CN104833866A - 压力波法模型电缆空间电荷测试系统 - Google Patents
压力波法模型电缆空间电荷测试系统 Download PDFInfo
- Publication number
- CN104833866A CN104833866A CN201510216846.3A CN201510216846A CN104833866A CN 104833866 A CN104833866 A CN 104833866A CN 201510216846 A CN201510216846 A CN 201510216846A CN 104833866 A CN104833866 A CN 104833866A
- Authority
- CN
- China
- Prior art keywords
- model cable
- space charge
- pressure wave
- electric capacity
- link
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Relating To Insulation (AREA)
Abstract
本发明公开一种压力波法模型电缆空间电荷测试系统,保护电阻(16)、模型电缆(18)、电容(19)设置在金属屏蔽箱(20)内,直流发生器(11)、高压引线(12)、保护电阻(16)依次顺序连接,高压引线(12)穿过金属屏蔽箱(20)的箱壁;保护电阻(16)与模型电缆(18)的导体相连接;模型电缆(18)包括靠近保护电阻(16)的第一连接端和远离保护电阻(16)的第二连接端,模型电缆(18)的第一连接端连接电容(19);第二连接端接地;金属屏蔽箱(20)的箱壁上设置有光孔,脉冲激光器(21)的发射光能够通过光孔照射在模型电缆(18)上;本发明实现PWP法模型电缆空间电荷测试,信号较强,测试信号的真实可靠性,无温度局限性。
Description
技术领域
本发明属于模型电缆空间电荷测试技术领域,具体涉及用于模型电缆空间电荷测试的压力波法模型电缆空间电荷测试系统。
背景技术
在直流高电场下,直流电缆面临的主要问题是绝缘介质中或者界面上会积累一定的空间电荷,如果空间电荷密度足够高,局部电场甚至可能超过绝缘介质的击穿电场,导致介质破坏。空间电荷测试技术,包括电声脉冲(pulsed electro-acoustic,PEA)法、压力波(Pressure wave propagation, PWP)法等,有力地推动了空间电荷的研究。目前,用于空间电荷测试的电缆绝缘厚度为2~6 mm,称之为模型电缆,而模型电缆空间电荷测试通常使用的方法为PEA法。
在PEA法测试中,外加高压电脉冲不可能太高,因此测试信号较小。另外,为了获得较准确的电脉冲信号,需采用宽带的PVDF压电薄膜,但这种传感器的灵敏度不高。所以在一般情况下外加单个电脉冲得到的信号是难以进行分析的,通常需要外加数百至数千次电脉冲,然后对所测得的信号进行平均化处理才能得到空间电荷信号。同时,在模型电缆绝缘空间电荷测试过程中,由于信号衰减较大,还需利用软件对基本空间电荷信号进行数据处理,方可用于空间电荷研究。这样,在模型电缆空间电荷测试中,PEA法所测的数据存在一定的随机性,并存在一定的信号失真。另外,受限于PVDF膜的使用温度,在PEA法测试系统的测试温度一般在70℃以下,但是由于研究的需要,经常需要测试模型电缆绝缘在70℃以上的空间电荷性能。这样,在测试温度这一环节上,PEA法存在一定的局限。
发明内容
本发明提出了一种压力波法模型电缆空间电荷测试系统,实现PWP法模型电缆空间电荷测试,信号较强,测试信号的真实可靠性,无温度局限性。
本发明技术方案如下:
压力波法模型电缆空间电荷测试系统,包括直流发生器、高压引线、保护电阻、、模型电缆、电容、金属屏蔽箱、脉冲激光器、放大器、示波器和均压环。
保护电阻、模型电缆、电容设置在金属屏蔽箱内,直流发生器、高压引线相连接;高压引线与保护电阻之间,保护电阻与模型电缆、电容之间分别通过均压环连接,高压引线穿过金属屏蔽箱的箱壁。
模型电缆包括靠近保护电阻的第一连接端、中间段和远离保护电阻的第二连接端,所述第一连接端和第二连接端为剥离一定长度外半导电屏蔽层的模型电缆的两端。
模型电缆的第一连接端通过均压环连接电容,电容、放大器、示波器依次顺序连接;第二连接端连接均压环后空接。
金属屏蔽箱的箱壁上设置有光孔,光孔处设置脉冲激光器,脉冲激光器的发射光能够通过光孔照射在模型电缆的中间段上。
模型电缆的中间段通过金属夹具、导线连接接地。
模型电缆的内、外半导电屏蔽层厚度均为0.8~1.2mm;
绝缘厚度为2~6 mm;
第一连接端和第二连接端的剥离长度为300~400 mm。
电容通过金属屏蔽箱的箱壁上的BNC接头与放大器相连接。
高压引线与保护电阻之间,保护电阻与模型电缆、电容之间,第二连接端的空接处均设置有均压环。均压环可将高压均匀分布在组件周围,保证各连接点位置不存在放电现象。保护电阻为电阻值为200 MΩ~2 GΩ。保护电阻不但能保护放大器和示波器,还能去除直流发生器产生纹波电压对测试信号的干扰。
BNC接头通过双层屏蔽信号线与放大器相连接。
放大器与示波器通过信号线连接。
电容的耐压值150~200 kV,电容0.5~2 nF。电容将直流高压与二次设备(放大器和示波器)隔离,并较好地耦合空间电荷信号。
金属屏蔽箱将保护电阻、电容、模型电缆等进行屏蔽并阻止来自外界的电磁干扰信号。
与现有技术相比,本发明包括以下有益效果:
(1)提供了PWP法模型电缆空间电荷测试系统的具体构造;
(2)PWP法模型电缆空间电荷测试系统信号较强,解决了PEA法模型电缆空间电荷测试系统信号较弱及信噪比较低的问题;
(3)PWP法模型电缆空间电荷测试系统仅需测试一次即能得到稳定的空间电荷信号,解决了PEA法模型电缆空间电荷测试系统需重复几百次甚至上千次的测试而存在的随机性问题,保证了测试信号的真实可靠性;
(4)PWP法模型电缆空间电荷测试系统能用于70℃以上的空间电荷测试,解决了PEA法测试温度在70℃以下的局限性;
(5)利用金属屏蔽箱将电阻、电容、试样进行屏蔽,大大地降低了外界对测试系统的电磁干扰;
(6)高压引线导体串联一电阻,且电阻位于金属屏蔽箱箱壁处,降低了由高压引线引入的外部电磁干扰,提高了系统的信噪比。
附图说明
图1为本发明压力波法模型电缆空间电荷测试系统的结构示意图;
图2为模型电缆结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述。
如图1所示,压力波法模型电缆空间电荷测试系统,包括直流发生器11、高压引线12保护电阻16、模型电缆18、电容19、金属屏蔽箱20、脉冲激光器21、放大器22、示波器23和均压环30。
保护电阻16、模型电缆18、电容19设置在金属屏蔽箱20内,直流发生器11、高压引线12相连接;高压引线12与保护电阻16之间,保护电阻16与模型电缆18、电容19之间分别通过均压环30连接;高压引线12穿过所述金属屏蔽箱20的箱壁。
如图1和图2所示,模型电缆18包括靠近保护电阻16的第一连接端1801、中间段1802和远离保护电阻16的第二连接端1803,所述第一连接端1801和第二连接端1803为剥离一定长度外半导电屏蔽层的模型电缆18的两端。图2中,中间段1803包括外半导电屏蔽层(最外层)、绝缘层(中间层)和导线,第一连接端1801和第二连接端1803剥离了外半导电屏蔽层。
模型电缆1的第一连接端1801通过均压环连接电容19,电容19、放大器22、示波器23依次顺序连接;第二连接端1803连接均压环30后空接。
本实施例中一共包括三个均压环30,即高压引线12与保护电阻16之间,保护电阻16、第一连接端1802、电容19的三者连接点上,第二连接端1803的空接处分别设置一个均压环。
金属屏蔽箱20的箱壁上设置有光孔,光孔处设置脉冲激光器21,脉冲激光器21的发射光能够通过光孔照射在模型电缆18的中间段1802上。
模型电缆18的中间段1802通过金属夹具、导线连接接地。即金属夹具夹持在中间段1802上,金属夹具通过导线接地。
模型电缆18的内、外半导电屏蔽层厚度均为0.8~1.2mm;
绝缘厚度为2~6 mm;
第一连接端1801和第二连接端1803的剥离长度为300~400 mm。中间段1802长度为60~20 0mm。
电容19通过金属屏蔽箱20的箱壁上的BNC接头与放大器22相连接。
高压引线12与保护电阻16之间,保护电阻16与模型电缆18、电容19之间,第二连接端1803空接处均设置有均压环。本实施例中,保护电阻16与模型电缆18、保护电阻16与电容19、之间均设置有均压环,模型电缆18的第二连接端的尾端(空接端)设置均压环。附图1中圆圈表示均压环。保护电阻为电阻值为200 MΩ~2 GΩ。保护电阻16不但能保护放大器和示波器,还能去除直流发生器产生纹波电压对测试信号的干扰。
BNC接头通过双层屏蔽信号线与放大器22相连接。
放大器与示波器通过信号线连接。
电容19的耐压值150~200 kV,电容0.5~2 nF。电容19将直流高压与二次设备(放大器和示波器)隔离,并较好地耦合空间电荷信号。
金属屏蔽箱20将保护电阻、电容、模型电缆等进行屏蔽并阻止来自外界的电磁干扰信号。
具体地,本实施例中组件参数为:
(1)直流发生器,电压80~200,纹波系数≤0.5%,最大电流1~10 mA;
(2)高压引线,耐压值≥150 kV,外径10~15 mm;
(3)保护电阻,电阻200 MΩ~2 GΩ;
(4)模型电缆,内、外半导电屏蔽层厚度0.8~1.2,绝缘厚度2~6 mm,长度
650~900 mm,两端外半导电层剥离长度300~400 mm,余下外半导电层长
度6~20 mm;
(5)电容,耐压值150~200 kV,电容0.5~2 nF;
(6)金属屏蔽箱,材料为不锈钢或铝合金,箱厚2~4 mm,长1700~2000 mm,
宽700~900 mm,高700~1000 mm;
(7)脉冲激光器,波长1064 nm,脉宽5~8 ns,能量500~900 mJ;
(8)放大器,放大倍数40~60 dB,带宽40~200 MHz,输入阻抗50 Ω;
(9)示波器,带宽100~500 MHz,采样率1~5 GSa.s-1,输入阻抗50 Ω。
本领域内的技术人员可以对本发明进行改动或变型的设计但不脱离本发明的思想和范围。因此,如果本发明的这些修改和变型属于本发明权利要求及其等同的技术范围之内,则本发明也意图包含这些改动和变型在内。
Claims (8)
1.压力波法模型电缆空间电荷测试系统,其特征在于,包括直流发生器(11)、高压引线(12)、保护电阻(16)、模型电缆(18)、电容(19)、金属屏蔽箱(20)、脉冲激光器(21)、放大器(22)、示波器(23)和均压环(30);
所述保护电阻(16)、模型电缆(18)、电容(19)设置在金属屏蔽箱(20)内,直流发生器(11)、高压引线(12)相连接;高压引线(12)与保护电阻(16)之间,保护电阻(16)与模型电缆(18)、电容(19)之间分别通过均压环(30)连接;高压引线(12)穿过所述金属屏蔽箱(20)的箱壁;
所述模型电缆(18)包括靠近保护电阻(16)的第一连接端(1801)、中间段(1802)和远离保护电阻(16)的第二连接端(1803),所述第一连接端(1801)和第二连接端(1803)为剥离一定长度外半导电屏蔽层的模型电缆(18)的两端;
所述模型电缆(18)的第一连接端(1801)通过均压环连接电容(19),电容(19)、放大器(22)、示波器(23)依次顺序连接;所述第二连接端(1803)连接均压环(30)后空接;
所述金属屏蔽箱(20)的箱壁上设置有光孔,所述光孔处设置脉冲激光器(21),所述脉冲激光器(21)的发射光能够通过光孔照射在模型电缆(18)的中间段(1802)上。
2.根据权利要求1所述的压力波法模型电缆空间电荷测试系统,其特征在于,所述模型电缆(18)的中间段(1802)通过金属夹具、导线连接接地。
3.根据权利要求1所述的压力波法模型电缆空间电荷测试系统,其特征在于,
所述模型电缆(18)的内、外半导电屏蔽层厚度均为0.8~1.2mm
绝缘厚度为2~6 mm;
所述第一连接端(1801)和第二连接端(1803)的剥离长度为300~400 mm。
4.根据权利要求1所述的压力波法模型电缆空间电荷测试系统,其特征在于,
所述电容(19)通过金属屏蔽箱(20)的箱壁上的BNC接头与放大器(22)相连接。
5.根据权利要求1所述的压力波法模型电缆空间电荷测试系统,其特征在于,
保护电阻(16)为电阻值为200 MΩ~2 GΩ。
6.根据权利要求4所述的压力波法模型电缆空间电荷测试系统,其特征在于,
所述BNC接头通过双层屏蔽信号线与放大器22相连接。
7.根据权利要求1所述的压力波法模型电缆空间电荷测试系统,其特征在于,所述放大器(22)与示波器(23)通过信号线连接。
8.根据权利要求1所述的压力波法模型电缆空间电荷测试系统,其特征在于,电容(19)的耐压值150~200 kV,电容0.5~2 nF。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510216846.3A CN104833866B (zh) | 2015-04-30 | 2015-04-30 | 压力波法模型电缆空间电荷测试系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510216846.3A CN104833866B (zh) | 2015-04-30 | 2015-04-30 | 压力波法模型电缆空间电荷测试系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104833866A true CN104833866A (zh) | 2015-08-12 |
CN104833866B CN104833866B (zh) | 2017-09-12 |
Family
ID=53811874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510216846.3A Active CN104833866B (zh) | 2015-04-30 | 2015-04-30 | 压力波法模型电缆空间电荷测试系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104833866B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111175549A (zh) * | 2020-01-03 | 2020-05-19 | 同济大学 | 一种聚合物空间电荷分布测量用复合探头及其测量方法 |
CN113252742A (zh) * | 2021-03-09 | 2021-08-13 | 浙江新图维电子科技有限公司 | 基于分布式电容检测技术的封铅破损检测装置及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05307061A (ja) * | 1991-01-19 | 1993-11-19 | Furukawa Electric Co Ltd:The | 電力ケーブルおよびその付属品の劣化診断法 |
CN2413294Y (zh) * | 2000-01-11 | 2001-01-03 | 同济大学 | 一种空间电荷分布的测量装置 |
JP2004020489A (ja) * | 2002-06-19 | 2004-01-22 | Kansai Electric Power Co Inc:The | 圧力波印加装置 |
CN102654537A (zh) * | 2012-03-31 | 2012-09-05 | 西南大学 | 改进电声脉冲法的交直流空间电荷测量系统及方法 |
CN103605008A (zh) * | 2013-11-20 | 2014-02-26 | 上海电力学院 | 基于电声脉冲法的高压电缆空间电荷测量系统及方法 |
CN104569630A (zh) * | 2014-12-24 | 2015-04-29 | 上海交通大学 | 基于电声脉冲法的固-液通用型温控空间电荷测量装置 |
CN204694784U (zh) * | 2015-04-30 | 2015-10-07 | 南京南瑞集团公司 | 压力波法模型电缆空间电荷测试系统 |
-
2015
- 2015-04-30 CN CN201510216846.3A patent/CN104833866B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05307061A (ja) * | 1991-01-19 | 1993-11-19 | Furukawa Electric Co Ltd:The | 電力ケーブルおよびその付属品の劣化診断法 |
CN2413294Y (zh) * | 2000-01-11 | 2001-01-03 | 同济大学 | 一种空间电荷分布的测量装置 |
JP2004020489A (ja) * | 2002-06-19 | 2004-01-22 | Kansai Electric Power Co Inc:The | 圧力波印加装置 |
CN102654537A (zh) * | 2012-03-31 | 2012-09-05 | 西南大学 | 改进电声脉冲法的交直流空间电荷测量系统及方法 |
CN103605008A (zh) * | 2013-11-20 | 2014-02-26 | 上海电力学院 | 基于电声脉冲法的高压电缆空间电荷测量系统及方法 |
CN104569630A (zh) * | 2014-12-24 | 2015-04-29 | 上海交通大学 | 基于电声脉冲法的固-液通用型温控空间电荷测量装置 |
CN204694784U (zh) * | 2015-04-30 | 2015-10-07 | 南京南瑞集团公司 | 压力波法模型电缆空间电荷测试系统 |
Non-Patent Citations (1)
Title |
---|
郑飞虎等: "用于固体介质中空间电荷的压电压力波法与电声脉冲法", 《物理学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111175549A (zh) * | 2020-01-03 | 2020-05-19 | 同济大学 | 一种聚合物空间电荷分布测量用复合探头及其测量方法 |
CN111175549B (zh) * | 2020-01-03 | 2020-11-27 | 同济大学 | 一种聚合物空间电荷分布测量用复合探头及其测量方法 |
CN113252742A (zh) * | 2021-03-09 | 2021-08-13 | 浙江新图维电子科技有限公司 | 基于分布式电容检测技术的封铅破损检测装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104833866B (zh) | 2017-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105334433B (zh) | 电缆局部放电的检测方法及装置 | |
Okabe et al. | New aspects of UHF PD diagnostics on gas-insulated systems | |
CN104535902A (zh) | 局部放电脉冲检测系统 | |
CN109799434A (zh) | 局部放电模式识别系统及方法 | |
CN103926426A (zh) | 用于材料屏蔽效能测试的宽带连续导体同轴线夹具 | |
Wagenaars et al. | Measurement of transmission line parameters of three-core power cables with common earth screen | |
Mier et al. | Design and characterization of a magnetic loop antenna for partial discharge measurements in gas insulated substations | |
CN104833867B (zh) | 信号增强型压力波法模型电缆空间电荷测试系统 | |
CN104833865B (zh) | 防止电磁干扰的平板试样空间电荷分布测量装置及方法 | |
CN204694784U (zh) | 压力波法模型电缆空间电荷测试系统 | |
CN104833866A (zh) | 压力波法模型电缆空间电荷测试系统 | |
CN101387683A (zh) | 罐式断路器局部放电检测方法 | |
CN104833868B (zh) | 高信噪比压力波法模型电缆空间电荷测试系统 | |
CN204903662U (zh) | 信号增强型压力波法模型电缆空间电荷测试系统 | |
CN103713244A (zh) | 一种用于配电电缆局部放电的带电检测装置及方法 | |
CN204256113U (zh) | 局部放电脉冲检测系统 | |
Beyer et al. | A new method for detection and location of distributed partial discharges (cable faults) in high voltage cables under external interference | |
CN204882729U (zh) | 高信噪比压力波法模型电缆空间电荷测试系统 | |
CN103760393A (zh) | 卫星充放电效应放电脉冲的监测方法和监测系统 | |
CN103760590A (zh) | 纳秒脉冲气体放电下逃逸电子束流测量装置 | |
CN104034976B (zh) | 包含非线性负载的单根架空线路电磁脉冲响应检测方法 | |
Qi et al. | Partial discharge detection for GIS: A comparison between UHF and acoustic methods | |
Zhong et al. | Use of capacitive couplers for partial discharge measurements in power cables and joints | |
Chen et al. | A time-domain characterization method for UHF partial discharge sensors | |
Li et al. | Relationship between time-frequency representation of PD-induced UHF signal and PD current pulse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160711 Address after: Nan Shui Road Gulou District of Nanjing city of Jiangsu Province, No. 8 210003 Applicant after: Nanjing Nari Co., Ltd. Applicant after: State Grid Zhejiang Electric Power Company Address before: Nan Shui Road Gulou District of Nanjing city of Jiangsu Province, No. 8 210003 Applicant before: Nanjing Nari Co., Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |