CN104844657A - 一种锰金属聚合物及其制备方法和应用 - Google Patents

一种锰金属聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN104844657A
CN104844657A CN201510166107.8A CN201510166107A CN104844657A CN 104844657 A CN104844657 A CN 104844657A CN 201510166107 A CN201510166107 A CN 201510166107A CN 104844657 A CN104844657 A CN 104844657A
Authority
CN
China
Prior art keywords
manganese metal
containing polymer
pbtrz
polymer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510166107.8A
Other languages
English (en)
Other versions
CN104844657B (zh
Inventor
闫娟枝
卢丽萍
朱苗力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201510166107.8A priority Critical patent/CN104844657B/zh
Publication of CN104844657A publication Critical patent/CN104844657A/zh
Application granted granted Critical
Publication of CN104844657B publication Critical patent/CN104844657B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • C07F13/005Compounds without a metal-carbon linkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明提供了一种锰金属聚合物及其制备方法和应用,聚合物的分子式:[Mn2(pbtrz)(btc)(H2O)3]n·4nH2O(1)或[Mn(pbtrz)]n·nOAc·nOH(2),其中pbtrz为1,3-二(1H-1,2,4-三唑)-丙烷。聚合物(1)通过常温溶液法制备得到,聚合物(2)通过溶剂热反应得到,产率分别为44%,56.3%。聚合物(1)为二维层状结构,金属离子之间为弱反铁磁相互作用,J=–0.696(6)cm-1,可作分子磁性材料。聚合物(2)为含有16.3%孔隙率的三维孔洞配合物,替换孔洞内的CH3COO和OH离子,孔隙率可达49.2%,热稳定性好,可作多孔材料。

Description

一种锰金属聚合物及其制备方法和应用
技术领域
本发明涉及锰金属聚合物,具体涉及基于有机体1,3-二(1H-1,2,4三唑)-丙烷构筑的锰金属聚合物及其制备方法和应用。
背景技术
在材料科学领域,具有特殊的磁学性质、吸附气体小分子等的新型分子材料发展异常迅猛。在磁性分子材料方面,分子基磁体、单分子磁体和自旋转换配合物在信息存储与转换等方面有很大的潜在应用价值,而且非常适合用作航天材料、微波吸收材料、光磁开关材料、电磁屏蔽材料、磁记录材料和生物兼容材料等。反铁磁材料虽然没有宏观磁性,但由于随着温度或磁场会发生磁相转变,如反铁磁-铁磁或反铁磁-亚铁磁,而且这种转变往往是一级相变,会涉及热动力学问题,会伴随着许多奇异的性能,如金属绝缘体转变,巨磁电阻,磁制冷或自旋玻璃等;而且能与别的铁磁或亚铁磁材料耦合做成多层膜或超晶格,用途非常广阔。2007年的诺贝尔物理学奖颁给了首次发现巨磁电阻效应的费尔和格林贝格尔,他们所发现的巨磁电阻效应就是反铁磁和铁磁的多层膜,现在已广泛用在了电脑硬盘上,这点是反铁磁应用的一个最典型的例子。配位聚合物中的孔洞是另一个有诱人前景的性质,其孔洞存在于金属-配体的骨架内,而溶剂或其它的分子像自由配体或抗衡离子填充在孔洞中,原则上讲去掉这些分子,主体骨架不会有变化,对于抗衡离子,它可以同其他带相应电荷的物系或者通过质子化/脱质子使主体骨架的电荷或氧化态发生变化进行交换。具有纳米级孔洞的聚合物具有除了具有和无机沸石相同的潜在应用如分离、吸附和异相催化外,还具有无机沸石不具有的新颖的化学和物理性质,像手性识别、氧化还原的活性和自发的极性形成等,而且被有机成分包围的孔洞或隧道的形状、大小和功能可以通过有机配体的变化来进行相应的调整。正因如此,采用结构化学和物理化学等研究手段去组装新的聚合物,寻找新的结构并研究其功能也成为当今化学研究领域的重要内容。
发明内容
本发明的目的正是基于上述研究现状,提供一种锰金属聚合物及其制备方法,这种锰金属聚合物可以作为反铁磁性材料或作为多孔材料。
本发明提供的一种锰金属聚合物(1),分子式为:[Mn2(pbtrz)(btc)(H2O)3]n·4nH2O其中pbtrz为1,3-二(1H-1,2,4-三唑)-丙烷。该聚合物结晶于三斜晶系P–1空间群,包含两种配位环境的锰离子,均是六配位八面体构型MnNO5,每对八面体构型Mn1NO5和Mn2NO5通过一个水上的O7和两个羧基上的-OCO桥联模式形成了占据拐角的次级单元(SBU),Mn1···Mn2相距键Mn1–O7–Mn2是109.2(1)°,而相邻的羧基连接的Mn2,Mn2A(对称代码A:x–1,y,z)两者距离为更进一步来说,二聚体构成的次级单元通过两个pbtrz采用gauche-gauche模式形成了四聚物的笼子,笼子里的四个Mn2+离子呈现平形四边形构型,边长Mn2···Mn2B为另一边Mn1···Mn2B为(对称代码B:–x,–y+1,–z+1)。这些笼子利用苯四羧酸间位或和对位的羧基相连在a轴和b轴上形成二维椅式结构。X射线粉末衍射证实晶体样品均一稳定。在1000Oe外磁场下通过拟合变温磁化率实验数据得出双核锰离子间存在反铁磁相互作用,J=–0.696(6)cm-1
所述的锰金属聚合物的制备方法,包括如下步骤:
(1)将摩尔比为60:20:1:2500:5100的pbtrz、MnCl2·6H2O、H4btc、甲醇和水混合,用三乙胺调节pH于6.0,其中H4btc为1,2,4,5-对苯四羧酸;
(2)室温下搅拌4小时,过滤,滤液静置至无色块状晶体充分析出,过滤收集产品。
本发明提供的另一种锰配位聚合物(2),分子式为:[Mn(pbtrz)]n·nOAc·nOH,其中pbtrz为1,3-二(1H-1,2,4-三唑)-丙烷。聚合物是三维带有通道金刚石网状结构,结晶于立方晶系Ia-3d空间群,包含一个Mn2+离子,采用稍微扭曲四面体构型MnN4,每个pbtrz分子以anti-gauche构型连接三个Mn2+离子,每个Mn2+离子被三个配体分子牵引着形成了立方结构,有趣的是空间围成了5.92×14.3和两种封闭的通道(计算时略去了配体上的氢原子),但是这些通道中充满了平衡电荷的阴离子OH和CH3COO,通过platon程序计算可以得到以每个晶胞体积为单位孔隙率占到16.3%,若替换这些反离子孔隙率可达49.2%。X射线粉末衍射证实晶体样品均一稳定。其热稳定性较好,在低于390℃结构仍保持稳定。具有多孔材料方面的潜在应用价值。
所述的锰金属聚合物的制备方法,包括如下步骤:
(1)将摩尔比为10:5:1:1860:130的Mn(CH3COO)2·4H2O、pbtrz、对氨基苯磺酸、甲醇和N,N-二甲基甲酰胺(DMF)混合于聚四氟乙烯管中,搅拌30分钟;
(2)将此聚四氟乙烯管密封于不锈钢反应釜中,在110-140℃下恒温加热3天,自然冷却至室温,管底和管壁上析出无色块状晶体,用DMF洗涤后真空泵抽干。
本发明的优点和有益效果:
本发明的锰配位化合物涉及常温常压常规化学合成和溶剂热合成,制备方法工艺简单,样品纯度高,收率高。热重分析表明聚合物(1),(2)的主结构在370℃,390℃以上发生分解,具有较高的热稳定性。本发明提供的锰聚合物是基于1,3-二(1H-1,2,4三唑)-丙烷配体构筑的,在1000Oe外磁场下通过变温磁化率实验数据得出这聚合物(1)中锰离子间存在弱铁磁相互作用,可以用作分子磁性材料,聚合物(2)是孔隙率为16.3%三维阳离子孔洞聚合物,孔洞内装有客体反离子CH3COO和OH离子(若替换这些反离子孔隙率可达49.2%),具有多孔材料方面的潜在应用价值。
附图说明
图1本发明锰金属聚合物(1)、(2)的晶体结构图(a)、(b)
图2本发明锰金属聚合物(1)、(2)在298K的X射线粉末衍射图(c)、(d)
图3本发明锰金属聚合物(1)、(2)的热重分析图(e)、(f)
图4本发明锰金属聚合物(1)在1000Oe外磁场作用下的变温磁化率曲线
具体实施方式
实施例1.将5mL MnCl2·4H2O(0.594g,3.0mmol)的甲醇溶液加入到10mL配体pbtrz(0.179g,1.0mmol)水溶液中,用三乙胺使H4btc(0.0127g,0.05mmol)溶于5mL水中加入上述溶液中并保持pH为6.0,在常温持续搅拌4小时,过滤去掉少量白色沉淀,滤液在室温下缓慢挥发。四个星期以后得到适合单晶衍射的无色块状晶体,产率44%。
元素分析结果:理论值:C 34.96;H 4.56;N 27.18,测试值:C 35.12;H 4.09;N 26.87%。
实施例2.与实施例1在配方及其比例方面一致,只是常温持续搅拌3小时,结果产率减小到37.8%。
实施例3.与实施例1在配方及其比例方面一致,只是常温持续搅拌5小时,结果产率减小到42.1%。
实施例4.将Mn(CH3COO)2·4H2O(0.245g,1.0mmol),pbtrz(0.090g,0.5mmol),对氨基苯磺酸(0.017g,0.1mmol)混合于8mL甲醇与1mLDMF中,置于23mL聚四氟乙烯管中,搅拌30分钟,将此聚四氟乙烯管密封于不锈钢反应釜中,在140℃下恒温加热3天,自然冷却至室温,管底和管壁上析出无色块状晶体,用DMF洗涤后真空泵抽干,产率56.3%。元素分析结果:理论值:C 34.96;H 4.56;N,27.18,测试值:C 35.12;H 4.09;N 26.87%。
实施例5.与实施例4在配方及其比例方面一致,只是条件略有变化:搅拌15分钟,密封于不锈钢反应釜中,在110℃下恒温加热3天,产率51.8%。
实施例6.与实施例4在配方及其比例方面一致,只是条件略有变化:搅拌20分钟,密封于不锈钢反应釜中,在110℃下恒温加热3天,产率52.1%。
实施例7.与实施例4在配方及其比例方面一致,只是条件略有变化:搅拌30分钟,密封于不锈钢反应釜中,在140℃下恒温加热4天,产率54.2%。
实施例8锰聚合物的表征与测定
锰金属聚合物的结构测定:
晶体结构测定采用北京同步辐射X射线衍射,使用MARCCD-165探测器储存环Kα射线为入射辐射,以扫描方式收集衍射点,经过最小二乘法修正得到晶胞参数,从差值Fourier电子密度图利用SHELXL-97直接法解得晶体结构,并经Lorentz和极化效应修正。C/O原子采用理论加氢详细的晶体测定数据见表1。晶体(1),(2)结构见图1中(a),(b)。
表1聚合物的晶体学数据
粉末衍射:
X-射线粉末衍射结果表明,锰聚合物(1),(2)晶体样品物相均一,实验衍射图谱与依据晶体结构模拟的粉末衍射图谱一致,分别见图2(c),(d)。
锰金属聚合物的热重分析:
热重分析结果表明锰聚合物(1)在370℃以上开始分解,说明聚合物具有较高的热稳定性;锰聚合物(2)在390℃以上开始分解,对比发现锰聚合物(2)的热稳定性较高,分别见图3(e),(f)。
锰金属聚合物材料的磁性质:
变温磁化率曲线如图4所示,从图中可以看出,锰聚合物(1),在室温时χmT值为9.65cm3·K·mol-1,高于两个独立未耦合Mn(II)离子的室温磁矩(8.75cm3·K·mol-1)。随着温度的降低,χmT值缓慢降低直到50K的8.5cm3K mol–1,然后突然快速下降到温度为2.0K时的χmT值为1.62cm3K mol–1,利用双核锰离子模型哈密顿算符H=-J(S1S2)对实验曲线进行拟合(拟合时考虑了分子间的相互作用,对分子场进行了近似校正),J=–0.696(6)cm-1,zJ’=0.006(1)cm-1,g=2.011,R=1.99×10–4。理论曲线和实验数据拟合非常吻合(图4),J为负值,表明Mn2+离子之间有反铁磁相互作用。此外,利用居里-外斯定律拟合χm -1-T(图4插图),可以得到C=10.0cm3·mol-1,θ=-10.17K,负θ值再次证明聚合物中二维链状锰离子间存在弱反铁磁相互作用。

Claims (9)

1.一种锰金属聚合物,其特征在于,聚合物的分子式为:[Mn2(pbtrz)(btc)(H2O)3]n·4nH2O,其中pbtrz为1,3-二(1H-1,2,4-三唑)-丙烷。
2.一种锰金属聚合物,其特征在于,聚合物的分子式为:[Mn(pbtrz)]n·nOAc·nOH,其中pbtrz为1,3-二(1H-1,2,4-三唑)-丙烷。
3.根据权利要求1所述的一种锰金属聚合物的制备方法,其特征在于,包括如下步骤:
(1)将摩尔比为60:20:1:2500:5100的pbtrz、MnCl2·6H2O、H4btc甲醇和水混合,用三乙胺调节pH为6.0,其中H4btc为1,2,4,5-对苯四羧酸;
(2)室温下搅拌3-5小时,过滤,滤液静置至无色块状晶体充分析出,过滤收集产品。
4.根据权利要求3所述的一种锰金属聚合物的制备方法,其特征在于,步骤(2)所述的室温下搅拌4小时。
5.根据权利要求2所述的一种锰金属聚合物的制备方法,其特征在于,包括如下步骤:
(1)将摩尔比为10:5:1:1860:130的Mn(CH3COO)2·4H2O、pbtrz、对氨基苯磺酸、甲醇和N,N-二甲基甲酰胺(DMF)混合于聚四氟乙烯管中,搅拌15-30分钟;
(2)将此聚四氟乙烯管密封于不锈钢反应釜中,在110-140℃下恒温加热3-4天,自然冷却至室温,管底和管壁上析出无色块状晶体,用DMF洗涤后真空泵抽干。
6.根据权利要求5所述的一种锰金属聚合物的制备方法,其特征在于,所述的步骤(1)中搅拌时间为30分钟。
7.根据权利要求5所述的一种锰金属聚合物的制备方法,其特征在于,所述的步骤(2)中恒温加热时间为3天。
8.如权利要求1所述的锰金属聚合物在分子磁性材料中的应用。
9.如权利要求2所述的锰金属聚合物在多孔材料中的应用。
CN201510166107.8A 2015-04-09 2015-04-09 一种锰金属聚合物及其制备方法和应用 Expired - Fee Related CN104844657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510166107.8A CN104844657B (zh) 2015-04-09 2015-04-09 一种锰金属聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510166107.8A CN104844657B (zh) 2015-04-09 2015-04-09 一种锰金属聚合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104844657A true CN104844657A (zh) 2015-08-19
CN104844657B CN104844657B (zh) 2018-04-03

Family

ID=53844688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510166107.8A Expired - Fee Related CN104844657B (zh) 2015-04-09 2015-04-09 一种锰金属聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104844657B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753797A (zh) * 2016-03-29 2016-07-13 广西师范大学 一种基于含硫三氮唑配体的高核锰簇合物及其制备方法
CN107892336A (zh) * 2017-12-20 2018-04-10 东南大学 一种氧化镍微球的制备方法
CN108641093A (zh) * 2018-04-17 2018-10-12 山西大学 一种单核锰配位聚合物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942580A (zh) * 2012-12-06 2013-02-27 洛阳师范学院 5-甲基间苯二甲酸锌配合物及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942580A (zh) * 2012-12-06 2013-02-27 洛阳师范学院 5-甲基间苯二甲酸锌配合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JU WANG等,: "A polythreading coordination array formed from 2D grid networks and 1D chains", 《CRYSTENGCOMM》 *
XIA ZHU等,: "Two independent, 1-D metal–organic nanotubes based on rings or helical chain units", 《JOURNAL OF COORDINATION CHEMISTRY》 *
孙鹏鹏: "双三氮唑柔性配体配位聚合物", 《苏州大学硕士论文》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753797A (zh) * 2016-03-29 2016-07-13 广西师范大学 一种基于含硫三氮唑配体的高核锰簇合物及其制备方法
CN105753797B (zh) * 2016-03-29 2018-07-06 广西师范大学 一种基于含硫三氮唑配体的高核锰簇合物及其制备方法
CN107892336A (zh) * 2017-12-20 2018-04-10 东南大学 一种氧化镍微球的制备方法
CN108641093A (zh) * 2018-04-17 2018-10-12 山西大学 一种单核锰配位聚合物及其制备方法
CN108641093B (zh) * 2018-04-17 2020-11-06 山西大学 一种单核锰配位聚合物及其制备方法

Also Published As

Publication number Publication date
CN104844657B (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
Ouellette et al. Hydrothermal synthesis, structural chemistry, and magnetic properties of materials of the MII/triazolate/anion family, where MII= Mn, Fe, and Ni
Song et al. Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2
Zhang et al. Coordination‐Cluster‐Based Molecular Magnetic Refrigerants
Shores et al. Cluster-expanded Prussian blue analogues
Sheikh et al. Phosphonate based high nuclearity magnetic cages
Wu et al. Unique chiral interpenetrating d–f heterometallic MOFs as luminescent sensors
Ouellette et al. Hydrothermal and structural chemistry of the zinc (II)-and cadmium (II)-1, 2, 4-triazolate systems
Wang et al. Synthesis and characterization of a porous magnetic diamond framework, Co3 (HCOO) 6, and its N2 sorption characteristic
Yao et al. Magnetic modulation and cation-exchange in a series of isostructural (4, 8)-connected metal–organic frameworks with butterfly-like [M4 (OH) 2 (RCO2) 8] building units
Chen et al. New metal–organic frameworks constructed from the 4-imidazole-carboxylate ligand: structural diversities, luminescence, and gas adsorption properties
Wei et al. Zeolite Ionic Crystals Assembled through Direct Incorporation of Polyoxometalate Clusters within 3D Metal− Organic Frameworks
Rao et al. Synthesis, structure, and the unusual magnetic properties of an amine-templated iron (II) sulfate possessing the Kagome lattice
Paul et al. Organically templated linear and layered iron sulfates
Shi et al. Several [Gd-M] Heterometal–Organic Frameworks with [Gdn] as Nodes: Tunable Structures and Magnetocaloric Effect
Peng et al. Series of highly stable lanthanide-organic frameworks constructed by a bifunctional linker: synthesis, crystal structures, and magnetic and luminescence properties
Savard et al. Two-dimensional networks of lanthanide cubane-shaped dumbbells
Park et al. Porous Metal− Organic Frameworks Based on Metal− Organic Polyhedra with Nanosized Cavities as Supramolecular Building Blocks: Two-Fold Interpenetrating Primitive Cubic Networks of [Cu6L8] 12+ Nanocages
Zhao et al. Tuning the subunits and topologies in cluster-based cobalt–organic frameworks by varying the reaction conditions
Kanoo et al. A Vanadium (VO2+) metal–organic framework: selective vapor adsorption, magnetic properties, and use as a precursor for a polyoxovanadate
Mahata et al. Solid State and Solution Mediated Multistep Sequential Transformations in Metal–Organic Coordination Networks
Zhao et al. Assembly of two 3D porous metal–organic frameworks based on 1, 2, 3-triazole-4, 5-dicarboxylate exhibiting novel coordination modes
Yang et al. Co [HO2C (CH2) 3NH (CH2PO3H) 2] 2: a new canted antiferromagnet
Wei et al. Tuning the topology from fcu to pcu: synthesis and magnetocaloric effect of metal–organic frameworks based on a hexanuclear Gd (III)-hydroxy cluster
CN104844657A (zh) 一种锰金属聚合物及其制备方法和应用
Xu et al. Counteranion modulated crystal growth and function of one-dimensional homochiral coordination polymers: morphology, structures, and magnetic properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180403

Termination date: 20210409