000010248 power generation Methods 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000004891 communication Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract description 5
- 230000005611 electricity Effects 0.000 abstract description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 239000008246 gaseous mixture Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000002915 spent fuel radioactive waste Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- OOYGSFOGFJDDHP-KMCOLRRFSA-N kanamycin A sulfate Chemical group OS(O)(=O)=O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N OOYGSFOGFJDDHP-KMCOLRRFSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000002303 thermal reforming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/36—Open cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/003—Gas-turbine plants with heaters between turbine stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/04—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
- F02C6/10—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Saccharide Compounds (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Power Steering Mechanism (AREA)
- Developing Agents For Electrophotography (AREA)
- Control Of Ac Motors In General (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Eletrric Generators (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种在开式回路中用气态流体发电的方法和设
备,包括一个由涡轮机驱动的压缩机单元涡轮机在压
缩流体通过废气热交换器后接受该压缩流体,上述方
法和设备进一步包括由一个燃汽涡轮机驱动的发电
机,回路中还包括一个燃料电池,其阳极从外界来源
接受天然气,其阴极从压缩机单元接受作为氧化剂的
气态流体,源于发电机和燃料电池的电力组成该方法
和设备的输出。
Description
工业上需要有高效而又将环境污染减少到最小的发电设备,迄今为止的种种机器,如内燃发动机和燃汽轮机等,事实上可达到约35%的效率,但是,在这些机器中,有害物的排放(特别是废气中一氧化氮的含量)仍引起人们的忧虑。本发明的目的在于提供一种方法和设备,对上述两个问题,即效率和有害物的排放,作出显著的改进。
在这方面,本发明建立在各实施例中已知的方法基础之上,即使用气态媒质例如空气发电的方法。这种气态媒质首先在开式回路中通过至少一个压缩机单元和随后通过一燃汽轮机,然后经废气热交换器逸出。本发明提出的改进的特点在于,压缩状态的气态媒质至少在废气热交换器中通过一次以提高温度,以便随后通过一个或多个与压缩机单元相连的涡轮机,能量释放后,回路内的气流被作为氧化剂与燃料(还原剂)一起送入燃料电池,在燃料电池内产生电能,这是在燃汽轮机中形成机械能之前或之后进行的。
这一方法包括下列改进:
所采用的压缩机涡轮不是由燃汽轮机的排气或其它燃烧过程来供气的(如迄今为止的那样),而主要是由压缩空气本身,这些压缩空气是在废气热交换器中获得额外的升温后用于上述用途的。
从上述压缩机涡轮机中排出的压力和温度较低的气态媒质,被作为燃烧气体(氧化剂)与还原剂(例如天然气)一起用于燃料电池中。
气态媒质(氧化剂)的压力在燃料电池的入口是较低的,还原剂也是如此,这使得该系统更具有灵活性。
采用本发明可获得较高的发电效率其工作比至今能达到的更接近理想卡诺循环,其次,这一热回路(它受卡诺限制)与一个不受上述限制的电化学系统相结合,由此可能达到至少55-60%的效率,可以工作的温度甚至达到1000℃的数量级。此外,本发明提出的方法中,在所谓使用过的燃料里总是能够得到一定的能够被利用的热量,它例如可以用于燃烧室。而且,经燃烧室进入燃汽轮机的燃气-空气混合物对环境的污染极少。具体地说,在废气中只排放极少量的有害氧化氮气体(NOx)(50gr/GJ)燃料电池内的催化转换过程不产生有害产物,结果是,本发明的方法实质上不污染环境。减少环境污染方面的另一贡献在于可以把一个电站的净效率从35%增加到这一新方法的约55-70%。与已有技术相比,产生同样数量的电能只需要一半燃料,这就相应地使CO2的产生减少。燃料电池具有产生电能和热气的双重作用。
本发明还涉及用来完成上述方法的设备,即采用若干机械部件利用气流发电。本发明的设备包括与至少一个涡轮机连接的压缩机,以及,包括至少一个燃汽涡轮机(动力涡轮机),它具有一输出轴,其后是一个废气热交换器。按照本发明,上述设备的特点在于所述部件的内部连接,形成一个气流的开式回路,气流的压力首先在压缩机单元内增大,然后其温度也在废气热交换器中升高,随后,气流经燃烧室进入压缩机涡轮机,最后,气流以少量的过压沿燃气轮机的方向流动。但是,该气流首先在所述燃汽涡轮机的上游或其后在其下游作为氧化剂通过一个设置在回路中的燃料电池。
该燃料电池的应用可在使用同一气流的情况下使效率进一步提高,并且,燃烧室中消耗的燃料可有所减少。这一效果是由于燃料电池的废热增大了燃烧室的热容量。当采用高温燃料电池(约1000℃数量级,如固态氧化物燃料电池)时,燃汽轮机的燃烧室甚至可以不要使用,燃料电池产生的直流电可以直接使用,或转变成交流电使用。第三种可能性是对燃汽轮机发电机组提供直流电。
上面描述的设备中所用的是已知的涡轮机部件,结果是,可以利用工业上已经有的部件来装配该设备。由于高效率,该设备对环境的CO污染比已知的机器如内燃发动机、锅炉-蒸汽涡轮装置和传统的燃汽轮机等可减少约一半左右。还可减少50%以上的Nox的排放。这里,尚未考虑进用于热和动力设备(全能概念)时本发明对净化环境的作用。
两类燃料电池特别适用于按照本发明的工艺和设备。第一类是所谓MCFC(融熔碳酸盐燃料电池),其工作温度约为650℃。另一类是所谓PAFC(磷酸燃料电池),工作温度约200℃。固态氧化物燃料电池(SOFC)也可以用,其工作温度约为1000℃左右。这些燃料电池在下列文献中有所叙述:
1.H.A.Liebhafsky和E.J.Cairns的“燃料电池与燃料蓄电池”一书,纽约Wiley & Son出版社1968年出版,第12章,524-554页。
2.A.J.Appleby和F.R.Foulkes的“燃料电池手册”一书,纽约Von Nostrand Reinholt 1989年出版。
3.Supramanian Srinivasan的文章,见电化学学会杂志,卷136(2),1989年2月,41c-48c页。
燃料电池在开式回路中的位置最好处于压缩机涡轮机(CT)与动力涡轮机(PT)之间,也可以置于更下游或甚至在燃汽轮机之外,这在附图中以虚线表示。燃料电池的位置还可以在压缩机涡轮机的上游或甚至在回路的更前面。
授与Wertheim的美国专利4,678,723涉及一种磷酸燃料电池PAFC,它与一自动热重整炉相结合把气态混合物提供给用来驱动压缩机单元的涡轮机,燃料电池由小水滴和喷入的水雾冷却,以增大其输出。但其中没有用废气热交换器提高压缩气态混合物温度的燃汽轮机。
下面参照附图和表格更详细地解释本发明,附图1-6示意性地表示本发明发电设备的一些实施例。
图1-5中的气态媒质如空气由1处供应。所述媒经过以压缩机单元2开始的开式回路,这里,压缩机单元2包括由线路3互相连接的低压压缩机C1和高压压缩机C2。这一连接线路中有一热交换器Ⅲ作为常用的中间冷却器。压缩机单元2由压缩机涡轮机4驱动,在这里,后者是由单只涡轮机CT构成的,用于上述两个压缩机。也可以用两只涡轮机来分别驱动压缩机C1和C2。
开式回路中配备有一个废气热交换气Ⅰ,它经线路5连接到用来发电的燃汽轮机6(动力涡轮机PT)。高压压缩机C2经线路7连接到废气热交换器Ⅰ,按照图1、2和4的实施例,在其中加热后的气态媒质经线路8流到压缩机涡轮机4。通过该涡轮机后,气态媒质温度有所降低,在所示的实施例中经线路9流入燃料电池10,对燃料电池的阴极提供气态媒质,即,提供氧化剂,该媒质温度略微升高后经线路11流入所谓燃烧室12,后者还由供应13向其提供“废燃料”,这将在下面进一步解释。燃汽轮机6驱动发电机14。
作为另一种可供选择的方案,燃料电池10的位置也可以处于燃气轮机6的下游如附图中虚线所示。此时,连接的管道也相应变动。下面有关本发明的叙述也适用于这一变型。燃料电池处于该位置的优点是:
压力容易控制,
有可能省去热交换器Ⅱ。
在图1-4的结构中,燃料电池10是MCFC型(融熔碳酸盐燃料电池)。所述燃料电池的电效率约为55%,阳极由燃料供应源15提供燃料,即,还原剂,例如富含氢的气体。可见,需要指出的是,在所谓内部重整的变型中,也可以直接使用天然气作为燃料。作为上述燃料电池10的最终产物的直流电在端16产生。
附图中还有另外三个热交换器Ⅱ、Ⅳ和Ⅴ。热交换器Ⅱ位于废气热交换器Ⅰ的排放线路17的末段,用这种方式,可以利用开式回路末端18的又一部分热量。热交换器Ⅳ(图1)用截流阀19打开或关闭。在上述截流阀的一个位置上气流从压缩机涡轮机4经线路9直接通到燃料电池10,在截流阀19的另一位置上,所述气流或其一部分经过热交换器Ⅳ对气流加热或冷却,这在有时候是需要的。热交换器Ⅴ用来加热经线路15馈给的燃料。
在使用MCFC燃料电池的情况下,对阴极所供给的应当是有含有足够数量CO2的空气。在这样的情况下,使CO2在系统内部再循环是最显然的解决方案。再循环可以用所谓选择分离工艺来进行,例如在线路5、17或18中加入薄膜30,线路18中氧气的再循环在热交换器Ⅱ之后的水份分离后进行,以增加惰性气体的比例。在图1-4中画出了一条分支管道18′,它包括一个控制阀23和一个热交换器Ⅵ,用以表示此再循环过程,使用其它类型的燃料时,不必用该附加管道,见图5和图6。离心压缩机24用来使燃料雾化。
图2中有一辅助燃烧器20,它处于通向燃汽轮机6的线路11的分支11′中。该燃烧器20用以燃料电池10的阳极、经线路13来的上述“使用过的燃料”对气态媒质进行进一步的加热。上述气态的“使用过和燃料”含有例如15%的H2,以及CO2、H2O和N2,具有足够的加热能力,上述“废(使用过的)燃料”具有相当高的温度。结果,这种气体可在燃烧室12或辅助燃烧器20(图2-4)中使用,或被送回燃料制备部分。在线路15中通常采用净化装置21。在燃烧室12中,可能会有来源于经线路13的“废(使用过的)燃烧”的过量的H2,所以,应由第一压缩机C1经线路22提供额外的空气以获得完全燃烧。或者,一部分燃料(废燃料)等,可用来改善(例如通过蒸汽重整)经线路15输入的燃料的状况。由于一部分CO2直接再循环至阳极,经过管道18′的流体将大大减少。
图3表示为了改善系统的热力学特性,辅助燃烧器20移到压力较高的线路8中(例如885KPa,等于8.85巴),用来把压缩机涡轮和4上游的空气加热到例如850℃,这样,就使该涡轮机下游的温度达到MCFC燃料电池所需的例如620℃的温度,同时,压力下降到例如290KPa(=2.93巴)。为了把一部分“废(使用过的)燃烧”送到压力较高处,采用了压缩机24,它前面有一个附加的冷却器把气体温度从677℃降低到30℃。
在图4的设备中,燃料电池10置于线路的高压部分(约900KPa)。一部分从燃料电池10阳极来的“废(使用过的)燃烧”通过线路13送到辅助燃烧器20,后者处于燃料电池10阴极来的氧化剂的线路8′中。
在图5的设备中,燃料电池10包括工作温度为200℃的PAFC一种磷酸燃料电池)。该电池置于线路中的低压部分,即从压缩机涡轮机4来的线路9中,上述涡轮机的出口温度(例如470℃)必须由冷却器Ⅶ降低到200℃。在实际使用中,热交换器Ⅴ和Ⅶ结合在一起。由于PAFC不允许内部重整,从线路15进入的燃料必须是富含氢的气体。图6中,燃料电池10置于低压压缩机C1和辅助燃烧器29的下游,以便把温度从137℃升高到200℃。
需要指出的是,除了使用MCFC或PAFC型的燃料电池外,也可以采用SOFC(固态氧化物燃料电池)型的燃料电池。而且,低温燃料电池例如碱性燃料电池AFC和聚合物燃料电池SPFC或SPEFC可以用在靠近压缩机和中间冷却器的相对较冷的线路中,以及换热器(回收器)Ⅰ下游相对较冷的线路17、18中。在前面提到的手册中可以找到所有这些燃料电池的叙述。
线路中具有一个或多个离心压缩机24,用于增加回路中某些部分的压力,或将燃料注入燃料室12,这种离心压缩机在该设备的所有叙述过的变型中都是不需要的。
该设备由电动机25开始,后者经联轴器26连接到压缩机单元。这些压缩机工作于其工作速率的约20%,然后,一个燃烧器喷嘴(未画出)由燃烧室12内的火花塞(也未画出)点火,线路27用于燃料的供应,发电机G与电源同步,此后,涡轮机的温度升高。
需要指出的是,本发明的设备也可以组成热和动力站(总能量系统)的一部分,从线路18来的气体可以送入温室以增加CO2的吸收。
下面的表格列出了设备(图1)的各个压缩机、热交换器和压缩机涡轮机4,燃料电池10以及动力涡轮机6的入口和出口处的温度、压力、以及单位时间的气体流量值。
表
部件 | 温度℃ | 压力KPa | 质量流量 |
媒质(空气) | 15 | 100 | 20000Kg/h |
第一压缩机 | 15135 | 100300 | |
热交换器Ⅲ | 13525 | 300 | |
第二压缩机 | 25155 | 300900 | |
热交换器I | 155700 | 900 | |
压缩机涡轮机 | 700470 | 900250 | |
热交换器Ⅳ | 470-620 | 250 | 输出的功率 |
MCFC | 620670 | 150 | 3750KW |
燃烧室12 | 670-950 | 250 | |
动力涡轮机 | 950750 | 250100 | 1250KW |
热交换器I | 750200 | 100 | 总共5000KW |
典型的系统效率值为57%。
Claims (10)
1、用气态媒质发电的方法,该气态媒质在一个开式回路中首先通过至少一个压缩机单元和一个燃汽轮机,随后经废气热交换器锡逸出,其特征在于,上述处于压缩状态的气态媒质至少从然气交换器中通过一次以升高温度,以便通过一个或多个连接到压缩机单元的涡轮机,随着能量的释放,回路中的气流作为氧化剂与燃料(还原剂)一起送入一个燃料电池,在燃汽涡轮机中形成机械能之前或之后在所述燃料电池内产生电能。
2、如权利要求1所述的方法,其特征在于,回路中的气流通过一个或多个附加热交换器,以便为了使效率达到最佳而调节气体温度。
3、如权利要求1或2的方法,其特征在于,用作气流的气态媒质是空气,并且,来自例如具有天然气馈给的蒸汽重整器的富含氢的气体被提供至燃料电池作为燃料。
4、如上述任一权利要求的方法,其特征在于,燃料电池中发出的直流电送到一个与燃汽轮机连接的发电机。
5、用于实现权利要求1-4所述的方法的设备,即,用气流发电的设备,该设备采用的机械部件,包括一个连接到至少一个涡轮机的压缩机,以及,至少一个具有输出轴的燃气轮机(动力涡轮机),其后是一个废气热交换器,其特征在于,所述部件通过彼此连接形成一个气流的开式回路,气流的压力首先在压缩机单元(2)中增大,随后,温度也在废气热交换器(Ⅰ)中升高。此后,通过燃烧室的气流进入压缩机涡轮机(4),最后以不大的过压沿燃汽涡轮机(6)的方向流动,但是,首先在所述燃汽轮机的上游或以后在其下游作为氧化剂通过一个设置在回路中的燃料电池(10)。
6、如权利要求5的设备,其特征在于,采用单流向心式(内流式)汽轮机。
7、如权利要求5或6的设备,其特征在于,采用MCFC燃料电池(融熔碳酸盐燃料电池)。
8、如权利要求7所述的设备,其特征在于,燃料电池(10)的阳极连接到天然气的供应源(14)。
9、如权利要求5或6的设备,其特征在于,采用PAFC型燃料电池(磷酸燃料电池)。
10、如权利要求5-9的设备,其特征在于,回路中设置辅助燃烧器(20)或燃烧室(12),它连接到燃料电池(10)阳极的排放线(13)以接收“废(使用过的)燃料”。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL8901348 | 1989-05-29 | ||
NL8901348A NL8901348A (nl) | 1989-05-29 | 1989-05-29 | Werkwijze en inrichting voor het opwekken van electrische energie. |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1048911A true CN1048911A (zh) | 1991-01-30 |
CN1022944C CN1022944C (zh) | 1993-12-01 |
Family
ID=19854731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN90103974A Expired - Fee Related CN1022944C (zh) | 1989-05-29 | 1990-05-28 | 发电的方法和设备 |
Country Status (20)
Country | Link |
---|---|
US (2) | US5083425A (zh) |
EP (1) | EP0400701B1 (zh) |
JP (1) | JPH0318627A (zh) |
KR (1) | KR0175066B1 (zh) |
CN (1) | CN1022944C (zh) |
AT (1) | ATE134740T1 (zh) |
CA (1) | CA2017072A1 (zh) |
CZ (1) | CZ282731B6 (zh) |
DD (1) | DD294759A5 (zh) |
DE (1) | DE69025496T2 (zh) |
DK (1) | DK0400701T3 (zh) |
ES (1) | ES2085882T3 (zh) |
GR (1) | GR3019482T3 (zh) |
HU (1) | HU214664B (zh) |
NL (1) | NL8901348A (zh) |
NO (1) | NO304568B1 (zh) |
PL (1) | PL164615B1 (zh) |
RO (1) | RO114518B1 (zh) |
RU (1) | RU2027046C1 (zh) |
SK (1) | SK264690A3 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103597333A (zh) * | 2011-03-29 | 2014-02-19 | 佛罗里达涡轮技术股份有限公司 | 用于测试工业燃气涡轮发动机及其部件的设备和方法 |
CN105484870A (zh) * | 2015-12-29 | 2016-04-13 | 中国航空工业集团公司沈阳发动机设计研究所 | 一种联合循环燃气轮机系统 |
CN106602106A (zh) * | 2012-10-31 | 2017-04-26 | 三菱日立电力系统株式会社 | 发电系统及发电系统中的燃料电池的启动方法 |
CN108386344A (zh) * | 2018-03-09 | 2018-08-10 | 重庆大学 | 燃料电池和压缩空气储能耦合的发电储能系统及控制方法 |
CN118656647A (zh) * | 2024-08-16 | 2024-09-17 | 南昌大学 | 一种固体氧化物燃料电池及燃气轮机集成系统的性能预测方法及系统 |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8901348A (nl) * | 1989-05-29 | 1990-12-17 | Turboconsult Bv | Werkwijze en inrichting voor het opwekken van electrische energie. |
JP2819730B2 (ja) * | 1990-02-15 | 1998-11-05 | 石川島播磨重工業株式会社 | 溶融炭酸塩型燃料電池の運転方法 |
JP2942999B2 (ja) * | 1990-05-01 | 1999-08-30 | 石川島播磨重工業株式会社 | 溶融炭酸塩型燃料電池発電装置 |
CA2093683C (en) * | 1992-05-14 | 2002-10-15 | William Miller Farrell | Intercooled gas turbine engine |
DE4318818C2 (de) * | 1993-06-07 | 1995-05-04 | Daimler Benz Ag | Verfahren und Vorrichtung zur Bereitstellung von konditionierter Prozessluft für luftatmende Brennstoffzellensysteme |
US5449568A (en) * | 1993-10-28 | 1995-09-12 | The United States Of America As Represented By The United States Department Of Energy | Indirect-fired gas turbine bottomed with fuel cell |
US5693201A (en) * | 1994-08-08 | 1997-12-02 | Ztek Corporation | Ultra-high efficiency turbine and fuel cell combination |
AU704873B2 (en) * | 1994-08-08 | 1999-05-06 | Ztek Corporation | Electrochemical converter |
US5678647A (en) * | 1994-09-07 | 1997-10-21 | Westinghouse Electric Corporation | Fuel cell powered propulsion system |
US5532573A (en) * | 1994-09-07 | 1996-07-02 | Westinghouse Electric Corporation | Reconfigurable hybrid power generation system |
US5900329A (en) * | 1994-10-19 | 1999-05-04 | Siemens Aktiengesellschaft | Fuel-cell system and method for operating a fuel-cell system |
US5595059A (en) * | 1995-03-02 | 1997-01-21 | Westingthouse Electric Corporation | Combined cycle power plant with thermochemical recuperation and flue gas recirculation |
DE19535288A1 (de) * | 1995-09-22 | 1997-03-27 | Siemens Ag | Verfahren und Anlage zum Verstromen eines Brenngases |
US5541014A (en) * | 1995-10-23 | 1996-07-30 | The United States Of America As Represented By The United States Department Of Energy | Indirect-fired gas turbine dual fuel cell power cycle |
US6124050A (en) * | 1996-05-07 | 2000-09-26 | Siemens Aktiengesellschaft | Process for operating a high temperature fuel cell installation, and high temperature fuel cell installation |
CA2253564A1 (en) * | 1996-05-07 | 1997-11-13 | Siemens Aktiengesellschaft | High-temperature fuel cell plant and process for operating the same |
US5811201A (en) * | 1996-08-16 | 1998-09-22 | Southern California Edison Company | Power generation system utilizing turbine and fuel cell |
US5753383A (en) * | 1996-12-02 | 1998-05-19 | Cargnelli; Joseph | Hybrid self-contained heating and electrical power supply process incorporating a hydrogen fuel cell, a thermoelectric generator and a catalytic burner |
US5968680A (en) * | 1997-09-10 | 1999-10-19 | Alliedsignal, Inc. | Hybrid electrical power system |
US6735953B1 (en) * | 1997-12-22 | 2004-05-18 | Allied Signal Inc. | Turbomachine-driven environmental control system |
WO1999035702A1 (en) | 1998-01-08 | 1999-07-15 | Southern California Edison Company | Power generation system utilizing turbine gas generator and fuel cell |
US6363706B1 (en) | 1998-12-24 | 2002-04-02 | Alliedsignal | Apparatus and method to increase turbine power |
DE19911018C1 (de) * | 1999-03-12 | 2000-08-31 | Daimler Chrysler Ag | Hilfstriebwerk für ein Luftfahrzeug |
JP2002115562A (ja) * | 2000-08-03 | 2002-04-19 | Mitsubishi Heavy Ind Ltd | ガスタービン |
US6607854B1 (en) | 2000-11-13 | 2003-08-19 | Honeywell International Inc. | Three-wheel air turbocompressor for PEM fuel cell systems |
US7118606B2 (en) * | 2001-03-21 | 2006-10-10 | Ut-Battelle, Llc | Fossil fuel combined cycle power system |
DE10120947A1 (de) * | 2001-04-22 | 2002-10-24 | Daimler Chrysler Ag | Brennstoffzellen-Luftversorgung |
US6711902B2 (en) * | 2001-06-04 | 2004-03-30 | Richard E. Douglas | Integrated cycle power system and method |
EP1286030B1 (de) * | 2001-08-16 | 2006-01-25 | Siemens Aktiengesellschaft | Gas- und Luftturbinenanlage |
DE10236323A1 (de) * | 2001-08-17 | 2003-03-06 | Alstom Switzerland Ltd | Kraftwerksanlage und zugehöriges Startverfahren |
DE10236501A1 (de) * | 2001-08-17 | 2003-04-03 | Alstom Switzerland Ltd | Startverfahren für eine Kraftwerksanlage |
GB0121191D0 (en) * | 2001-08-31 | 2001-10-24 | Innogy Plc | A power generation apparatus |
US7550218B2 (en) | 2001-10-11 | 2009-06-23 | Airbus Deutschland Gmbh | Apparatus for producing water onboard of a craft driven by a power plant |
US7249460B2 (en) * | 2002-01-29 | 2007-07-31 | Nearhoof Jr Charles F | Fuel injection system for a turbine engine |
ES2262917T3 (es) * | 2002-04-16 | 2006-12-01 | Airbus Deutschland Gmbh | Sistema para la produccion de agua a bordo de una aeronave. |
DE10216953B4 (de) * | 2002-04-17 | 2006-02-23 | Daimlerchrysler Ag | Vorrichtung und Verfahren zur Versorgung einer Brennstoffzelle mit Prozessluft und deren Verwendung |
JP4003553B2 (ja) * | 2002-06-26 | 2007-11-07 | Jfeスチール株式会社 | 副生ガスを用いた発電方法および発電設備 |
US7767359B2 (en) | 2002-10-24 | 2010-08-03 | Airbus Deutschland Gmbh | Device for producing water on board of an airplane |
US7410713B2 (en) * | 2002-12-23 | 2008-08-12 | General Electric Company | Integrated fuel cell hybrid power plant with re-circulated air and fuel flow |
US7153599B2 (en) * | 2002-12-23 | 2006-12-26 | General Electric Company | Cooled turbine integrated fuel cell hybrid power plant |
US6978621B2 (en) * | 2002-12-31 | 2005-12-27 | General Electric Company | Turbo recuperator device |
JP4579560B2 (ja) | 2003-06-30 | 2010-11-10 | 川崎重工業株式会社 | 燃料電池・常圧タービン・ハイブリッドシステム |
US7344787B2 (en) * | 2003-10-29 | 2008-03-18 | General Motors Corporation | Two-stage compression for air supply of a fuel cell system |
US7137257B2 (en) * | 2004-10-06 | 2006-11-21 | Praxair Technology, Inc. | Gas turbine power augmentation method |
KR100907690B1 (ko) * | 2004-10-19 | 2009-07-14 | 자이단호징 덴료쿠추오켄큐쇼 | 복합 발전설비 |
SE531220C2 (sv) | 2005-04-21 | 2009-01-20 | Compower Ab | Energiåtervinninssystem för en processanordning |
DE102005060516A1 (de) * | 2005-12-12 | 2007-06-14 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Fahrzeug und Verfahren zum Betrieb eines Fahrzeugs |
US7743861B2 (en) * | 2006-01-06 | 2010-06-29 | Delphi Technologies, Inc. | Hybrid solid oxide fuel cell and gas turbine electric generating system using liquid oxygen |
US20100242453A1 (en) * | 2006-05-31 | 2010-09-30 | Johnston Darrin A | Fuel cell/engine hybrid power system |
WO2008049444A1 (en) * | 2006-10-25 | 2008-05-02 | Daimler Ag | Gas flow control system |
EP2092589A1 (en) * | 2006-11-20 | 2009-08-26 | Eect B.V. | System having high-temperature fuel cells |
US7862938B2 (en) | 2007-02-05 | 2011-01-04 | Fuelcell Energy, Inc. | Integrated fuel cell and heat engine hybrid system for high efficiency power generation |
US20090051167A1 (en) * | 2007-08-22 | 2009-02-26 | General Electric Company | Combustion turbine cooling media supply method |
JP5234401B2 (ja) * | 2007-12-06 | 2013-07-10 | 日産自動車株式会社 | 固体電解質型燃料電池システム |
BRPI0918769B1 (pt) * | 2008-09-09 | 2021-01-05 | Conocophillips Company | sistema para melhoria de performance de turbina a gás em uma usina a gás natural |
US9014791B2 (en) | 2009-04-17 | 2015-04-21 | Echogen Power Systems, Llc | System and method for managing thermal issues in gas turbine engines |
CH701210A1 (de) * | 2009-06-02 | 2010-12-15 | Alstom Technology Ltd | Verfahren zum Betrieb eines Gasturbinenkraftwerkes mit Brennstoffzelle. |
MX2012000059A (es) | 2009-06-22 | 2012-06-01 | Echogen Power Systems Inc | Sistema y metodo para manejar problemas termicos en uno o mas procesos industriales. |
WO2011017476A1 (en) | 2009-08-04 | 2011-02-10 | Echogen Power Systems Inc. | Heat pump with integral solar collector |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US8613195B2 (en) | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US8794002B2 (en) | 2009-09-17 | 2014-08-05 | Echogen Power Systems | Thermal energy conversion method |
US7818969B1 (en) | 2009-12-18 | 2010-10-26 | Energyield, Llc | Enhanced efficiency turbine |
US8616001B2 (en) | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8857186B2 (en) * | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
US9441542B2 (en) | 2011-09-20 | 2016-09-13 | General Electric Company | Ultrasonic water atomization system for gas turbine inlet cooling and wet compression |
WO2013055391A1 (en) | 2011-10-03 | 2013-04-18 | Echogen Power Systems, Llc | Carbon dioxide refrigeration cycle |
WO2014031526A1 (en) | 2012-08-20 | 2014-02-27 | Echogen Power Systems, L.L.C. | Supercritical working fluid circuit with a turbo pump and a start pump in series configuration |
US9118226B2 (en) | 2012-10-12 | 2015-08-25 | Echogen Power Systems, Llc | Heat engine system with a supercritical working fluid and processes thereof |
US9341084B2 (en) | 2012-10-12 | 2016-05-17 | Echogen Power Systems, Llc | Supercritical carbon dioxide power cycle for waste heat recovery |
CA2899163C (en) | 2013-01-28 | 2021-08-10 | Echogen Power Systems, L.L.C. | Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle |
US9638065B2 (en) | 2013-01-28 | 2017-05-02 | Echogen Power Systems, Llc | Methods for reducing wear on components of a heat engine system at startup |
AU2014225990B2 (en) | 2013-03-04 | 2018-07-26 | Echogen Power Systems, L.L.C. | Heat engine systems with high net power supercritical carbon dioxide circuits |
CA2902986C (en) * | 2013-03-15 | 2019-09-17 | Paul J. Berlowitz | Integrated operation of molten carbonate fuel cells |
JP6228752B2 (ja) * | 2013-04-26 | 2017-11-08 | 三菱日立パワーシステムズ株式会社 | 発電システム及び発電システムの起動方法 |
EP3174144B1 (en) * | 2014-07-24 | 2018-09-05 | Nissan Motor Co., Ltd | Fuel cell control device |
WO2016073252A1 (en) | 2014-11-03 | 2016-05-12 | Echogen Power Systems, L.L.C. | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
DE102018201233A1 (de) | 2017-04-18 | 2018-10-18 | Ford Global Technologies, Llc | Kraftfahrzeug mit einer Brennstoffzelle |
US10883388B2 (en) | 2018-06-27 | 2021-01-05 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
DE102020206918A1 (de) * | 2020-06-03 | 2021-12-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Wärmetauschersystem zum Betreiben eines Brennstoffzellen-Stacks |
WO2022125816A1 (en) | 2020-12-09 | 2022-06-16 | Supercritical Storage Company, Inc. | Three reservoir electric thermal energy storage system |
DE102021210446A1 (de) | 2021-09-20 | 2023-03-23 | Rolls-Royce Solutions GmbH | Elektrochemische Energiewandlungsvorrichtung und Verfahren zum Betreiben einer solchen elektrochemischen Energiewandlungsvorrichtung |
US20230358166A1 (en) * | 2022-05-04 | 2023-11-09 | Hamilton Sundstrand Corporation | Hydrogen energy conversion system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2658336A (en) * | 1949-10-18 | 1953-11-10 | Sulzer Ag | Pressure control system for gas turbine plants |
FR1549417A (zh) * | 1967-10-17 | 1968-12-13 | ||
US3473331A (en) * | 1968-04-04 | 1969-10-21 | Combustion Eng | Incinerator-gas turbine cycle |
US4333992A (en) * | 1980-10-30 | 1982-06-08 | United Technologies Corporation | Method for producing steam from the liquid in a moist gas stream |
DE3523487A1 (de) * | 1985-07-01 | 1987-01-08 | Kloeckner Humboldt Deutz Ag | Verfahren und anlage zur erzeugung von elektrischer energie |
JPH0665051B2 (ja) * | 1985-08-16 | 1994-08-22 | 三菱重工業株式会社 | 燃料電池発電システム |
US4838020A (en) * | 1985-10-24 | 1989-06-13 | Mitsubishi Denki Kabushiki Kaisha | Turbocompressor system and method for controlling the same |
US4685287A (en) * | 1985-11-20 | 1987-08-11 | Mitsubishi Denki Kabushiki Kaisha | Compressor system and start-up method therefor |
JPH06103631B2 (ja) * | 1986-01-23 | 1994-12-14 | 株式会社日立製作所 | 燃料電池システムの空気供給系装置 |
US4678723A (en) * | 1986-11-03 | 1987-07-07 | International Fuel Cells Corporation | High pressure low heat rate phosphoric acid fuel cell stack |
NL8702834A (nl) * | 1987-11-26 | 1989-06-16 | Turbo Consult Bv | Installatie voor het opwekken van mechanische energie alsmede werkwijze voor het bedrijven van een dergelijke installatie. |
NL8901348A (nl) * | 1989-05-29 | 1990-12-17 | Turboconsult Bv | Werkwijze en inrichting voor het opwekken van electrische energie. |
-
1989
- 1989-05-29 NL NL8901348A patent/NL8901348A/nl not_active Application Discontinuation
-
1990
- 1990-05-14 EP EP90201212A patent/EP0400701B1/en not_active Expired - Lifetime
- 1990-05-14 DE DE69025496T patent/DE69025496T2/de not_active Expired - Fee Related
- 1990-05-14 ES ES90201212T patent/ES2085882T3/es not_active Expired - Lifetime
- 1990-05-14 AT AT90201212T patent/ATE134740T1/de not_active IP Right Cessation
- 1990-05-14 DK DK90201212.9T patent/DK0400701T3/da active
- 1990-05-17 HU HU903068A patent/HU214664B/hu not_active IP Right Cessation
- 1990-05-17 CA CA002017072A patent/CA2017072A1/en not_active Abandoned
- 1990-05-22 US US07/527,026 patent/US5083425A/en not_active Expired - Lifetime
- 1990-05-28 NO NO902355A patent/NO304568B1/no unknown
- 1990-05-28 CN CN90103974A patent/CN1022944C/zh not_active Expired - Fee Related
- 1990-05-28 RU SU904830018A patent/RU2027046C1/ru active
- 1990-05-28 DD DD90341044A patent/DD294759A5/de not_active IP Right Cessation
- 1990-05-28 RO RO145204A patent/RO114518B1/ro unknown
- 1990-05-29 CZ CS902646A patent/CZ282731B6/cs unknown
- 1990-05-29 JP JP2137291A patent/JPH0318627A/ja active Pending
- 1990-05-29 KR KR1019900007802A patent/KR0175066B1/ko not_active IP Right Cessation
- 1990-05-29 PL PL90285382A patent/PL164615B1/pl unknown
- 1990-05-29 SK SK2646-90A patent/SK264690A3/sk unknown
-
1993
- 1993-05-27 US US08/068,000 patent/US5319925A/en not_active Expired - Fee Related
-
1996
- 1996-04-02 GR GR960400869T patent/GR3019482T3/el unknown
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103597333A (zh) * | 2011-03-29 | 2014-02-19 | 佛罗里达涡轮技术股份有限公司 | 用于测试工业燃气涡轮发动机及其部件的设备和方法 |
US9200983B2 (en) | 2011-03-29 | 2015-12-01 | Florida Turbine Technologies, Inc. | Apparatus and process for testing an industrial gas turbine engine and components thereof |
CN103597333B (zh) * | 2011-03-29 | 2017-03-29 | 佛罗里达涡轮技术股份有限公司 | 用于测试工业燃气涡轮发动机及其部件的设备和方法 |
CN106602106A (zh) * | 2012-10-31 | 2017-04-26 | 三菱日立电力系统株式会社 | 发电系统及发电系统中的燃料电池的启动方法 |
CN105484870A (zh) * | 2015-12-29 | 2016-04-13 | 中国航空工业集团公司沈阳发动机设计研究所 | 一种联合循环燃气轮机系统 |
CN108386344A (zh) * | 2018-03-09 | 2018-08-10 | 重庆大学 | 燃料电池和压缩空气储能耦合的发电储能系统及控制方法 |
CN118656647A (zh) * | 2024-08-16 | 2024-09-17 | 南昌大学 | 一种固体氧化物燃料电池及燃气轮机集成系统的性能预测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CZ264690A3 (en) | 1997-06-11 |
DD294759A5 (de) | 1991-10-10 |
HU903068D0 (en) | 1990-09-28 |
GR3019482T3 (en) | 1996-07-31 |
ES2085882T3 (es) | 1996-06-16 |
NO902355D0 (no) | 1990-05-28 |
HU214664B (hu) | 1998-04-28 |
DE69025496T2 (de) | 1996-10-31 |
CZ282731B6 (cs) | 1997-09-17 |
EP0400701A1 (en) | 1990-12-05 |
SK279491B6 (sk) | 1998-12-02 |
KR0175066B1 (ko) | 1999-03-20 |
ATE134740T1 (de) | 1996-03-15 |
RO114518B1 (ro) | 1999-04-30 |
CA2017072A1 (en) | 1990-11-29 |
EP0400701B1 (en) | 1996-02-28 |
US5319925A (en) | 1994-06-14 |
DK0400701T3 (da) | 1996-07-08 |
KR900018505A (ko) | 1990-12-21 |
JPH0318627A (ja) | 1991-01-28 |
PL164615B1 (pl) | 1994-08-31 |
US5083425A (en) | 1992-01-28 |
RU2027046C1 (ru) | 1995-01-20 |
NL8901348A (nl) | 1990-12-17 |
PL285382A1 (en) | 1991-11-04 |
NO304568B1 (no) | 1999-01-11 |
SK264690A3 (en) | 1998-12-02 |
DE69025496D1 (de) | 1996-04-04 |
HUT53987A (en) | 1990-12-28 |
CN1022944C (zh) | 1993-12-01 |
NO902355L (no) | 1990-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1022944C (zh) | 发电的方法和设备 | |
US7781115B2 (en) | Recuperated atmosphere SOFC/gas turbine hybrid cycle | |
US5595059A (en) | Combined cycle power plant with thermochemical recuperation and flue gas recirculation | |
US5417051A (en) | Process and installation for the combined generation of electrical and mechanical energy | |
EP1643575A1 (en) | Fuel cell/constant pressure turbine/hybrid system | |
CN111933977A (zh) | 一种燃料电池-涡轮增压内燃机混合发电系统 | |
CN112761826A (zh) | 一种增压发动机及氨燃料混合动力发电系统 | |
CN1674335A (zh) | 综合燃料电池-燃气轮机系统启动和瞬态工作的方法和系统 | |
US20100062301A1 (en) | System having high-temperature fuel cells | |
CN102760900B (zh) | 结合吹扫气集成otm的加压co2零排放sofc/gt/at/st复合动力系统 | |
US6136462A (en) | High temperature fuel cells with heating of the reaction gas | |
WO2003021702A1 (en) | A power generation apparatus | |
CN111384782B (zh) | 清洁储能系统及储能方法 | |
US5267288A (en) | Power station installation | |
AU706599B2 (en) | Process for operating a high temperature fuel cell installation, and high temperature fuel cell installation | |
CN100433433C (zh) | 燃料电池和常压涡轮机的混合系统 | |
CN218731103U (zh) | 一种尾排再利用的燃料电池以及车辆 | |
CN117293366A (zh) | 一种加热入堆气体的燃料电池以及车辆 | |
WO2023143868A1 (en) | High efficiency power solution by integration of pressurized solid oxide fuel cell with expanders | |
CN116044568A (zh) | 一种基于固态氢燃料的燃气轮机装置 | |
JPS60160580A (ja) | 燃料電池発電システムの起動方式 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |