CN104880242A - Calibration device and method of double-loader electronic belt scale - Google Patents

Calibration device and method of double-loader electronic belt scale Download PDF

Info

Publication number
CN104880242A
CN104880242A CN201510347657.XA CN201510347657A CN104880242A CN 104880242 A CN104880242 A CN 104880242A CN 201510347657 A CN201510347657 A CN 201510347657A CN 104880242 A CN104880242 A CN 104880242A
Authority
CN
China
Prior art keywords
mrow
msub
loader
msubsup
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510347657.XA
Other languages
Chinese (zh)
Other versions
CN104880242B (en
Inventor
田柏林
陈建民
王文清
任安祥
李萍
陈耕
任凤国
张春芝
牛小铁
颜景刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING COAL MINING ELECTRIC EQUIPMENT TECHNICAL DEVELOPMENT Co Ltd
Beijing University of Technology
Original Assignee
BEIJING COAL MINING ELECTRIC EQUIPMENT TECHNICAL DEVELOPMENT Co Ltd
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING COAL MINING ELECTRIC EQUIPMENT TECHNICAL DEVELOPMENT Co Ltd, Beijing University of Technology filed Critical BEIJING COAL MINING ELECTRIC EQUIPMENT TECHNICAL DEVELOPMENT Co Ltd
Priority to CN201510347657.XA priority Critical patent/CN104880242B/en
Publication of CN104880242A publication Critical patent/CN104880242A/en
Application granted granted Critical
Publication of CN104880242B publication Critical patent/CN104880242B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Conveyors (AREA)

Abstract

The invention provides a calibration device and method of a double-loader electronic belt scale. The device comprises a belt, a first loader, a second loader, a speed measuring sensor and a weighing instrument. The first loader comprises a first weighing sensor. The second loader comprises a second weighing sensor. The weighing instrument is electrically connected with the first weighing sensor and the second weighing sensor respectively. A first interface and a second interface of the weighing instrument are respectively used for collecting gravity signals of transmitted materials measured by the first weighing sensor and the second weighing sensor in time intervals such as a preset first time interval, a calibration period and a preset second time interval; a third interface is used for receiving transmission speed signals sent by the speed measuring sensor; and a signal processing unit is used for calculating a second calibration coefficient of the first loader, for calculating a second calibration coefficient so as to finish calibrating the second loader, and for calculating a third calibration coefficient of the first loader so as to finish calibrating the first loader.

Description

Calibration device and method for double-loader electronic belt scale
Technical Field
The embodiment of the invention relates to the technical field of electronic belt weighers, in particular to a calibration device and method of a double-loader electronic belt weigher.
Background
In recent years, the coal mine industry is rapidly developed, in order to avoid hidden dangers of stealing tax evasion and excessive mining and digging to destroy resources, the coal yield of each coal mine is accurately mastered, and a mining industry yield remote tax control system is developed at the right moment. Along with the popularization of the mining industry yield remote tax control system, more and more coal mines adopt an electronic belt scale as a main means of yield measurement.
Although the electronic belt scale has high metering precision, the daily maintenance amount is large, and particularly the calibration work of the electronic belt scale is carried out. In the prior art, a hanging code calibration method, a chain code calibration method, a real object calibration method and a calibration method of a dual-electronic belt scale are mainly adopted to calibrate the electronic belt scale. In the hanging code calibration method, the chain code calibration method and the object calibration method, after the belt is stopped, hanging codes, chain codes or objects are placed on the belt for calibration operation, so that the electronic belt scale has large workload during calibration and seriously influences the production progress.
In order to reduce workload and ensure production progress, a calibration method of a double-electronic belt scale is adopted in the prior art. In the method, two electronic belt scales are arranged on the same belt, each electronic belt scale consists of a loader and a weighing instrument, one electronic belt scale is used as a main scale, and the other electronic belt scale is used as an auxiliary scale. During calibration, scale A is calibrated by scale B, so that the two scales obtain the same accumulated amount in the same time interval. And then, applying weights or materials with known mass on the B scale, completing the calibration of the B scale by taking the accumulated amount of the known mass on the B scale as a reference, and finally completing the calibration of the A scale by the B scale. In the method, when the weight or the material with known mass is applied to the B scale, the weight or the material needs to be loaded at a specified position through a specific weight loading mechanism or a specific material loading mechanism, so that the device required by the method for calibration is complex in structure and high in manufacturing cost, and the maintenance amount of the calibration device of the electronic belt scale is increased.
Disclosure of Invention
The embodiment of the invention provides a calibration device and method for a double-loader electronic belt scale. The device realizes that no weight loading mechanism or material loading mechanism is required to load at a designated position when the electronic belt scale is calibrated, and the device is not stopped when the electronic belt scale is calibrated, so that the production progress is ensured.
The embodiment of the invention provides a calibration device of a double-loader electronic belt scale, which comprises: the device comprises a belt for conveying materials, a first loader, a second loader, a speed measuring sensor for measuring the conveying speed of the belt and a weighing instrument;
the first loader and the second loader are sequentially arranged below the belt along the material conveying direction;
the first loader comprises a first weighing sensor for measuring the gravity above the belt, the second loader comprises a second weighing sensor for measuring the gravity above the belt, and the weighing instrument is electrically connected with the first weighing sensor, the second weighing sensor and the speed measuring sensor respectively;
wherein the weighing instrument comprises: the central control element is electrically connected with the first interface, the second interface, the third interface and the signal processing unit respectively;
the first interface is used for collecting the gravity signal s of the transmission material measured by the first weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyA1i,sA2i,sA3i
The second interface is used for collecting the gravity signal s of the transmission material measured by the second weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyB1i,sB2i,sB3iWherein i is a positive integer;
the third interface is used for receiving a transmission speed signal v sent by the speed measurement sensor;
the signal processing unit is used for controlling the central control element according to a preset second valueS collected over a timeA1iS of said sB1iAnd v, calculating a second calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively a first calibration coefficient and a zero value of the second loader;
the signal processing unit is also used for controlling a central control element according to the kA2A pre-stored standard loading cumulative quantity M, a pre-stored ith gravity signal s in the MTiAnd said s collected during a calibration periodA2iS of said sB2iAnd v, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier, wherein nTIs a positive integer greater than 1;
the signal processing unit is also used for controlling a central control element according to the kB2And s is collected within a preset second timeA3i,sB3iAnd v, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete calibration of the first carrier.
The embodiment of the invention provides a calibration method of a double-loader electronic belt scale, which comprises the following steps:
the weighing instrument respectively collects gravity signals s of materials transmitted on a belt and measured by a first weighing sensor of a first loader at equal time intervals in preset first time through a first interface and a second interfaceA1iThe gravity signal s of the material transmitted on the belt measured by the second weighing sensor of the second loaderB1iReceiving a transmission speed signal v sent by a speed measuring sensor through a third interface, wherein i is a positive integer;
the signal processing unit of the weighing instrument collects s within a preset first timeA1iS of said sB1iAnd v, calculating a second calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively a first calibration coefficient and a zero value of the second loader;
the weighing instrument passes through the first interfaceThe second interface collects the gravity signal s of the materials transmitted on the belt measured by the first weighing sensor of the first loader at equal time intervals in the calibration periodA2iThe gravity signal s of the material transmitted on the belt measured by the second weighing sensor of the second loaderB2i
The information calculation unit of the weighing instrument is based on the kA2A pre-stored standard loading cumulative quantity M, a pre-stored ith gravity signal s in the MTiAnd said s collected during a calibration periodA2iS of said sB2iAnd v, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier, wherein nTIs a positive integer greater than 1;
the weighing instrument collects the gravity signal s of the material transmitted on the belt measured by the first weighing sensor of the first loader at equal time intervals in preset second time through the first interface and the second interfaceA3iThe gravity signal s of the material transmitted on the belt measured by the second weighing sensor of the second loaderB3i
The signal processing unit of the weighing instrument is based on the kB2And s is collected within a preset second timeA3i,sB3iAnd v, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete calibration of the first carrier.
The embodiment of the invention provides a calibration device and a method for a double-loader electronic belt scale, wherein the device comprises: the device comprises a belt for conveying materials, a first loader, a second loader, a speed measuring sensor for measuring the conveying speed of the belt and a weighing instrument; the first loader and the second loader are sequentially arranged below the belt along the material conveying direction; the first loader comprises a first weighing sensor for measuring the gravity above the belt, the second loader comprises a second weighing sensor for measuring the gravity above the belt, and the weighing instrument is electrically connected with the first weighing sensor, the second weighing sensor and the speed measuring sensor respectively; wherein, the weighing instrument includes: first interface, second interface, third interface, central control element and informationThe signal processing unit is electrically connected with the first interface, the second interface, the third interface and the signal processing unit respectively; a first interface for collecting the gravity signal s of the transmission material measured by the first weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyA1i,sA2i,sA3i(ii) a A second interface for collecting the gravity signal s of the transmission material measured by the second weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyB1i,sB2i,sB3iWherein i is a positive integer; the third interface is used for receiving a transmission speed signal v sent by the speed measurement sensor; a signal processing unit for acquiring s within a preset first time under the control of the central control elementA1i,sB1iV, calculating a second calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively a first calibration coefficient and a zero value of the second loader; a signal processing unit for further processing the signal according to k under the control of the central control elementA2A pre-stored standard loading cumulative quantity M, a pre-stored ith gravity signal s in the MTiAnd s collected during the calibration periodA2i,sB2iV, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>]</mo> <mo></mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier, where nTIs a positive integer greater than 1; a signal processing unit for further processing the signal according to k under the control of the central control elementB2And s collected within a preset second timeA3i,sB3iV, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the first carrier. The device realizes that no weight loading mechanism or material loading mechanism is required to load at a designated position when the electronic belt scale is calibrated, and the device is not stopped when the electronic belt scale is calibrated, so that the production progress is ensured.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below, and it is obvious that the drawings in the following description are some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to these drawings without creative efforts.
FIG. 1 is a first structural diagram of a first calibration device of a dual-carrier electronic belt scale according to an embodiment of the present invention;
fig. 2 is a second structural schematic diagram of a first calibration device of the dual-carrier electronic belt scale according to the present invention;
FIG. 3 is a third schematic structural diagram of a first calibration apparatus of a dual-carrier electronic belt scale according to an embodiment of the present invention;
fig. 4 is a flowchart of a first embodiment of a calibration method of the dual-carrier electronic belt scale of the present invention.
Description of the symbols:
1-belt 2-first carrier 21-first load cell
3-second carrier 31-second weighing sensor 4-tacho-sensor
5-weighing instrument 51-first interface 52-second interface
53-third interface 54-central control element 55-signal processing unit
6-material 7-standard chain code 8-driving roller
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are some, but not all, embodiments of the present invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Fig. 1 is a first structural schematic diagram of a first calibration device of a dual-carrier electronic belt scale according to the present invention, fig. 2 is a second structural schematic diagram of the first calibration device of the dual-carrier electronic belt scale according to the present invention, wherein fig. 1 is a structural schematic diagram of electrical connection of components of the calibration device of the dual-carrier electronic belt scale, and fig. 2 is a structural schematic diagram of mechanical connection and electrical connection of components of the calibration device of the dual-carrier electronic belt scale. As shown in fig. 1 and 2, the calibration apparatus of the dual-carrier electronic belt scale in the present embodiment includes: the device comprises a belt 1 for conveying materials 6, a first loader 2, a second loader 3, a speed measuring sensor 4 for measuring the conveying speed of the belt and a weighing instrument 5.
In this embodiment, the first carrier 2 and the second carrier 3 are sequentially disposed below the belt 1 along the material conveying direction.
In this embodiment, the first carrier 2 includes a first load cell 21 for measuring the gravity above the belt 1, the second carrier 3 includes a second load cell 31 for measuring the gravity above the belt 1, and the weighing instrument 5 is electrically connected to the first load cell 21, the second load cell 31 and the speed sensor 4, respectively.
Wherein, weighing instrument 5 includes: the first interface 51, the second interface 52, the third interface 53, the central control element 54 and the signal processing unit 55, wherein the central control element 54 is electrically connected with the first interface 51, the second interface 52, the third interface 53 and the signal processing unit 55 respectively.
A first interface 51, configured to collect the gravity signal s of the material to be conveyed measured by the first weighing sensor 21 at equal time intervals within a preset first time, a calibration period, and a preset second timeA1i,sA2i,sA3i
A second interface 52, configured to collect the gravity signal s of the transported material measured by the second weighing sensor 31 at equal time intervals within a preset first time, a calibration period, and a preset second time respectivelyB1i,sB2i,sB3iWherein i is a positive integer.
And the third interface 53 is configured to receive the transmission speed signal v sent by the speed measurement sensor 4.
A signal processing unit 55 for acquiring s according to a preset first time under the control of the central control element 54A1i,sB1iV, calculating a second calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively, the first calibration coefficient and the zero value of the second loader.
Information number processing unit 55, also for processing according to k under the control of central control element 54A2A pre-stored standard loading cumulative quantity M in a calibration period, and an ith gravity signal s in the pre-stored MTiAnd s collected during the calibration periodA2i,sB2iV, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>[</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mi>Ti</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>]</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>[</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>]</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier, wherein nTIs a positive integer greater than 1.
A signal processing unit 55, further for controlling the central control element 54 according to kB2And s collected within a preset second timeA3i,sB3iV, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>[</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>]</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>[</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>]</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the first carrier.
Specifically, in this embodiment, as shown in fig. 2, in the calibration device of the dual-carrier electronic belt scale, the belt 1 is sleeved on the driving rollers 8 at two ends, and the driving rollers 8 drive the belt to transport the material. First loader 2 and second loader 3 set gradually in belt 1 below along material direction of delivery, and tacho sensor 4 sets up in the belt below to contact with the belt. The first load cell 21 is arranged inside the first carrier 2 and the second load cell 31 is arranged inside the second load cell. The first load cell 21 and the second load cell 31 measure the weight force above the same belt 1.
In this embodiment, the weighing instrument 5 is electrically connected to the first weighing sensor 21 through the first interface 51, the first interface 51 is used to collect the gravity signal of the transported material measured by the first weighing sensor 21 at equal time intervals under the control of the central control element 54, the weighing instrument 5 is electrically connected to the second weighing sensor 31 through the second interface 52, the second interface 52 is used to collect the gravity signal of the transported material measured by the second weighing sensor at equal time intervals under the control of the central control element 54, and the weighing instrument 5 is electrically connected to the speed sensor 4 through the third interface 53. The third interface 53 is used for receiving the transmission speed signal sent by the speed sensor 4 under the control of the central control element 54.
Specifically, in this embodiment, the first interface 51 and the second interface 52 simultaneously acquire the gravity signal s of the conveyed material measured by the first load cell 21 and the second load cell 31 at equal time intervals within a preset first timeA1i,sB1i. Wherein the preset first time and the time interval can be preset. If the preset first time may be a time required for the belt to run for a full circle when the belt 1 transfers the material or a time required for the belt to run for a preset length, the time interval may be 2 seconds, 4 seconds, or the like, or may be other values, which is not limited in this embodiment.
In the present embodiment, the first and second electrodes are,
s A 1 i = { s A 11 , s A 12 , s A 13 , ... , s Aln 1 } - - - ( 1 )
s B 1 i = { s B 11 , s B 12 , s B 13 , ... , s Bln 1 } - - - ( 2 )
wherein, i is 1,2,31Is a positive integer, n1The number of gravity signals collected by the second load cell 31 in a preset first time period is the number of the first load cell 21.
Specifically, in this embodiment, the first interface 51 and the second interface 52 simultaneously acquire the gravity signal s of the transported material measured by the first weighing sensor 21 and the second weighing sensor 31 at equal time intervals in the calibration periodA2i,sB2i. Wherein the calibration period is an integral multiple of the time required for the belt 1 to run for a full turn. The time interval may be 2 seconds, 4 seconds, or other values, which is not limited in this embodiment.
In this embodiment, the first interface 51 and the second interface 52 simultaneously collect the first weighing at equal time intervals in the calibration periodGravity signal s of the conveyed material measured by the sensor 21 and the second weighing sensor 31A2i,sB2iTime is a gravity signal acquired after a preset first time. Wherein,
s A 2 i = { s A 21 , s A 22 , s A 23 , ... , s A 2 n T } - - - ( 3 )
s B 2 i = { s B 21 , s B 22 , s B 23 , ... , s B 2 n T } - - - ( 4 )
wherein, i is 1,2,32Is a positive integer, nTThe number of gravity signals collected by the first load cell 21 and the second load cell 31 during a calibration period.
Specifically, in this embodiment, the first interface 51 and the second interface 52 simultaneously acquire the gravity signal s of the conveyed material measured by the first load cell 21 and the second load cell 31 at equal time intervals within a preset second time periodA3i,sB3i. Wherein the preset second time and the time interval can be preset. For example, the preset second time may be a time required for the belt 1 to travel a full circle when transporting the material 6 or a time required for the belt to travel a preset length, and the time interval may be 2 seconds, 4 seconds, etc., or other values, which is not limited in this embodiment.
In this embodiment, the first interface 51 and the second interface 52 simultaneously collect the gravity signal s of the transported material measured by the first weighing sensor 21 and the second weighing sensor 31 at equal time intervals within a preset second timeA3i,sB3iTime is the gravity signal acquired after the calibration period.
In the present embodiment, the first and second electrodes are,
s A 3 i = { s A 31 , s A 32 , s A 33 , ... , s A 3 n 3 } - - - ( 5 )
s B 3 i = { s B 31 , s B 32 , s B 33 , ... , s B 3 n 3 } - - - ( 6 )
wherein, i is 1,2,33Is a positive integer, n3The number of gravity signals collected by the second load cell 31 in the preset second time period is the number of the first load cell 21.
In this embodiment, the first interface 51 and the second interface 52 simultaneously collect the gravity signal s of the transported material measured by the first load cell 21 and the second load cell 31 at equal time intervals within a preset first time periodA1i,sB1iThen, the signal processing unit 55 of the weighing instrument 5 is used for collecting s according to a preset first time under the control of the central control element 54A1i,sB1iV, calculating a second calibration coefficient of the first loader 2 <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>.</mo> </mrow> </math>
Specifically, in the present embodiment, first, the signal processing unit55 according to s forA1iV and a first calibration factor k for the first carrierA1Calculating the first material accumulation amount M of the first carrierA1. Wherein,
<math> <mrow> <msub> <mi>M</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, the first calibration coefficient k of the first loaderA1And the calibration coefficient of the first carrier when the first carrier conveys the materials in the belt at the preset first time is obtained. U shapeA0Is the null value of the first carrier.
Then a signal processing unit 55 for scaling the coefficient k according to the second carrierB1And s collected within a preset first timeB1iV, calculating the first material cumulant M of the second carrier 3B1. Wherein,
<math> <mrow> <msub> <mi>M</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein the first calibration factor k of the second carrier 3B1And the calibration coefficient of the second carrier when the second carrier conveys the materials in the belt at the preset first time is obtained. U shapeB0Is the null value of the second carrier.
Finally, a signal processing unit 55 for determining a first material accumulation M on the basis of the first carrierA1And a first material accumulation M of the second carrierB1Calculating a second calibration coefficient k of the first carrierA2
Wherein,
<math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively, the first calibration coefficient and the zero value of the second loader.
The same belt 1 above the first carrier 2 and the second carrier 3 is conveying the material 6 in a preset first time, and the weighing instrument 5 passes through the material conveying processThe first interface 51 and the second interface 52 respectively collect the gravity signal s of the material conveyed on the belt measured by the first weighing sensor 21 of the first loader 2 at equal time intervalsA1iThe gravity signal s of the material conveyed on the belt measured by the second load cell 31 of the second carrier 3B1iAnd the transmission speed signals v sent by the speed measuring sensor are received by the third interface 53 to be equal, and if the first loader and the second loader are calibrated loaders, the first material cumulant M of the first loader is calculatedA1And a first material accumulation M of the second carrierB1In the embodiment, the second carrier is assumed to be a calibrated carrier, and the second calibration coefficient k of the first carrier is determined based on the second carrierA2
In this embodiment, the first interface 51 and the second interface 52 are configured to simultaneously acquire the gravity signal s of the transported material measured by the first load cell 21 and the second load cell 31 at equal time intervals in a calibration period after a preset first timeA2i,sB2iThe signal processing unit 55 is then also arranged to be controlled by the central control element 54 in dependence on kA2Pre-stored standard loading cumulative quantity M, pre-stored ith gravity signal s in MTiAnd acquired during a calibration periodV, calculating a second calibration coefficient k of the second loaderB2To complete the calibration of the second carrier, wherein nTIs a positive integer greater than 1.
Specifically, first, the signal processing unit 55 is configured to process the signal according to sA2iV and a second calibration factor k for the first carrierA2Calculating the accumulated amount M of the second material of the first loader in the calibration periodA2
Wherein,
<math> <mrow> <msub> <mi>M</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, the second calibration coefficient k of the first loaderA2The calibration coefficient of the first loader is adjusted by taking the second loader as a reference. n isTThe number of the gravity signals collected by the first loader in the calibration period is shown.
Then a signal processing unit 55 for processing the signal according to sB2iGravity signal s in a pre-stored standard loading cumulant MTiV and a first calibration factor k for the second carrierB1Calculating the standard loading cumulant M of the second material of the second carrierB2. Wherein,
<math> <mrow> <msub> <mi>M</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
in this embodiment, the second material standard loading cumulative amount MB2Which represents the cumulative total amount of material and standard load collected from the second load cell 31 during a calibration period after a predetermined first time.
Wherein n isTThe number of the gravity signals collected by the first loader in the calibration period is shown. sTiThe ith gravity signal in the standard loading accumulated quantity M is prestored for the second carrier in a calibrated state.
Wherein,
s T i = { s T 1 , s T 2 , s T 3 , ... , s Tn T } - - - ( 12 )
wherein, i is 1,2,3TAnd is a positive integer.
Finally, a signal processing unit 55 for determining the cumulative amount M of the second material on the basis of the first carrier 2A2And the second material standard loading cumulant M of the second loaderB2And the pre-stored standard loading cumulant M and the first calibration coefficient k of the second loaderB1Calculating a second calibration coefficient k of the second carrierB2To complete calibration of the second carrier.
Wherein,
<math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>M</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
in this embodiment, the calibration coefficient of the first carrier 2 is adjusted for the first time, that is, the second calibration coefficient k of the first carrier is determinedA2Then, the first load cell 21 of the first carrier 2 and the second load cell 31 of the second carrier 3 measure gravity signals on the same belt within a calibration time, and when the signal processing unit 55 of the weighing instrument 5 calculates the cumulative amounts of the materials, the cumulative amounts of the materials of the first carrier 2 and the second carrier 3 are the same. A signal processing unit 55 for the second carrier3 on the basis of the material accumulation amount, accumulating a standard loading accumulation amount M for the second load carrier, taking the standard loading accumulation amount M as a reference, and calculating a second calibration coefficient k of the second load carrier according to the current first calibration coefficient of the second load carrierB2A second calibration factor k of the second carrierB2Namely the calibrated coefficient of the second loader, so as to complete the calibration of the second loader.
In this embodiment, the first interface 51 and the second interface 52 are configured to simultaneously acquire the gravity signal s of the transported material measured by the first load cell 21 and the second load cell 31 at equal time intervals within a second time preset after the calibration periodA3i,sB3iThe signal processing unit 55 is then also arranged to be controlled by the central control element 54 in dependence on kB2And s collected within a preset second timeA3i,sB3iV, calculating a third calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete calibration of the second carrier.
Specifically, in the present embodiment, first, the signal processing unit 55 is configured to process the signal according to sA3iV and a second calibration factor k for the first carrierA3Calculating the accumulated quantity M of the third material of the first loader in a preset second timeA3
Wherein,
<math> <mrow> <msub> <mi>M</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein n is3The number of the gravity signals collected by the first loader in the preset second time is obtained.
Then a signal processing unit 55 for processing the signal according to sB3iV and a second calibration factor k for the second carrierB2Calculating the third material accumulation amount M of the second carrierB3. Wherein,
<math> <mrow> <msub> <mi>M</mi> <mrow> <mi>B</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
finally, a signal processing unit 55 for accumulating M according to the third material of the first carrierA3Second calibration factor k of the first carrierA2And a second carrierThird material accumulation amount MB3Calculating a third calibration coefficient k of the first carrierA3To complete the calibration of the first carrier.
Wherein,
<math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <msub> <mi>M</mi> <mrow> <mi>B</mi> <mn>3</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>M</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
in this embodiment, the first calibration coefficient of the second carrier is adjusted to determine the second calibration coefficient k of the second carrierB2Then, the second carrier is a calibrated carrier, the gravity signals of the same belt in a preset second time are measured by the first weighing sensor 21 of the first carrier 2 and the second weighing sensor 31 of the second carrier 3, and when the accumulation amount of the material is calculated, the accumulation amount of the material is the same. The signal processing unit 55 calibrates the first carrier based on the third material accumulation amount of the second carrier, calculates a calibration coefficient in a standard state, and calculates a third calibration coefficient k of the first carrierA3Namely the calibration coefficient after the first loader is calibrated, and the calibration of the first loader is finished.
The calibration device of the electronic belt scale with double loaders provided by the embodiment comprises: the device comprises a belt for conveying materials, a first loader, a second loader, a speed measuring sensor for measuring the conveying speed of the belt and a weighing instrument; the first loader comprises a first weighing sensor for measuring the gravity above the belt, the second loader comprises a second weighing sensor for measuring the gravity above the belt, and the weighing instrument is electrically connected with the first weighing sensor, the second weighing sensor and the speed measuring sensor respectively; wherein, the weighing instrument includes: a first interface, a second interface, a third interface, a central control element and a signal processing unit, wherein the central control element is respectively connected with the first interface and the second interfaceThe interface, the third interface and the signal processing unit are electrically connected; a first interface for collecting the gravity signal s of the transmission material measured by the first weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyA1i,sA2i,sA3i(ii) a A second interface for collecting the gravity signal s of the transmission material measured by the second weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyB1i,sB2i,sB3iWherein i is a positive integer; the third interface is used for receiving a transmission speed signal v sent by the speed measurement sensor; a signal processing unit for acquiring s within a preset first time under the control of the central control elementA1i,sB1iV, calculating a second calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively a first calibration coefficient and a zero value of the second loader; a signal processing unit for further processing the signal according to k under the control of the central control elementA2Pre-stored standard loading cumulative quantity M, pre-stored ith gravity signal s in MTiAnd s collected during the calibration periodA2i,sB2iV, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier, where nTIs a positive integer greater than 1; a signal processing unit for further processing the signal according to k under the control of the central control elementB2And s collected within a preset second timeA3i,sB3iV, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>]</mo> <mo></mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the first carrier. The device realizes that no weight loading mechanism or material loading mechanism is required to load at a designated position when the electronic belt scale is calibrated, and the device is not stopped when the electronic belt scale is calibrated, so that the production progress is ensured.
Further, as shown in fig. 3, in this embodiment, the calibration apparatus of the dual-carrier electronic belt scale further includes: standard chain code 7.
Wherein, standard chain sign indicating number 7 sets up on the belt of second loader 3 top, contacts with the belt and belt support frame fixed connection, and weighing instrument 5 still includes: and the memory chip is electrically connected with the central control element 54.
A second interface 52, further used for collecting the gravity signal s of the standard chain code 7 measured by the second weighing sensor 31 at equal time intervals in the initial calibration periodTi
Specifically, in the present embodiment, when the dual-carrier electronic belt scale device is first installed, the first carrier 21 and the second carrier 31 both have the initial calibration coefficient kAT,kBTThe initial calibration coefficient kAT,kBTThe calibration coefficients of the first carrier 2 and the second carrier 3 at the time of factory shipment are obtained.
Set up standard chain sign indicating number 7 on the belt of second loader 3 top, contact with the belt, the belt support frame sets up in the belt below, and is static relatively on ground, with standard chain sign indicating number 7 and belt support frame fixed connection, standard chain sign indicating number 7 can not be to the transmission of belt transmission forward, remains in second loader top all the time. The load cell 31 of the second carrier 3 measures the gravity signal s of the standard chain code 7 in the initial calibration periodTiA second interface 52 of the weighing instrument 5, for collecting the gravity signal s of the standard chain code measured by the second load cell 31 at equal time intervals in the initial calibration period under the control of the central control element 54Ti
In this embodiment, the initial calibration period is a calibration period when the calibration coefficient of the second carrier 3 is the initial calibration coefficient, and the time of the initial calibration period is the same as the time of the calibration period after the preset first time.
And the signal processing unit 55 is used for calculating the standard loading cumulant M according to the unit weight L of the standard chain code and the initial calibration periods T and v. Wherein,
M=L×v×T (18)
after the signal processing unit 55 calculates the standard load cumulative quantity M, the standard load cumulative quantity M and s are added under the control of the central control element 54TiStoring into a memory chip.
In this embodiment, after the calibration device of the dual-carrier electronic belt scale is installed, the standard loading cumulant M and s of the second carrier are obtained through the standard chain codeTiAnd storing the accumulated quantity M and s, and obtaining the standard loading accumulated quantity M and s of the second loader without loading the accumulated quantity at a specific position by a specific weight loading mechanism or a material loading mechanism in the calibration of the subsequent double-loader electronic belt scaleTiThe calibration device is simple, and only one time of storing the standard loading cumulant M and sTiThe calibration device has the advantages that multiple times of calibration work are carried out, so that the manufacturing cost of the calibration device is reduced, the maintenance amount of the calibration device of the double-loader electronic belt scale is reduced, and meanwhile, the efficiency of the calibration work is improved.
Further, as shown in fig. 3, in the calibration device of the dual-carrier electronic belt scale provided in this embodiment, the number of the first load cells 21 is at least two, and the number of the second load cells 31 is at least two.
Specifically, the number of the first load cells 21 is at least two, the number of the first interfaces 51 is equal to the number of the first load cells 21, the number of the second load cells 31 is at least two, and the number of the second interfaces 52 is equal to the number of the second load cells 31.
In this embodiment, in the calibration device of the dual-carrier electronic belt scale, the number of the first load cells 21 is at least two, and the number of the second load cells 31 is at least two, and when the signal processing unit 55 calculates each accumulated amount of the first carrier and each accumulated amount of the second carrier, the calculation is more accurate, so that the calculated calibration coefficients of the first carrier and the second carrier are more accurate.
Further, in the dual-carrier electronic belt scale provided by the embodiment, the standard chain weight 7 is fixedly connected with the belt supporting frame through a rope.
In this embodiment, the belt supporting bracket is disposed below the belt and is stationary relative to the ground, after the standard chain code 7 is fixedly connected to the belt supporting frame through a rope, when the standard chain code 7 is placed on the belt above the second carrier, in a state of belt transmission, the standard chain code 7 does not move forward along with the belt and is always kept above the second carrier, so that the signal processing unit 55 collects a gravity signal of the standard chain code of the second weighing sensor 31 of the second carrier 3, and the calculated cumulative amount is the standard loading cumulative amount of the second carrier 3.
In the embodiment, the standard chain code 7 is fixedly connected with the belt supporting frame through the rope, so that the standard chain code is more convenient to fix and is simple and feasible.
Fig. 4 is a flowchart of a first embodiment of a calibration method of the dual-carrier electronic belt scale of the present invention. As shown in fig. 4, the calibration method of the dual-carrier electronic belt scale in this embodiment includes:
101, the weighing instrument 5 collects gravity signals s of materials conveyed on a belt measured by a first weighing sensor 21 of a first loader 2 at equal time intervals in a preset first time through a first interface 51 and a second interface 52 respectivelyA1iThe gravity signal s of the material conveyed on the belt measured by the second load cell 31 of the second carrier 3B1iAnd receives the transmission speed signal v sent by the speed measuring sensor 4 through the third interface 53.
In this embodiment, the material 7 is continuously transported on the same belt 1 above the first carrier 2 and the second carrier 3, and in a preset first time, the weighing instrument 5, under the control of the central control element 54, acquires the gravity signal s of the material transported on the belt 1 measured by the first weighing sensor 21 of the first carrier 2 through the first interface 51 and the second interface 52 at equal time intervals respectivelyA1iThe gravity signal s of the material transmitted on the belt measured by the second weighing sensor of the second loaderB1i
The preset first time may be time required for the belt 1 to run for a full circle when the belt transmits a material, or time required for the belt to transmit a preset length, which is not limited in this embodiment.
In this embodiment, the gravity signal s of the material conveyed on the belt 1 measured by the first weighing sensor 21 is collected through the first interface 51A1iAnd the time interval of the second interface 52 is equal to the time interval of the second interface 52 for acquiring the gravity signal s of the material conveyed on the belt measured by the second weighing sensor 31B1iAre the same. The time interval may be 2s, 4s, etc., or other values, which is not limited in this embodiment.
In this embodiment, the collected gravity signal sA1iAnd sB1iCan be expressed by the following formula (1) and formula (2). Wherein, i is 1,2,31Is a positive integer
102, the signal processing unit 55 of the weighing instrument 5 collects s according to the preset first timeA1i,sB1iV, calculating a second calibration coefficient of the first loader 2 <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively, the first calibration coefficient and the zero value of the second loader.
In this embodiment, step 102 can be performed in the following three steps.
102a, the signal processing unit 55 of the weighing instrument 5 calibrates the first calibration factor k according to the first carrierA1And s collected within a predetermined first timeA1iV, calculating the first material cumulant M of the first carrier 2A1Wherein M isA1Can be represented by the formula (7).
Wherein, the first calibration coefficient k of the first loaderA1And the calibration coefficient of the first carrier when the first carrier conveys the materials in the belt at the preset first time is obtained.
102b, the signal processing unit 55 of the weighing instrument 5 calibrates the coefficient k according to the first calibration factor of the second carrierB1And s collected within a preset first timeB1iV, calculating the first material cumulant M of the second carrier 3B1Wherein M isB1Can be represented by the formula (8).
Wherein the first calibration factor k of the second carrier 3B1And the calibration coefficient of the second carrier when the second carrier conveys the materials in the belt at the preset first time is obtained.
102c, the signal processing unit 55 of the weighing instrument 5 accumulates the first material M according to the first material of the first carrierA1And a first material accumulation M of the second carrierB1Calculating a second calibration coefficient k of the first carrierA2. Wherein k isA2Can be represented by the formula (9).
103, the weighing instrument 5 collects the gravity signal s of the material conveyed on the belt measured by the first weighing sensor 21 of the first loader 2 at equal time intervals in the calibration period through the first interface 51 and the second interface 52A2iThe gravity signal s of the material conveyed on the belt measured by the second load cell 31 of the second carrier 3B2i
In this embodiment, the material 7 is continuously transported on the same belt 1 above the first carrier 2 and the second carrier 3, and the weighing meter 5, under the control of the central control element 54, collects the gravity signal s of the material transported on the belt measured by the first load cell 21 of the first carrier 2 at equal time intervals through the first interface 51 and the second interface 52 in a calibration period after a preset first timeA2iThe gravity signal s of the material conveyed on the belt measured by the second load cell 31 of the second carrier 3B2i
Wherein the calibration period may be an integer multiple of the time required for the belt 1 to run for one full turn. The gravity signal s of the material conveyed on the belt 1 measured by the first weighing sensor 21 is collected through the first interface 51A2iAnd the time interval of the second interface 52 is equal to the time interval of the second interface 52 for acquiring the gravity signal s of the material conveyed on the belt measured by the second weighing sensor 31B2iAre the same. The time interval may be 2s, 4s, etc., or other values, which is not limited in this embodiment.
In this embodiment, the collected gravity signal sA2iAnd sB2iCan representIs shown in formula (3) and formula (4).
Step 104, the information calculating unit 55 of the weighing instrument 5 calculates kA2Pre-stored standard loading cumulative quantity M, pre-stored ith gravity signal s in MTiAnd s collected during the calibration periodA2i,sB2iV, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier 3, where nTIs a positive integer greater than 1.
In this embodiment, step 104 can be performed in the following three steps.
104a, the signal processing unit 55 of the weighing instrument 5 calibrates the coefficient k according to the first carrierA2And s collected during the calibration periodA2iV, calculating the cumulative quantity M of the second material of the first carrier 2A2Wherein M isA2Can be expressed as shown in formula (10).
Wherein, the second calibration coefficient k of the first loaderA2The calibration coefficient of the first loader is adjusted by taking the second loader as a reference.
Step 104b, the signal processing unit 55 of the weighing instrument 5 loads the gravity signal s of the accumulated amount M according to the pre-stored standardTiFirst calibration factor k of the second carrierB1And s collected during the calibration periodB2iV, calculating the second material standard loading cumulant M of the second loaderB2. Wherein M isB2Can be expressed as shown in (11).
In this embodiment, the second material standard loading cumulative amount MB2Which represents the cumulative total amount of material and standard load collected from the second load cell 31 during a calibration period after a predetermined first time.
104c, the signal processing unit 55 of the weighing instrument 5 according to the accumulated amount of the second material of the first carrier, the standard loading accumulated amount of the second material of the second carrier, the pre-stored standard loading accumulated amount M and the first loading accumulated amount of the second carrierCalibration factor kB1Calculating a second calibration coefficient k of the second carrierB2To complete calibration of the second carrier. Wherein k isB2Can be represented by formula (13).
105, the weighing instrument 5 collects the gravity signal s of the material transmitted on the belt measured by the first weighing sensor of the first loader at equal time intervals in a preset second time through the first interface 51 and the second interface 52A3iThe gravity signal s of the material transmitted on the belt measured by the second weighing sensor of the second loaderB3i
In this embodiment, the material 7 is continuously transported on the same belt 1 above the first carrier 2 and the second carrier 3, and the weighing meter 5 collects the gravity signal s of the material transported on the belt measured by the first load cell 21 of the first carrier 2 at equal time intervals through the first interface 51 and the second interface 52 under the control of the central control element 54 within a preset second time period after the calibration periodA2iThe gravity signal s of the material conveyed on the belt measured by the second load cell 31 of the second carrier 3B2i
The preset second time may be a time required for the belt 1 to run for a full circle when the belt transmits the material, or a time required for the belt to transmit a preset length, which is not limited in this embodiment.
In this embodiment, the gravity signal s of the material conveyed on the belt 1 measured by the first weighing sensor 21 is collected through the first interface 51A3iAnd the time interval of the second interface 52 is equal to the time interval of the second interface 52 for acquiring the gravity signal s of the material conveyed on the belt measured by the second weighing sensor 31B3iAre the same. The time interval may be 2s, 4s, etc., or other values, which is not limited in this embodiment.
In this embodiment, the collected gravity signal sA3iAnd sB3iCan be expressed by the following formulas (5) and (6).
Step 106, the signal processing unit 55 of the weighing instrument 5 is based on kB2And collected during a predetermined second timeV, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the first carrier.
In this embodiment, step 106 can be performed in the following three steps.
106a, the signal processing unit 55 of the weighing instrument 5 calibrates the coefficient k according to the first carrierA2And s collected during a predetermined second timeA3iV, calculating the third material cumulant M of the first carrier 2A3Wherein M isA3Can be expressed as shown in formula (14).
106b, the signal processing unit 55 of the weighing instrument 5 calibrates the coefficient k according to the second carrierB2And s collected within a preset second timeB3iV, calculating the third material cumulant M of the second carrier 3B3Wherein M isB3Can be represented by the formula (15).
Wherein the second calibration factor k of the second carrier 3B2And the calibration coefficient of the second loader during the belt conveying of the materials in the preset second time is obtained.
106c, the signal processing unit 55 of the weighing instrument 5 accumulates the third material accumulation amount M according to the first carrierA3And a third material accumulation amount M of the second carrierB3Calculating a third calibration coefficient k of the first carrierA3。kA3Can be expressed as shown in formula (16).
The calibration method of the dual-carrier electronic belt scale provided by the embodiment is a calibration method based on the calibration device of the dual-carrier electronic belt scale, and the implementation principle and the technical effect are similar, and are not repeated here.
Further, in the calibration method of the dual-carrier electronic belt scale provided in this embodiment, the storing the standard loading cumulative quantity M in step 104 specifically includes:
first, the weighing instrument 5 is initially calibrated via the second interface 52Collecting the gravity signal s of the standard chain code measured by the second weighing sensor at equal time intervals in a fixed periodTi. Wherein s isTiCan be represented by the formula (12).
In this embodiment, the initial calibration period is a calibration period under an initial calibration coefficient of the second carrier when the calibration device of the dual-carrier electronic belt scale is installed. The initial calibration period is the same as the subsequent calibration period after the preset first time.
The signal processing unit 55 of the weighing apparatus 5 then calculates the nominal loading cumulative quantity M during the initial calibration period of the second carrier under the control of the central control unit 54.
Specifically, in the present embodiment, the signal processing unit 55 of the weighing instrument 5 calculates the standard loading cumulative quantity M in the initial calibration period according to the unit weight of the standard chain code, the initial calibration period T, ν. Wherein M is represented by formula (18).
Wherein, L represents the unit weight of the standard chain code, the unit is kg/m, T represents the initial calibration period, and v represents the transmission speed signal sent by the speed measurement sensor.
Finally, the weighing instrument stores the standard loading cumulant M and s through a storage chipTi
Further, in this embodiment, the gravity signal s of the transported material measured by the first weighing sensorA1i,sA2i,sA3iRespectively the average value of corresponding gravity signals measured by at least two first weighing sensors and the gravity signal s of the conveyed material measured by a second weighing sensorB1i,sB2i,sB3iAnd gravity signal s of standard chain codeTiRespectively, the average value of the respective gravity signals measured by the at least two second load cells.
In this embodiment, the number of the first load cells 21 is at least two, the number of the second load cells 31 is at least two, and the gravity signal s of the transported material measured by the first load cell 21 isA1i,sA2i,sA3iWhen s isA1iAverage value, s, of the gravity signals measured by the at least two first weighing sensors 21 collected by the signal processing unit 55 at equal time intervals within a preset first timeA2iIs the average value, s, of the gravity signals measured by the at least two first weighing sensors 21 collected by the signal processing unit 55 at equal time intervals in the calibration periodA3iThe average value of the gravity signals measured by the at least two first weighing sensors collected at equal time intervals in the preset second time is obtained.
In the present embodiment, the gravity signal s of the conveyed material measured by the second load cell 31B1i
sB2i,sB3iAnd sTiWhen s isB1iAverage value, s, of the gravity signals measured by the at least two second load cells 31 collected by the signal processing unit 55 at equal time intervals within a preset first timeB2iAverage value, s, of the gravity signals measured by the at least two second load cells 31 acquired by the signal processing unit 55 at equal time intervals within the calibration periodB3iAverage value, s, of gravity signals measured by at least two second weighing sensors collected at equal time intervals within a preset second timeTiThe average value of the gravity signals measured by the at least two second weighing sensors collected at equal time intervals in the initial calibration period is obtained.
In this embodiment, the gravity signal s of the transmission material measured by the first weighing sensorA1i,sA2i,sA3iIs the average value of at least two first weighing sensors and the gravity signal s of the conveyed material measured by a second weighing sensorA1i,sA2i,sA3iRespectively, the average values of the at least two second load cells. When the signal processing unit 55 calculates each accumulated amount of the first carrier and each accumulated amount of the second carrier, the calculation is more accurate, so that the calculated calibration coefficients of the first carrier and the second carrier are more accurate.
Finally, it should be noted that: the above embodiments are only used to illustrate the technical solution of the present invention, and not to limit the same; while the invention has been described in detail and with reference to the foregoing embodiments, it will be understood by those skilled in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some or all of the technical features may be equivalently replaced; and the modifications or the substitutions do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention.

Claims (7)

1. The utility model provides a calibration device of two loader electronic belt weighers which characterized in that includes: the device comprises a belt for conveying materials, a first loader, a second loader, a speed measuring sensor for measuring the conveying speed of the belt and a weighing instrument;
the first loader and the second loader are sequentially arranged below the belt along the material conveying direction;
the first loader comprises a first weighing sensor for measuring the gravity above the belt, the second loader comprises a second weighing sensor for measuring the gravity above the belt, and the weighing instrument is electrically connected with the first weighing sensor, the second weighing sensor and the speed measuring sensor respectively;
wherein the weighing instrument comprises: the central control element is electrically connected with the first interface, the second interface, the third interface and the signal processing unit respectively;
the first interface is used for collecting the gravity signal s of the transmission material measured by the first weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyA1i,sA2i,sA3i
The second interface is used for collecting the gravity signal s of the transmission material measured by the second weighing sensor at equal time intervals in a preset first time, a calibration period and a preset second time respectivelyB1i,sB2i,sB3iWherein i is a positive integer;
the third interface is used for receiving a transmission speed signal v sent by the speed measurement sensor;
the signal processing unit is used for acquiring the s within a preset first time under the control of the central control elementA1iS of said sB1iAnd v, calculating a second calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively a first calibration coefficient and a zero value of the second loader;
the signal processing unit is also used for controlling a central control element according to the kA2A pre-stored standard loading cumulative quantity M, a pre-stored ith gravity signal s in the MTiAnd said s collected during a calibration periodA2iS of said sB2iAnd v, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier, wherein nTIs a positive integer greater than 1;
the signal processing unit is also used for controlling the central control elementAccording to said kB2And s is collected within a preset second timeA3i,sB3iAnd v, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete calibration of the first carrier.
2. The apparatus of claim 1, further comprising: standard chain sign indicating number, standard chain sign indicating number set up in on the belt of second loader top, with the belt contact and with belt support frame fixed connection, the weighing instrument still includes: the memory chip is electrically connected with the central control element;
the second interface is further used for collecting the gravity signal s of the standard chain code measured by the second weighing sensor at equal time intervals in an initial calibration periodTi
The signal processing unit is further used for calculating a standard loading accumulated quantity M-L x v x T of the second loader in an initial calibration period under the control of the central control element, wherein L represents the unit weight of the standard chain code, and T represents the initial calibration period;
the memory chip is used for storing the M and the sTi
3. The apparatus of claim 2, wherein the first load cells are at least two in number and the second load cells are at least two in number.
4. The apparatus of claim 3, further comprising: the standard chain code is fixedly connected with the belt supporting frame through a rope.
5. A calibration method of a double-loader electronic belt scale is characterized by comprising the following steps:
the weighing instrument respectively collects gravity signals s of materials transmitted on a belt and measured by a first weighing sensor of a first loader at equal time intervals in preset first time through a first interface and a second interfaceA1iSecond load cell of a second carrierGravity signal s of materialB1iReceiving a transmission speed signal v sent by a speed measuring sensor through a third interface, wherein i is a positive integer;
the signal processing unit of the weighing instrument collects s within a preset first timeA1iS of said sB1iAnd v, calculating a second calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> Wherein n is1Is a positive integer greater than 1, kA1,UA0Respectively, the first calibration coefficient, the zero value, k of the first loaderB1,UB0Respectively a first calibration coefficient and a zero value of the second loader;
the weighing instrument collects the gravity signal s of the material transmitted on the belt measured by the first weighing sensor of the first loader at equal time intervals in the calibration period through the first interface and the second interfaceA2iThe gravity signal s of the material transmitted on the belt measured by the second weighing sensor of the second loaderB2i
The information calculation unit of the weighing instrument is based on the kA2A pre-stored standard loading cumulative quantity M, a pre-stored ith gravity signal s in the MTiAnd said s collected during a calibration periodA2iS of said sB2iAnd v, calculating a second calibration coefficient of the second loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mi>M</mi> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>s</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>)</mo> <mo>-</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>T</mi> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete the calibration of the second carrier, wherein nTIs a positive integer greater than 1;
the weighing instrument collects the gravity signal s of the material transmitted on the belt measured by the first weighing sensor of the first loader at equal time intervals in preset second time through the first interface and the second interfaceA3iThe gravity signal s of the material transmitted on the belt measured by the second weighing sensor of the second loaderB3i
The signal processing unit of the weighing instrument is based on the kB2And s is collected within a preset second timeA3i,sB3iAnd v, calculating a third calibration coefficient of the first loader <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>B</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>B</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>/</mo> <mo>{</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mn>3</mn> </msub> </msubsup> <mo>&lsqb;</mo> <msub> <mi>k</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>A</mi> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>A</mi> <mn>0</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>v</mi> <mo>&rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </math> To complete calibration of the first carrier.
6. The method according to claim 5, wherein storing the standard load cumulative amount M specifically comprises:
the weighing instrument collects the gravity signal s of the standard chain code measured by the second weighing sensor at equal time intervals in the initial calibration period through the second interfaceTi
The signal processing unit of the weighing instrument calculates the standard loading cumulant M of the second loader in an initial calibration period, wherein L represents the unit weight of the standard chain code, and T represents the initial calibration period;
the weighing instrument stores the standard loading cumulant M and the standard loading cumulant s through a storage chipTi
7. Method according to claim 6, characterized in that the first load cell measures the gravity signal s of the transported materialA1i,sA2i,sA3iRespectively, the average value of corresponding gravity signals measured by at least two first weighing sensors and the gravity signal s of the conveyed material measured by the second weighing sensorB1i,sB2i,sB3iAnd gravity signal s of standard chain codeTiRespectively, the average value of the respective gravity signals measured by the at least two second load cells.
CN201510347657.XA 2015-06-19 2015-06-19 The caliberating device and method of double carrier belted electronic balances Active CN104880242B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510347657.XA CN104880242B (en) 2015-06-19 2015-06-19 The caliberating device and method of double carrier belted electronic balances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510347657.XA CN104880242B (en) 2015-06-19 2015-06-19 The caliberating device and method of double carrier belted electronic balances

Publications (2)

Publication Number Publication Date
CN104880242A true CN104880242A (en) 2015-09-02
CN104880242B CN104880242B (en) 2017-07-28

Family

ID=53947825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510347657.XA Active CN104880242B (en) 2015-06-19 2015-06-19 The caliberating device and method of double carrier belted electronic balances

Country Status (1)

Country Link
CN (1) CN104880242B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060083A (en) * 2018-08-23 2018-12-21 南京林业大学 A kind of double measuring belt scales
CN109945963A (en) * 2019-03-19 2019-06-28 四川大学 The parallel sensor weighing system scaling method in place not influenced by installation randomness
CN111412973A (en) * 2019-01-04 2020-07-14 致伸科技股份有限公司 Electronic scale with correction function and correction method applied to electronic scale

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864852A2 (en) * 1997-03-11 1998-09-16 Mettler-Toledo GmbH Electronic balance
CN101206136A (en) * 2007-12-06 2008-06-25 云南昆船电子设备有限公司 Weighing method of electronic belt conveyor scale capable of checking automatically
CN201993154U (en) * 2010-11-17 2011-09-28 营口大和制衡产业有限公司 Self-checking electronic belt conveyor scale
CN102980645A (en) * 2012-11-06 2013-03-20 昆明理工大学 Calibration device of electronic belt scale
CN204944658U (en) * 2015-06-19 2016-01-06 北京市煤炭矿用机电设备技术开发有限公司 The caliberating device of two carrier belted electronic balance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864852A2 (en) * 1997-03-11 1998-09-16 Mettler-Toledo GmbH Electronic balance
CN101206136A (en) * 2007-12-06 2008-06-25 云南昆船电子设备有限公司 Weighing method of electronic belt conveyor scale capable of checking automatically
CN201993154U (en) * 2010-11-17 2011-09-28 营口大和制衡产业有限公司 Self-checking electronic belt conveyor scale
CN102980645A (en) * 2012-11-06 2013-03-20 昆明理工大学 Calibration device of electronic belt scale
CN204944658U (en) * 2015-06-19 2016-01-06 北京市煤炭矿用机电设备技术开发有限公司 The caliberating device of two carrier belted electronic balance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060083A (en) * 2018-08-23 2018-12-21 南京林业大学 A kind of double measuring belt scales
CN111412973A (en) * 2019-01-04 2020-07-14 致伸科技股份有限公司 Electronic scale with correction function and correction method applied to electronic scale
CN109945963A (en) * 2019-03-19 2019-06-28 四川大学 The parallel sensor weighing system scaling method in place not influenced by installation randomness

Also Published As

Publication number Publication date
CN104880242B (en) 2017-07-28

Similar Documents

Publication Publication Date Title
RU2549208C2 (en) High-precision belt weighing device
CN203100842U (en) Velocity deviation verification device for electronic belt scale for tobacco
CN104121970B (en) A kind of signal processing method of belted electronic balance
CN104880242B (en) The caliberating device and method of double carrier belted electronic balances
CN107678274A (en) Frequency converter and its dosing control method for belt conveyer scale
CN105466547A (en) Implementation method for electronic scale requiring no calibration
CN101464185A (en) Dynamic on-line calibration method and system for electronic belt scale
CN204944658U (en) The caliberating device of two carrier belted electronic balance
CN101655388A (en) Online calibration primary and secondary belt scale and method
CN201903388U (en) Weighing apparatus of belt feeder
CN107091677B (en) Error compensation method and belt scale based on error compensation
CN108151836A (en) A kind of high-precision suspension array belt weigher
CN201218748Y (en) Electronic belt conveyor scale capable of real-time compensation for belt tension change
CN104006873A (en) Belt scale counterweight-free calibration method
CN102980645A (en) Calibration device of electronic belt scale
CN202947793U (en) Electronic belt weigher skid detection apparatus based on PLC control
CN202048964U (en) Tilt angle compensation arrangement of belt scale
CN203053557U (en) Calibration device of electronic belt scale
CN206074113U (en) Bucket wheel machine coal blending weighs update the system
CN103528661A (en) Metering method using actual weight of belt as zeroing value
CN204963967U (en) Intelligent belt formula material monitoring devices that weighs
CN110319910B (en) Belt scale automatic code adding online checking method and checking system thereof
CN111307255A (en) Weighing method and system of belt scale
BR102019004807A2 (en) SYSTEM AND METHOD FOR MEASURING DYNAMIC TENSION AT ARBITRARY BELT POINTS ON A CARRIER
CN109556699A (en) A kind of method of material impact active force suffered by determining stylobate formula weighing belt

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant