CN104851787A - 一种提高金属电极与石墨烯欧姆接触的方法 - Google Patents

一种提高金属电极与石墨烯欧姆接触的方法 Download PDF

Info

Publication number
CN104851787A
CN104851787A CN201510152563.7A CN201510152563A CN104851787A CN 104851787 A CN104851787 A CN 104851787A CN 201510152563 A CN201510152563 A CN 201510152563A CN 104851787 A CN104851787 A CN 104851787A
Authority
CN
China
Prior art keywords
graphene
metal
ohmic contact
metal electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510152563.7A
Other languages
English (en)
Inventor
陈志蓥
于广辉
张燕辉
隋妍萍
张浩然
张亚欠
葛晓明
徐伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201510152563.7A priority Critical patent/CN104851787A/zh
Publication of CN104851787A publication Critical patent/CN104851787A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers

Abstract

本发明涉及一种提高金属电极与石墨烯欧姆接触的方法,包括:(1)将CVD方法生长的带有金属衬底的石墨烯浸到金属离子溶液中进行修饰,静置后取出并吹干;(2)将修饰好的带有金属衬底的石墨烯采用湿法转移工艺转移到绝缘衬底上;(3)采用电子束蒸发在石墨烯表面形成金属电极。本发明在沉积金属之前采用化学手段对缺陷部分进行修饰,使被还原的金属纳米颗粒稳定地存在于石墨烯的边界或者缺陷部分,从而改进了金属电极和石墨烯之间的欧姆接触。

Description

一种提高金属电极与石墨烯欧姆接触的方法
技术领域
本发明属于石墨烯器件领域,特别涉及一种提高金属电极与石墨烯欧姆接触的方法。
背景技术
石墨烯是由单层碳原子紧密堆积成而微蜂窝状晶格结构,具有许多优异的性质。石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成大π键,π电子可以自由移动,赋予石墨烯优异的导电性。由于其突出的优势,石墨烯场效应晶体管在近年来发展迅速,加州大学洛杉矶分校在2010年实现了截止频率为300GHz的石墨烯晶体管。但石墨烯场效应管性能的进一步提升却受到了很大的阻碍,场效应管的接触电阻过大,这大大影响了器件性能的提升。因此如何提高金属电极与石墨烯的欧姆接触成为石墨烯器件研究的重点。
发明内容
本发明所要解决的技术问题是提供一种提高金属电极与石墨烯欧姆接触的方法,以减少金属电极与石墨烯的欧姆接触电阻。
本发明的一种提高金属电极与石墨烯欧姆接触的方法,包括:
(1)将CVD方法生长的带有金属衬底的石墨烯浸到金属离子溶液中进行修饰,静置后取出并吹干;
(2)将修饰好的带有金属衬底的石墨烯采用湿法转移工艺转移到绝缘衬底上;
(3)采用电子束蒸发等工艺在石墨烯表面形成金属电极。
所述步骤(1)中的浸没时间为0.1~600min。
所述步骤(1)中的金属离子溶液中的金属离子至少包括Ag离子、Pt离子、Au离子中的一种或几种。
所述步骤(1)中的金属衬底中的金属至少包括Fe、Co、Ni、Mo、Cu中的一种或几种。
所述步骤(2)中的湿法转移工艺包括:将有机胶层旋涂到带有金属衬底的石墨烯表面,并一起放到金属刻蚀剂中刻蚀金属衬底,然后将有机胶层和石墨烯的结合体转移到绝缘衬底上,再用有机试剂去除有机胶层。
所述步骤(3)中的电子束蒸发等工艺包括:在石墨烯薄膜上旋涂光刻胶,然后进行光刻并显影,采用电子束蒸发在样品表面沉积金属,最后剥离光刻胶及其上的金属。
有益效果
本发明首先利用在石墨烯薄膜的晶畴边界和缺陷处暴露的金属衬底对金属离子溶液中的金属离子进行还原,在石墨烯薄膜的晶畴边界和缺陷处生成金属纳米粒子,纳米颗粒具有很高的表面积,表面的原子处于高度活化状态,导致表面原子配位数不足和高表面能,从而使这些原子极易与其他原子以及石墨烯缺陷处的悬挂键相结合而稳定下来,从而对石墨烯薄膜实现选择性修饰,进而达到更好的修饰效果,而后通过传统的电子束蒸发等工艺在石墨烯表面形成金属电极,实现金属电极与石墨烯欧姆接触。本发明在沉积金属之前采用化学手段对缺陷部分进行修饰,使被还原的金属纳米颗粒稳定地存在于石墨烯的缺陷部分,从而提高金属电极和石墨烯的欧姆接触。
附图说明
图1为本发明的工艺流程图;
图2为本发明在金属和石墨烯衬底上实现掺杂的示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)将CVD方法生长的带有铜箔的石墨烯浸到氯铂酸中进行修饰,浸没时间为100min,静置后取出并吹干;
(2)将修饰好的带有铜箔的石墨烯采用湿法转移工艺转移到绝缘衬底上;
(3)采用电子束蒸发在石墨烯表面形成金属电极。
实施例2
(1)将CVD方法生长的带有铜衬底的石墨烯浸到氯铂酸中进行修饰,浸没时间为10min,静置后取出并吹干;
(2)将修饰好的带有铜箔的石墨烯采用湿法转移工艺转移到绝缘衬底上;
(3)采用电子束蒸发在石墨烯表面形成金属电极。
通过对该修饰后连续石墨烯薄膜直流测试发现,实施例中采用的这种方法实现的金属与石墨烯的欧姆接触电阻比一般金属与石墨烯的欧姆接触电阻降低50%左右,为实现高频率器件打下基础。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (4)

1.一种提高金属电极与石墨烯欧姆接触的方法,包括:
(1)将CVD方法生长的带有金属衬底的石墨烯浸到金属离子溶液中进行修饰,静置后取出并吹干;
(2)将修饰好的带有金属衬底的石墨烯采用湿法转移工艺转移到绝缘衬底上;
(3)采用电子束蒸发在石墨烯表面形成金属电极。
2.根据权利要求1所述的一种提高金属电极与石墨烯欧姆接触的方法,其特征在于:所述步骤(1)中的浸没时间为0.1~600min。
3.根据权利要求1所述的一种提高金属电极与石墨烯欧姆接触的方法,其特征在于:所述步骤(1)中的金属离子溶液中的金属离子至少包括Ag离子、Pt离子、Au离子中的一种或几种。
4.根据权利要求1所述的一种提高金属电极与石墨烯欧姆接触的方法,其特征在于:所述步骤(1)中的金属衬底中的金属至少包括Fe、Co、Ni、Mo、Cu中的一种或几种。
CN201510152563.7A 2015-04-01 2015-04-01 一种提高金属电极与石墨烯欧姆接触的方法 Pending CN104851787A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510152563.7A CN104851787A (zh) 2015-04-01 2015-04-01 一种提高金属电极与石墨烯欧姆接触的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510152563.7A CN104851787A (zh) 2015-04-01 2015-04-01 一种提高金属电极与石墨烯欧姆接触的方法

Publications (1)

Publication Number Publication Date
CN104851787A true CN104851787A (zh) 2015-08-19

Family

ID=53851344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510152563.7A Pending CN104851787A (zh) 2015-04-01 2015-04-01 一种提高金属电极与石墨烯欧姆接触的方法

Country Status (1)

Country Link
CN (1) CN104851787A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231273A (zh) * 2016-12-09 2018-06-29 北京有色金属研究总院 一种改善铜铝复合材料界面的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121891A1 (en) * 2009-09-24 2012-05-17 Sang Ouk Kim 3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof
CN102623310A (zh) * 2012-03-31 2012-08-01 中国科学院微电子研究所 一种制备金属与石墨烯欧姆接触的方法
CN103579310A (zh) * 2012-07-23 2014-02-12 三星电子株式会社 晶体管及其制造方法
CN103848416A (zh) * 2012-11-29 2014-06-11 中国科学院上海微系统与信息技术研究所 一种修饰石墨烯薄膜的方法
CN103943512A (zh) * 2014-05-07 2014-07-23 中国科学院上海微系统与信息技术研究所 一种降低石墨烯与电极接触电阻的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121891A1 (en) * 2009-09-24 2012-05-17 Sang Ouk Kim 3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof
CN102623310A (zh) * 2012-03-31 2012-08-01 中国科学院微电子研究所 一种制备金属与石墨烯欧姆接触的方法
CN103579310A (zh) * 2012-07-23 2014-02-12 三星电子株式会社 晶体管及其制造方法
CN103848416A (zh) * 2012-11-29 2014-06-11 中国科学院上海微系统与信息技术研究所 一种修饰石墨烯薄膜的方法
CN103943512A (zh) * 2014-05-07 2014-07-23 中国科学院上海微系统与信息技术研究所 一种降低石墨烯与电极接触电阻的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231273A (zh) * 2016-12-09 2018-06-29 北京有色金属研究总院 一种改善铜铝复合材料界面的方法

Similar Documents

Publication Publication Date Title
Zhang et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes
Jin et al. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol–gel transition
Jiang et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes
Cao et al. Completely printed, flexible, stable, and hysteresis‐free carbon nanotube thin‐film transistors via aerosol jet printing
Kang et al. Organic field effect transistors based on graphene and hexagonal boron nitride heterostructures
Si et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors
Lee et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network
Bo et al. Green preparation of reduced graphene oxide for sensing and energy storage applications
TWI710065B (zh) 用於製造電晶體之方法
Yang et al. A High‐Performance Nitro‐Explosives Schottky Sensor Boosted by Interface Modulation
Zhang et al. Wafer‐scale fabrication of ultrathin flexible electronic systems via capillary‐assisted electrochemical delamination
Lee et al. Solution‐Processable Carbon Nanotubes for Semiconducting Thin‐Film Transistor Devices
Kim et al. Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes
Jang et al. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer
Mattevi et al. Solution-processable organic dielectrics for graphene electronics
CN104465400B (zh) 无残留光学光刻胶石墨烯fet的制备及原位表征方法
Wang et al. Graphene/metal contacts: bistable states and novel memory devices
KR101402989B1 (ko) 기판과의 결합력이 향상된 탄소나노튜브 기반 전계효과트랜지스터 소자의 제조방법 및 이에 의하여 제조된 탄소나노튜브 기반 전계효과트랜지스터 소자
CN102354668A (zh) 一种碳基纳米材料晶体管的制备方法
Basu et al. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene
Lee et al. Toward near-bulk resistivity of Cu for next-generation nano-interconnects: Graphene-coated Cu
Wang et al. High‐Performance partially aligned semiconductive single‐walled carbon nanotube transistors achieved with a parallel technique
CN105810587B (zh) N型薄膜晶体管的制备方法
Yun et al. Simultaneous increases in electrical conductivity and work function of ionic liquid treated PEDOT: PSS: In-depth investigation and thermoelectric application
CN102593006B (zh) 一种减小金属与碳基材料的接触电阻的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150819