CN104829853B - A kind of polyimide gas separating film and preparation method and application - Google Patents
A kind of polyimide gas separating film and preparation method and application Download PDFInfo
- Publication number
- CN104829853B CN104829853B CN201510249582.1A CN201510249582A CN104829853B CN 104829853 B CN104829853 B CN 104829853B CN 201510249582 A CN201510249582 A CN 201510249582A CN 104829853 B CN104829853 B CN 104829853B
- Authority
- CN
- China
- Prior art keywords
- bis
- separation membrane
- polyimide
- amino
- dimethylphenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001721 polyimide Polymers 0.000 title claims abstract description 120
- 239000004642 Polyimide Substances 0.000 title claims abstract description 76
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 238000000926 separation method Methods 0.000 claims abstract description 129
- 239000012528 membrane Substances 0.000 claims abstract description 105
- 239000007789 gas Substances 0.000 claims abstract description 65
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000009719 polyimide resin Substances 0.000 claims abstract description 44
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 40
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 20
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 18
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 17
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011737 fluorine Substances 0.000 claims abstract description 14
- 238000011084 recovery Methods 0.000 claims abstract description 13
- 239000002253 acid Substances 0.000 claims abstract description 3
- 239000003345 natural gas Substances 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 46
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 37
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 33
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 32
- 239000012456 homogeneous solution Substances 0.000 claims description 32
- 239000007787 solid Substances 0.000 claims description 32
- 239000011521 glass Substances 0.000 claims description 30
- 229910052757 nitrogen Inorganic materials 0.000 claims description 30
- 229910001220 stainless steel Inorganic materials 0.000 claims description 30
- 239000010935 stainless steel Substances 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 24
- 239000011347 resin Substances 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 22
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 19
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 18
- 150000008064 anhydrides Chemical class 0.000 claims description 18
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- 239000008096 xylene Substances 0.000 claims description 16
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 15
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 14
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 12
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 12
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 239000005977 Ethylene Substances 0.000 claims description 10
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 10
- 150000004984 aromatic diamines Chemical class 0.000 claims description 9
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 8
- -1 Triptyl dianhydride Chemical compound 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 6
- 239000012024 dehydrating agents Substances 0.000 claims description 6
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 3
- 125000003944 tolyl group Chemical group 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 230000001376 precipitating effect Effects 0.000 claims description 2
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 claims 2
- 150000001412 amines Chemical class 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 56
- 239000012043 crude product Substances 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 22
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 18
- 238000001914 filtration Methods 0.000 description 14
- 238000001291 vacuum drying Methods 0.000 description 13
- 239000012298 atmosphere Substances 0.000 description 12
- 230000009477 glass transition Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 125000006159 dianhydride group Chemical group 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 0 *C(c1cc(*)c(C2*CC2)c(*)c1)(c(cc1*)cc(*)c1N)c(cc1N)cc(I)c1N Chemical compound *C(c1cc(*)c(C2*CC2)c(*)c1)(c(cc1*)cc(*)c1N)c(cc1N)cc(I)c1N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- ZVDSMYGTJDFNHN-UHFFFAOYSA-N 2,4,6-trimethylbenzene-1,3-diamine Chemical compound CC1=CC(C)=C(N)C(C)=C1N ZVDSMYGTJDFNHN-UHFFFAOYSA-N 0.000 description 1
- ODUZJBKKYBQIBX-UHFFFAOYSA-N 2,6-difluoroaniline Chemical compound NC1=C(F)C=CC=C1F ODUZJBKKYBQIBX-UHFFFAOYSA-N 0.000 description 1
- HKADMMFLLPJEAG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-enylbenzene Chemical group FC(F)(F)C=CC1=CC=CC=C1 HKADMMFLLPJEAG-UHFFFAOYSA-N 0.000 description 1
- BEKFRNOZJSYWKZ-UHFFFAOYSA-N 4-[2-(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]aniline Chemical compound C1=CC(N)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(N)C=C1 BEKFRNOZJSYWKZ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- NGDCLPXRKSWRPY-UHFFFAOYSA-N Triptycene Chemical compound C12=CC=CC=C2C2C3=CC=CC=C3C1C1=CC=CC=C12 NGDCLPXRKSWRPY-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 1
- 125000001919 trimellityl group Chemical group C(=O)(O)C=1C=C(C(=O)*)C=CC1C(=O)O 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
本发明公开了一种聚酰亚胺气体分离膜及其制备方法与应用,该分离膜采用如式I所示具有含氟苯侧基结构的聚酰亚胺树脂制得。该聚酰亚胺气体分离膜兼具高渗透性和高选择性的特点,对CO2的渗透系数≥180barrer,对CO2/CH4的选择系数超过30,同时分离膜表现出优异的耐热性能和力学性能。这类气体分离膜在包括生物气中二氧化碳和甲烷的分离、天然气中二氧化碳等酸性气体的去除、油田三次采油中二氧化碳的回收等诸多涉及CO2分离与回收中具有重要的应用价值。
The invention discloses a polyimide gas separation membrane and its preparation method and application. The separation membrane is prepared by using a polyimide resin with a fluorine-containing benzene side group structure as shown in formula I. The polyimide gas separation membrane has the characteristics of high permeability and high selectivity, the permeability coefficient for CO 2 is ≥180 barrer, and the selectivity coefficient for CO 2 /CH 4 exceeds 30, and the separation membrane shows excellent heat resistance properties and mechanical properties. This type of gas separation membrane has important application value in the separation and recovery of CO 2 , including the separation of carbon dioxide and methane in biogas, the removal of acid gases such as carbon dioxide in natural gas, and the recovery of carbon dioxide in oilfield tertiary oil recovery.
Description
技术领域technical field
本发明涉及膜技术领域,具体的涉及一种高渗透性、高选择性聚酰亚胺气体分离膜及其制备方法与应用。The invention relates to the field of membrane technology, in particular to a high-permeability and high-selectivity polyimide gas separation membrane and its preparation method and application.
背景技术Background technique
采用膜分离法对气体进行分离由于具有分离效率高、能量损耗低、绿色环保、操作简单、安全可靠并且便于安装调试等优势,近年来在工业气体分离与净化中得到了越来越广泛的应用。膜材料是气体分离膜技术的核心,目前商业化的气体分离膜材料主要为纤维素(CA)、聚砜(PSF)、聚二甲基硅氧烷(PDMS)、聚苯醚(PPO)等聚合物膜。但是,这些气体分离膜的耐热性不够理想,玻璃化转变温度不超过200℃,因此在一些对温度有特殊要求的应用中受限。The use of membrane separation method to separate gas has been more and more widely used in industrial gas separation and purification in recent years due to its advantages of high separation efficiency, low energy loss, green environmental protection, simple operation, safety and reliability, and easy installation and debugging. . Membrane materials are the core of gas separation membrane technology. The current commercialized gas separation membrane materials are mainly cellulose (CA), polysulfone (PSF), polydimethylsiloxane (PDMS), polyphenylene oxide (PPO), etc. polymer film. However, the heat resistance of these gas separation membranes is not ideal, and the glass transition temperature does not exceed 200°C, so they are limited in some applications with special temperature requirements.
聚酰亚胺(PI)材料由于具有突出的耐热性、力学性能和良好的化学稳定性,同时兼具优异的气体选择性,近年来在一些涉及到高温高压、以及二氧化碳等酸性腐蚀性气体的分离应用中倍受关注。但是,由于聚酰亚胺存在比较强烈的分子间作用力,分子链排布较致密,自由体积分数偏低,导致聚酰亚胺分离膜虽然具有优异的气体选择性,但是气体渗透性不够理想,商业化的聚酰亚胺分离膜对CO2的渗透系数仅为10barrer。研究人员通过在聚酰亚胺分子结构中引入大体积的基团以提高自由体积分数,从而改善聚酰亚胺分离膜的气体渗透性。Ayala等人通过采用含有大体积侧基的二酐1,3-双(3,4-二羧基苯甲酰)5-叔丁基苯和1,3-双(3,4-二羧基苯甲酰)联苯与芳香二胺2,2-双(4-氨基苯基)六氟丙烷聚合得到聚酰亚胺,其玻璃化温度为265℃,由其制备的聚酰亚胺分离膜具有优良的气体选择性,对CO2的渗透系数提高到15.6barrer(Ayala D,Lozano AE,de Abajo J,Garcia-Perez C,de la Campa JG,Peinemann KV,Freeman BD,Prabhakar R,Gas separation propertiesof aromatic polyimides.J Membr Sci,2003,215,61-73)。CN 101733027 A公布了一种基于具有长链结构的双端氨基聚醚和1,3-苯二胺与含氟芳香二酐4,4′-(2,2-六氟异丙基)二邻苯二甲酸酐(6FDA)共聚制备的聚酰亚胺分离膜,由于长链共聚结构的引入打破了聚合物分子链原有的规整排列,因此使该气体分离膜对CO2的渗透系数提高到77.89barrer,对CO2/CH4的选择系数最高达到20.03。Calle等人为进一步提高聚酰亚胺分离膜的气体渗透性能,采用了大体积结构的3,3,3″,4″-(5′-叔丁基-间三甲苯)四甲酸二酐与2,4,6-三甲基间苯二胺制备聚酰亚胺分离膜,该分离膜表现出优异的气体渗透性,对CO2的渗透系数高达465barrer,但是与此同时气体选择性显著下降,对CO2/CH4的选择系数低至11.7(Calle M,Garcia C,Lozano AE,de la Campa JG,de Abajo J,Alvarez C,Local chain mobilitydependence on molecular structure in polyimides with bulky side groups:Correlation with gas separation properties,J Membr Sci,2013,434,121-129)。Due to its outstanding heat resistance, mechanical properties and good chemical stability, polyimide (PI) materials also have excellent gas selectivity. have attracted much attention in separation applications. However, due to the relatively strong intermolecular forces of polyimide, the arrangement of molecular chains is relatively dense, and the free volume fraction is relatively low, resulting in that although polyimide separation membranes have excellent gas selectivity, their gas permeability is not ideal. , the permeability coefficient of the commercialized polyimide separation membrane to CO2 is only 10 barrer. The researchers improved the gas permeability of polyimide separation membranes by introducing bulky groups into the polyimide molecular structure to increase the free volume fraction. Ayala et al. by using dianhydrides 1,3-bis(3,4-dicarboxybenzoyl)5-tert-butylbenzene and 1,3-bis(3,4-dicarboxybenzoyl) containing bulky side groups Acyl)biphenyl and aromatic diamine 2,2-bis(4-aminophenyl)hexafluoropropane are polymerized to obtain polyimide, whose glass transition temperature is 265°C, and the polyimide separation membrane prepared by it has excellent Gas selectivity, the permeability coefficient of CO 2 increased to 15.6 barrer (Ayala D, Lozano AE, de Abajo J, Garcia-Perez C, de la Campa JG, Peinemann KV, Freeman BD, Prabhakar R, Gas separation properties of aromatic polyimides . J Membr Sci, 2003, 215, 61-73). CN 101733027 A discloses a double-terminated amino polyether with long chain structure and 1,3-phenylenediamine and fluorine-containing aromatic dianhydride 4,4'-(2,2-hexafluoroisopropyl) di-ortho The polyimide separation membrane prepared by the copolymerization of phthalic anhydride (6FDA), because the introduction of the long-chain copolymerization structure breaks the original regular arrangement of the polymer molecular chain, so the permeability coefficient of the gas separation membrane to CO2 is increased to 77.89 barrer, the highest selectivity coefficient for CO 2 /CH 4 is 20.03. In order to further improve the gas permeability of the polyimide separation membrane, Calle et al. adopted a bulky structure of 3,3,3", 4"-(5'-tert-butyl-m-trimethylbenzene)tetracarboxylic dianhydride and 2 , 4,6-trimethyl-m-phenylenediamine prepared polyimide separation membrane, the separation membrane showed excellent gas permeability, the permeability coefficient for CO2 was as high as 465 barrer, but at the same time the gas selectivity decreased significantly, The selectivity coefficient for CO 2 /CH 4 is as low as 11.7 (Calle M, Garcia C, Lozano AE, de la Campa JG, de Abajo J, Alvarez C, Local chain mobility dependence on molecular structure in polyimides with bulky side groups: Correlation with gas separation properties, J Membr Sci, 2013, 434, 121-129).
发明内容Contents of the invention
本发明的目的在于克服现有技术中的不足,提供一种由具有含氟苯侧基结构的聚酰亚胺树脂制备得到的高渗透性、高选择性的聚酰亚胺气体分离膜。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a highly permeable and highly selective polyimide gas separation membrane prepared from a polyimide resin with a fluorine-containing benzene side group structure.
本发明的另一个目的在于提供上述树脂和气体分离膜的制备方法与应用。Another object of the present invention is to provide the preparation method and application of the above-mentioned resin and gas separation membrane.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种聚酰亚胺气体分离膜,所述分离膜由具有含氟苯侧基结构的聚酰亚胺树脂制得,所述聚酰亚胺树脂具有下述式I所示的结构通式:A polyimide gas separation membrane, wherein the separation membrane is made from a polyimide resin with a fluorine-containing benzene side group structure, and the polyimide resin has a general structural formula shown in the following formula I:
其中,Ar选自下述基团中的任意一种:Wherein, Ar is selected from any one of the following groups:
X为CH3或者F,X is CH3 or F,
Y为H或者CH3,Y is H or CH 3 ,
L、M、N相同或不同,彼此独立地选自H、F或者CF3,并且,L、M、N中至少有一个为F或者CF3,L, M, and N are the same or different, and are independently selected from H, F, or CF 3 , and at least one of L, M, and N is F or CF 3 ,
n为50~300的整数。n is an integer of 50-300.
根据本发明,所述聚酰亚胺树脂的数均分子量(Mn)在50000~200000g/mol之间。According to the present invention, the number average molecular weight (M n ) of the polyimide resin is between 50000-200000 g/mol.
根据本发明,所述分离膜的厚度为25~75μm。所述气体分离膜兼具高气体渗透性和高气体选择性,具体而言,对CO2的渗透系数PCO2≥180barrer,最高可达280barrer;对CO2/CH4的选择系数超过30,最高可达40。同时,所述气体分离膜表现出优异的耐热性能(其玻璃化转变温度Tg介于340~380℃之间)和力学性能(其拉伸强度Ts介于90~120MPa之间)。According to the present invention, the thickness of the separation membrane is 25-75 μm. The gas separation membrane has both high gas permeability and high gas selectivity. Specifically, the permeability coefficient PCO 2 to CO 2 is ≥180 barrer, and the highest can reach 280 barrer; the selectivity coefficient to CO 2 /CH 4 exceeds 30, the highest Up to 40. At the same time, the gas separation membrane exhibits excellent heat resistance (the glass transition temperature T g is between 340-380° C.) and mechanical properties (the tensile strength T s is between 90-120 MPa).
本发明还提供上述气体分离膜中的聚酰亚胺树脂的制备方法,其特征在于,所述方法包括如下步骤:在惰性气体保护下,将式II所示具有含氟苯侧基结构的芳香二胺溶解于有机溶剂中,然后加入式III所示芳香二酐,获得本发明所述的聚酰亚胺树脂,The present invention also provides a preparation method of the polyimide resin in the above-mentioned gas separation membrane, which is characterized in that the method comprises the following steps: under the protection of an inert gas, the aromatic Diamine is dissolved in organic solvent, then adds aromatic dianhydride shown in formula III, obtains polyimide resin of the present invention,
其中,in,
X、Y、L、M、N和Ar的定义同式I。The definition of X, Y, L, M, N and Ar is the same as formula I.
优选地,将式II和式III搅拌至全部溶解得到均相溶液后,再加入催化剂和脱水剂升温进行反应,反应完毕除去脱水剂,冷却后倒入沉淀剂得到所述的聚酰亚胺树脂:Preferably, stir formula II and formula III until they are completely dissolved to obtain a homogeneous solution, then add a catalyst and a dehydrating agent to raise the temperature for reaction, remove the dehydrating agent after the reaction is completed, pour the precipitant into the polyimide resin after cooling :
上述方法中,式III所示芳香二酐具体为4,4’-(六氟异丙基)双邻苯二甲酸酐(6FDA)、4,4’-(2,2,2-三氟甲基-1-苯基-亚乙基)二苯酐(3FDA)、4,4’-[2,2,2-三氟甲基-1-(3-三氟甲基苯基)-亚乙基]二苯酐(HFDA)、4,4’-[2,2,2-三氟甲基-1-(3,5-双三氟甲基苯基)-亚乙基]二苯酐(9FDA)、三蝶烯-2,3,6,7-四酸二酐(TDA)、1,4-双(3’,4’-二羧基苯氧基)三蝶烯二酐(TODA)、9,9-双(3,4-二酐基苯氧基苯基)芴(BAOFL)。In the above method, the aromatic dianhydride represented by formula III is specifically 4,4'-(hexafluoroisopropyl)diphthalic anhydride (6FDA), 4,4'-(2,2,2-trifluoroform Base-1-phenyl-ethylene) diphthalic anhydride (3FDA), 4,4'-[2,2,2-trifluoromethyl-1-(3-trifluoromethylphenyl)-ethylene ]diphthalic anhydride (HFDA), 4,4'-[2,2,2-trifluoromethyl-1-(3,5-bistrifluoromethylphenyl)-ethylene]diphthalic anhydride (9FDA), Triptyl-2,3,6,7-tetradecyl dianhydride (TDA), 1,4-bis(3',4'-dicarboxyphenoxy) triptyl dianhydride (TODA), 9,9 - Bis(3,4-dianhydride-phenoxyphenyl)fluorene (BAOFL).
上述方法中,式II所示具有含氟苯侧基结构的芳香二胺具体为α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-三氟甲基苯基)甲烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-双三氟甲基苯基)甲烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-氟苯基)甲烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-二氟苯基)甲烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,4’,5’-三氟苯基)甲烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-三氟甲基苯基)乙烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-双三氟甲基苯基)乙烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-氟苯基)乙烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-二氟苯基)乙烷、α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,4’,5’-三氟苯基)乙烷、α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-三氟甲基苯基)甲烷、α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-氟苯基)甲烷、α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-三氟甲基苯基)乙烷、α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-氟苯基)乙烷。In the above method, the aromatic diamine represented by formula II having a fluorine-containing benzene side group structure is specifically α,α-bis(4-amino-3,5-dimethylphenyl)-1-(4'-trifluoro Methylphenyl)methane, α,α-bis(4-amino-3,5-dimethylphenyl)-1-(3',5'-bistrifluoromethylphenyl)methane, α,α -Bis(4-amino-3,5-dimethylphenyl)-1-(4'-fluorophenyl)methane, α,α-bis(4-amino-3,5-dimethylphenyl) -1-(3',5'-difluorophenyl)methane, α,α-bis(4-amino-3,5-dimethylphenyl)-1-(3',4',5'- Trifluorophenyl)methane, α,α-bis(4-amino-3,5-dimethylphenyl)-1-(4'-trifluoromethylphenyl)ethane, α,α-bis( 4-amino-3,5-dimethylphenyl)-1-(3',5'-bistrifluoromethylphenyl)ethane, α,α-bis(4-amino-3,5-di Methylphenyl)-1-(4'-fluorophenyl)ethane, α,α-bis(4-amino-3,5-dimethylphenyl)-1-(3',5'-di Fluorophenyl)ethane, α,α-bis(4-amino-3,5-dimethylphenyl)-1-(3',4',5'-trifluorophenyl)ethane, α, α-bis(4-amino-3,5-difluorophenyl)-1-(4'-trifluoromethylphenyl)methane, α,α-bis(4-amino-3,5-difluorobenzene base)-1-(4'-fluorophenyl)methane, α,α-bis(4-amino-3,5-difluorophenyl)-1-(4'-trifluoromethylphenyl)ethane , α,α-bis(4-amino-3,5-difluorophenyl)-1-(4'-fluorophenyl)ethane.
所述有机溶剂选自N-甲基吡咯烷酮(NMP)、γ-丁内酯、二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)和N,N-二甲基甲酰胺(DMF)中的至少一种。The organic solvent is selected from N-methylpyrrolidone (NMP), γ-butyrolactone, dimethylsulfoxide (DMSO), N,N-dimethylacetamide (DMAc) and N,N-dimethyl At least one of formamide (DMF).
所述催化剂选自异喹啉、喹啉、三乙胺或吡啶中的一种。The catalyst is selected from one of isoquinoline, quinoline, triethylamine or pyridine.
所述脱水剂为甲苯或二甲苯。The dehydrating agent is toluene or xylene.
所述沉淀剂选自水、甲醇、乙醇、丙醇、丁醇或异丙醇中的至少一种。The precipitating agent is at least one selected from water, methanol, ethanol, propanol, butanol or isopropanol.
所述具有含氟苯侧基结构的芳香二胺与芳香二酐的投料摩尔比例为0.95~1.05:1.0。The molar ratio of the aromatic diamine having a fluorine-containing benzene side group structure to the aromatic dianhydride is 0.95-1.05:1.0.
所述均相溶液固含量为25~40wt.%。The solid content of the homogeneous solution is 25-40 wt.%.
所述催化剂与芳香二酐的投料摩尔比为0.05~0.1:1.0。The molar ratio of the catalyst to the aromatic dianhydride is 0.05-0.1:1.0.
上述升温进行反应的温度为140~180℃;时间为8~12小时。The temperature for the reaction by raising the temperature is 140-180° C.; the time is 8-12 hours.
本发明还提供上述的聚酰亚胺气体分离膜的制备方法,包括如下步骤:The present invention also provides the preparation method of above-mentioned polyimide gas separation membrane, comprises the steps:
将上述的具有含氟苯侧基结构的聚酰亚胺树脂溶于有机溶剂中,得到所述树脂溶液,再将所述树脂溶液涂覆于基底上,烘干后,浸入去离子水中剥离,得到所述聚酰亚胺气体分离膜。Dissolving the above-mentioned polyimide resin with fluorine-containing benzene side group structure in an organic solvent to obtain the resin solution, and then coating the resin solution on the substrate, after drying, immersing in deionized water to peel off, The polyimide gas separation membrane was obtained.
上述气体分离膜制备方法中,所述有机溶剂选自N-甲基吡咯烷酮(NMP)、γ-丁内酯、二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)和N,N-二甲基甲酰胺(DMF)中的至少一种。In the above gas separation membrane preparation method, the organic solvent is selected from N-methylpyrrolidone (NMP), γ-butyrolactone, dimethylsulfoxide (DMSO), N,N-dimethylacetamide (DMAc) and at least one of N,N-dimethylformamide (DMF).
所述基底材料为玻璃板或不锈钢板。The base material is a glass plate or a stainless steel plate.
所述树脂溶液的固含量为25~45wt.%。The solid content of the resin solution is 25-45wt.%.
所述烘干步骤中,温度为80~200℃,时间为3~5小时。In the drying step, the temperature is 80-200° C., and the time is 3-5 hours.
本发明还提供上述的聚酰亚胺气体分离膜的用途,其用于二氧化碳的分离与回收。The present invention also provides the application of the above-mentioned polyimide gas separation membrane, which is used for the separation and recovery of carbon dioxide.
所述分离与回收包括生物气中二氧化碳和甲烷的分离、天然气中二氧化碳等酸性气体的去除、或者油田三次采油中二氧化碳的回收等。The separation and recovery include the separation of carbon dioxide and methane in biogas, the removal of acid gases such as carbon dioxide in natural gas, or the recovery of carbon dioxide in oilfield tertiary oil recovery, etc.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明提供的聚酰亚胺气体分离膜,兼具高渗透性和高选择性,同时还具备优异的耐热性能和力学性能,更加适合用于二氧化碳的分离与回收。具体而言,本发明采用含有大体积结构的芳香二酐与具有含氟苯侧基结构的芳香二胺制备聚酰亚胺。含有大体积结构的二酐结合具有大侧基的二胺可有效抑制分子链的紧密堆积,增大分子链间距,提高聚合物的自由体积分数,从而提供更多有利于气体传输的微孔,以提高分离膜的气体渗透性;与此同时,通过在聚合物结构中引入含氟基团,利用氟原子与二氧化碳分子之间的相互作用,加速二氧化碳气体的溶解过程,从而进一步提高分离膜对二氧化碳的渗透性;此外,刚性的聚合物主链结构不但可以获得耐热性能优异的聚酰亚胺,而且有利于保持聚酰亚胺分离膜特有的高气体选择性。The polyimide gas separation membrane provided by the invention has both high permeability and high selectivity, and also has excellent heat resistance and mechanical properties, and is more suitable for the separation and recovery of carbon dioxide. Specifically, the present invention uses aromatic dianhydrides with bulky structures and aromatic diamines with fluorine-containing benzene side group structures to prepare polyimides. The combination of dianhydrides with bulky structures and diamines with large side groups can effectively inhibit the close packing of molecular chains, increase the distance between molecular chains, and increase the free volume fraction of polymers, thereby providing more micropores that are conducive to gas transmission. In order to improve the gas permeability of the separation membrane; at the same time, by introducing fluorine-containing groups into the polymer structure, the interaction between fluorine atoms and carbon dioxide molecules is used to accelerate the dissolution process of carbon dioxide gas, thereby further improving the separation membrane. The permeability of carbon dioxide; in addition, the rigid polymer backbone structure can not only obtain polyimide with excellent heat resistance, but also help to maintain the high gas selectivity of polyimide separation membrane.
附图说明Description of drawings
图1为实施例1制备的聚酰亚胺分离膜的红外谱图。Fig. 1 is the infrared spectrogram of the polyimide separation membrane that embodiment 1 prepares.
具体实施方式detailed description
下面结合具体实施例对本发明作进一步阐述,但本发明不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从商业公开途径获得。本发明中百分比含量及百分比浓度如无特别说明,均为质量百分比含量和质量百分比浓度。The present invention will be further described below in conjunction with specific examples, but the present invention is not limited to the following examples. The methods are conventional methods unless otherwise specified. The raw materials can be obtained from public commercial channels unless otherwise specified. In the present invention, percentage content and percentage concentration are mass percentage content and mass percentage concentration unless otherwise specified.
实施例1、聚酰亚胺气体分离膜的制备Embodiment 1, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入39.85克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-三氟甲基苯基)甲烷和N-甲基吡咯烷酮(NMP)126克,在氮气保护下搅拌至完全溶解后,加入44.42克(0.1摩尔)4,4’-(六氟异丙基)双邻苯二甲酸酐(6FDA),得到固含量为40wt.%的均相溶液。将0.65克(0.005摩尔)异喹啉和21克甲苯加入到上述均相溶液中,反应体系升温至180℃反应12小时后,蒸出甲苯,停止加热。将反应液冷却到80~120℃后倒入甲醇中得到纤维状粗产物,收集析出的粗产物,用甲醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为97%,数均分子量(Mn)为1.69×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 39.85 grams (0.1 mol) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 4'-trifluoromethylphenyl) methane and N-methylpyrrolidone (NMP) 126 grams, stirred under nitrogen protection until completely dissolved, then added 44.42 grams (0.1 mole) 4,4'-(hexafluoroisopropyl Base) two phthalic anhydride (6FDA), to obtain a solid content of 40wt.% of the homogeneous solution. 0.65 g (0.005 mole) of isoquinoline and 21 g of toluene were added to the above homogeneous solution, the temperature of the reaction system was raised to 180° C. and reacted for 12 hours, the toluene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into methanol to obtain a fibrous crude product, collect the precipitated crude product, wash repeatedly with methanol and water, filter, pulverize, and dry to obtain a polyimide resin with a yield of 97%, and the number average molecular weight (M n ) is 1.69×10 5 g/mol.
将上述聚酰亚胺树脂溶解于N-甲基吡咯烷酮(NMP)中得到固含量为40wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。The above-mentioned polyimide resin is dissolved in N-methylpyrrolidone (NMP) to obtain a resin solution with a solid content of 40wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, 200°C/1 hour step-up heating in air atmosphere, immerse the glass plate or stainless steel plate in deionized water The separation membrane is peeled off automatically, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C.
FT-IR(film,cm-1):2925,1787,1733,1622,1527,1487,1440,1369,1298,1257,1209,1145,1110,1045,723。FT-IR (film, cm −1 ): 2925, 1787, 1733, 1622, 1527, 1487, 1440, 1369, 1298, 1257, 1209, 1145, 1110, 1045, 723.
分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例2、聚酰亚胺气体分离膜的制备Embodiment 2, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入34.85克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-氟苯基)甲烷和N,N-二甲基乙酰胺(DMAc)147克,在氮气保护下搅拌至完全溶解后,加入44.42克(0.1摩尔)4,4’-(六氟异丙基)双邻苯二甲酸酐(6FDA),得到固含量为35wt.%的均相溶液。将1.29克(0.01摩尔)喹啉和25克二甲苯加入到上述均相溶液中,反应体系升温至140℃反应12小时后,蒸出二甲苯,停止加热。将反应液冷却到80~120℃后倒入乙醇中得到纤维状粗产物,收集析出的粗产物,用乙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为98%,数均分子量(Mn)为1.99×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 34.85 grams (0.1 moles) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 4'-fluorophenyl)methane and N,N-dimethylacetamide (DMAc) 147 grams, stirred under nitrogen protection until completely dissolved, then added 44.42 grams (0.1 mole) 4,4'-(hexafluoroiso Propyl) diphthalic anhydride (6FDA) to obtain a homogeneous solution with a solid content of 35wt.%. 1.29 grams (0.01 moles) of quinoline and 25 grams of xylene were added to the above homogeneous solution, the temperature of the reaction system was raised to 140° C. for 12 hours, the xylene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into ethanol to obtain a fibrous crude product, collect the precipitated crude product, wash repeatedly with ethanol and water, filter, pulverize, and dry to obtain a polyimide resin with a yield of 98%, and the number average molecular weight (M n ) is 1.99×10 5 g/mol.
将上述聚酰亚胺树脂溶解于N-甲基吡咯烷酮(NMP)中得到固含量为40wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above-mentioned polyimide resin is dissolved in N-methylpyrrolidone (NMP) to obtain a resin solution with a solid content of 40wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, 200°C/1 hour step-up heating in air atmosphere, immerse the glass plate or stainless steel plate in deionized water The separation membrane is peeled off automatically, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例3、聚酰亚胺气体分离膜的制备Embodiment 3, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入38.44克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,4’,5’-三氟苯基)甲烷和N-甲基吡咯烷酮(NMP)154克,在氮气保护下搅拌至完全溶解后,加入44.42克(0.1摩尔)4,4’-(六氟异丙基)双邻苯二甲酸酐(6FDA),得到固含量为35wt.%的均相溶液。将1.29克(0.01摩尔)喹啉和26克甲苯加入到上述均相溶液中,反应体系升温至180℃反应10小时后,蒸出甲苯,停止加热。将反应液冷却到80~120℃后倒入乙醇中得到纤维状粗产物,收集析出的粗产物,用乙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为99%,数均分子量(Mn)为1.86×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 38.44 grams (0.1 mol) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 3',4',5'-trifluorophenyl) methane and N-methylpyrrolidone (NMP) 154 grams, stirred under nitrogen protection until completely dissolved, then added 44.42 grams (0.1 mol) 4,4'-( Hexafluoroisopropyl) diphthalic anhydride (6FDA) to obtain a homogeneous solution with a solid content of 35wt.%. 1.29 grams (0.01 moles) of quinoline and 26 grams of toluene were added to the above-mentioned homogeneous solution, the temperature of the reaction system was raised to 180° C. and reacted for 10 hours, the toluene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into ethanol to obtain a fibrous crude product, collect the precipitated crude product, wash repeatedly with ethanol and water, filter, pulverize, and dry to obtain a polyimide resin with a yield of 99%, and the number average molecular weight (M n ) is 1.86×10 5 g/mol.
将上述聚酰亚胺树脂溶解于N-甲基吡咯烷酮(NMP)中得到固含量为40wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above-mentioned polyimide resin is dissolved in N-methylpyrrolidone (NMP) to obtain a resin solution with a solid content of 40wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, 200°C/1 hour step-up heating in air atmosphere, immerse the glass plate or stainless steel plate in deionized water The separation membrane is peeled off automatically, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例4、聚酰亚胺气体分离膜的制备Embodiment 4, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入48.05克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-双三氟甲基苯基)乙烷和γ-丁内酯218克,在氮气保护下搅拌至完全溶解后,加入45.23克(0.1摩尔)4,4’-(2,2,2-三氟甲基-1-苯基-亚乙基)二苯酐(3FDA),得到固含量为30wt.%的均相溶液。将1.03克(0.008摩尔)异喹啉和36克甲苯加入到上述均相溶液中,反应体系升温至180℃反应8小时后,蒸出甲苯,停止加热。将反应液冷却到80~120℃后倒入乙醇/水混合液(乙醇/水体积比=3:1)中得到纤维状粗产物,收集析出的粗产物,用乙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为96%,数均分子量(Mn)为1.47×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 48.05 grams (0.1 mol) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 3',5'-bistrifluoromethylphenyl)ethane and 218 grams of γ-butyrolactone, stirred under nitrogen protection until completely dissolved, then added 45.23 grams (0.1 mol) of 4,4'-(2, 2,2-trifluoromethyl-1-phenyl-ethylene) diphthalic anhydride (3FDA) to obtain a homogeneous solution with a solid content of 30 wt.%. 1.03 grams (0.008 moles) of isoquinoline and 36 grams of toluene were added to the above-mentioned homogeneous solution, and the temperature of the reaction system was raised to 180° C. and reacted for 8 hours, the toluene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into the ethanol/water mixture (ethanol/water volume ratio = 3:1) to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with ethanol and water, and then filter. Pulverized and dried to obtain a polyimide resin with a yield of 96% and a number average molecular weight (M n ) of 1.47×10 5 g/mol.
将上述聚酰亚胺树脂溶解于γ-丁内酯中得到固含量为30wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above-mentioned polyimide resin is dissolved in γ-butyrolactone to obtain a resin solution with a solid content of 30wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After heating at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, and 200°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to make the separation membrane Automatic peeling, vacuum drying at 120°C to obtain a polyimide separation membrane with a certain thickness. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例5、聚酰亚胺气体分离膜的制备Embodiment 5, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入38.25克(0.105摩尔)α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-氟苯基)甲烷和N,N-二甲基乙酰胺(DMAc)195克,在氮气保护下搅拌至完全溶解后,加入45.23克(0.1摩尔)4,4’-(2,2,2-三氟甲基-1-苯基-亚乙基)二苯酐(3FDA),得到固含量为30wt.%的均相溶液。将1.01克(0.01摩尔)三乙胺和32克二甲苯加入到上述均相溶液中,反应体系升温至140℃反应12小时后,蒸出二甲苯,停止加热。将反应液冷却到80~120℃后倒入丙醇中得到纤维状粗产物,收集析出的粗产物,用丙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为97%,数均分子量(Mn)为6.4×104g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 38.25 grams (0.105 moles) of α,α-bis(4-amino-3,5-difluorophenyl)-1-(4 '-fluorophenyl)methane and N,N-dimethylacetamide (DMAc) 195 grams, stirred under nitrogen protection until completely dissolved, then added 45.23 grams (0.1 mole) 4,4'-(2,2, 2-trifluoromethyl-1-phenyl-ethylene) diphthalic anhydride (3FDA) to obtain a homogeneous solution with a solid content of 30 wt.%. 1.01 g (0.01 mole) of triethylamine and 32 g of xylene were added to the above-mentioned homogeneous solution, and the temperature of the reaction system was raised to 140° C. to react for 12 hours, then the xylene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into propanol to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with propanol and water, filter, pulverize, and dry to obtain a polyimide resin. The yield is is 97%, and the number average molecular weight (M n ) is 6.4×10 4 g/mol.
将上述聚酰亚胺树脂溶解于N,N-二甲基乙酰胺(DMAc)中得到固含量为35wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above polyimide resin was dissolved in N,N-dimethylacetamide (DMAc) to obtain a resin solution with a solid content of 35wt.%. After filtering and vacuum defoaming, it was coated on a smooth glass plate or After the stainless steel plate is heated in an air atmosphere at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, and 180°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to separate The membrane is automatically peeled off, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例6、聚酰亚胺气体分离膜的制备Embodiment 6, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入36.64克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-二氟苯基)甲烷和N,N-二甲基甲酰胺(DMF)133克,在氮气保护下搅拌至完全溶解后,加入52.03克(0.1摩尔)4,4’-[2,2,2-三氟甲基-1-(3-三氟甲基苯基)-亚乙基]二苯酐(HFDA),得到固含量为40wt.%的均相溶液。将0.63克(0.008摩尔)三乙胺和22克二甲苯加入到上述均相溶液中,反应体系升温至140℃反应10小时后,蒸出二甲苯,停止加热。将反应液冷却到80~120℃后倒入甲醇中得到纤维状粗产物,收集析出的粗产物,用甲醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为98%,数均分子量(Mn)为1.74×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 36.64 grams (0.1 mol) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 3',5'-difluorophenyl)methane and N,N-dimethylformamide (DMF) 133 grams, stirred under nitrogen protection until completely dissolved, then added 52.03 grams (0.1 moles) of 4,4'- [2,2,2-Trifluoromethyl-1-(3-trifluoromethylphenyl)-ethylene]diphthalic anhydride (HFDA) to obtain a homogeneous solution with a solid content of 40wt.%. 0.63 g (0.008 mol) of triethylamine and 22 g of xylene were added to the above homogeneous solution, and the temperature of the reaction system was raised to 140° C. to react for 10 hours, then the xylene was distilled off and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into methanol to obtain a fibrous crude product, collect the precipitated crude product, wash repeatedly with methanol and water, filter, pulverize, and dry to obtain a polyimide resin with a yield of 98%, and the number average molecular weight (M n ) is 1.74×10 5 g/mol.
将上述聚酰亚胺树脂溶解于N,N-二甲基乙酰胺(DMAc)中得到固含量为45wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above polyimide resin was dissolved in N,N-dimethylacetamide (DMAc) to obtain a resin solution with a solid content of 45wt.%. After filtering and vacuum defoaming, it was coated on a smooth glass plate or After the stainless steel plate is heated in an air atmosphere at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, and 180°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to separate The membrane is automatically peeled off, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例7、聚酰亚胺气体分离膜的制备Embodiment 7, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入41.25克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-三氟甲基苯基)乙烷和N-甲基吡咯烷酮(NMP)173克,在氮气保护下搅拌至完全溶解后,加入52.03克(0.1摩尔)4,4’-[2,2,2-三氟甲基-1-(3-三氟甲基苯基)-亚乙基]二苯酐(HFDA),得到固含量为35wt.%的均相溶液。将0.65克(0.005摩尔)异喹啉和29克甲苯加入到上述均相溶液中,反应体系升温至180℃反应8小时后,蒸出甲苯,停止加热。将反应液冷却到80~120℃后倒入甲醇/水混合液(甲醇/水体积比=1:1)中得到纤维状粗产物,收集析出的粗产物,用甲醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为97%,数均分子量(Mn)为1.27×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 41.25 grams (0.1 moles) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 4'-trifluoromethylphenyl) ethane and N-methylpyrrolidone (NMP) 173 grams, stirred under nitrogen protection until completely dissolved, then added 52.03 grams (0.1 mole) 4,4'-[2,2 , 2-trifluoromethyl-1-(3-trifluoromethylphenyl)-ethylene]diphthalic anhydride (HFDA) to obtain a homogeneous solution with a solid content of 35wt.%. 0.65 g (0.005 mole) of isoquinoline and 29 g of toluene were added to the above homogeneous solution, the temperature of the reaction system was raised to 180° C. and reacted for 8 hours, the toluene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into a methanol/water mixture (methanol/water volume ratio = 1:1) to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with methanol and water, and then filter. Pulverized and dried to obtain a polyimide resin with a yield of 97% and a number average molecular weight (M n ) of 1.27×10 5 g/mol.
将上述聚酰亚胺树脂溶解于γ-丁内酯中得到固含量为35wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above-mentioned polyimide resin is dissolved in γ-butyrolactone to obtain a resin solution with a solid content of 35wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After heating at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, and 200°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to make the separation membrane Automatic peeling, vacuum drying at 120°C to obtain a polyimide separation membrane with a certain thickness. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例8、聚酰亚胺气体分离膜的制备Embodiment 8, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入43.50克(0.105摩尔)α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-三氟甲基苯基)甲烷和二甲基亚砜(DMSO)287克,在氮气保护下搅拌至完全溶解后,加入52.03克(0.1摩尔)4,4’-[2,2,2-三氟甲基-1-(3-三氟甲基苯基)-亚乙基]二苯酐(HFDA),得到固含量为25wt.%的均相溶液。将0.79克(0.01摩尔)吡啶和48克甲苯加入到上述均相溶液中,反应体系升温至160℃反应12小时后,蒸出甲苯,停止加热。将反应液冷却到80~120℃后倒入丙醇中得到纤维状粗产物,收集析出的粗产物,用丙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为96%,数均分子量(Mn)为7.03×104g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 43.50 grams (0.105 moles) of α,α-bis(4-amino-3,5-difluorophenyl)-1-(4 '-Trifluoromethylphenyl) methane and dimethyl sulfoxide (DMSO) 287 grams, stirred under nitrogen protection until completely dissolved, then added 52.03 grams (0.1 moles) of 4,4'-[2,2,2 - Trifluoromethyl-1-(3-trifluoromethylphenyl)-ethylene]diphthalic anhydride (HFDA), to obtain a homogeneous solution with a solid content of 25 wt.%. 0.79 g (0.01 mole) of pyridine and 48 g of toluene were added to the above homogeneous solution, the temperature of the reaction system was raised to 160° C. and reacted for 12 hours, the toluene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into propanol to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with propanol and water, filter, pulverize, and dry to obtain a polyimide resin. The yield is is 96%, and the number average molecular weight (M n ) is 7.03×10 4 g/mol.
将上述聚酰亚胺树脂溶解于二甲基亚砜(DMSO)中得到固含量为30wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above-mentioned polyimide resin is dissolved in dimethyl sulfoxide (DMSO) to obtain a resin solution with a solid content of 30wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, 200°C/1 hour step-up heating in air atmosphere, immerse the glass plate or stainless steel plate in deionized water The separation membrane is peeled off automatically, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例9、聚酰亚胺气体分离膜的制备Embodiment 9, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入36.25克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(4’-氟苯基)乙烷和N-甲基吡咯烷酮(NMP)177克,在氮气保护下搅拌至完全溶解后,加入58.83克(0.1摩尔)4,4’-[2,2,2-三氟甲基-1-(3,5-双三氟甲基苯基)-亚乙基]二苯酐(9FDA),得到固含量为35wt.%的均相溶液。将1.29克(0.01摩尔)喹啉和29克甲苯加入到上述均相溶液中,反应体系升温至180℃反应10小时后,蒸出甲苯,停止加热。将反应液冷却到80~120℃后倒入甲醇/水混合液(甲醇/水体积比=3:1)中得到纤维状粗产物,收集析出的粗产物,用甲醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为97%,数均分子量(Mn)为1.51×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 36.25 grams (0.1 moles) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 4'-fluorophenyl) ethane and N-methylpyrrolidone (NMP) 177 grams, stirred under nitrogen protection until completely dissolved, then added 58.83 grams (0.1 mole) 4,4'-[2,2,2- Trifluoromethyl-1-(3,5-bistrifluoromethylphenyl)-ethylene]diphthalic anhydride (9FDA) to obtain a homogeneous solution with a solid content of 35 wt.%. 1.29 g (0.01 mole) of quinoline and 29 g of toluene were added to the above homogeneous solution, the temperature of the reaction system was raised to 180° C. and reacted for 10 hours, the toluene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into a methanol/water mixture (methanol/water volume ratio = 3:1) to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with methanol and water, and then filter. Pulverized and dried to obtain a polyimide resin with a yield of 97% and a number average molecular weight (M n ) of 1.51×10 5 g/mol.
将上述聚酰亚胺树脂溶解于N,N-二甲基乙酰胺(DMAc)中得到固含量为35wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above polyimide resin was dissolved in N,N-dimethylacetamide (DMAc) to obtain a resin solution with a solid content of 35wt.%. After filtering and vacuum defoaming, it was coated on a smooth glass plate or After the stainless steel plate is heated in an air atmosphere at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, and 180°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to separate The membrane is automatically peeled off, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例10、聚酰亚胺气体分离膜的制备Embodiment 10, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入39.85克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,4’,5’-三氟苯基)乙烷和N,N-二甲基甲酰胺(DMF)148克,在氮气保护下搅拌至完全溶解后,加入58.83克(0.1摩尔)4,4’-[2,2,2-三氟甲基-1-(3,5-双三氟甲基苯基)-亚乙基]二苯酐(9FDA),得到固含量为40wt.%的均相溶液。将0.40克(0.005摩尔)吡啶和25克二甲苯加入到上述均相溶液中,反应体系升温至140℃反应12小时后,蒸出二甲苯,停止加热。将反应液冷却到80~120℃后倒入异丙醇中得到纤维状粗产物,收集析出的粗产物,用异丙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为97%,数均分子量(Mn)为1.36×105g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 39.85 grams (0.1 mol) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 3',4',5'-trifluorophenyl)ethane and N,N-dimethylformamide (DMF) 148 grams, stirred under nitrogen protection until completely dissolved, then added 58.83 grams (0.1 moles) of 4 , 4'-[2,2,2-trifluoromethyl-1-(3,5-bistrifluoromethylphenyl)-ethylene]diphthalic anhydride (9FDA), to obtain a solid content of 40wt.% homogeneous solution. 0.40 g (0.005 mol) of pyridine and 25 g of xylene were added to the above homogeneous solution, and the temperature of the reaction system was raised to 140° C. to react for 12 hours, then the xylene was distilled off and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into isopropanol to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with isopropanol and water, filter, pulverize, and dry to obtain a polyimide resin. The yield was 97%, and the number average molecular weight (M n ) was 1.36×10 5 g/mol.
将上述聚酰亚胺树脂溶解于二甲基亚砜(DMSO)中得到固含量为35wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above-mentioned polyimide resin is dissolved in dimethyl sulfoxide (DMSO) to obtain a resin solution with a solid content of 35wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, 200°C/1 hour step-up heating in air atmosphere, immerse the glass plate or stainless steel plate in deionized water The separation membrane is peeled off automatically, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例11、聚酰亚胺气体分离膜的制备Embodiment 11, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入39.72克(0.105摩尔)α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-氟苯基)乙烷和N,N-二甲基甲酰胺(DMF)230克,在氮气保护下搅拌至完全溶解后,加入58.83克(0.1摩尔)4,4’-[2,2,2-三氟甲基-1-(3,5-双三氟甲基苯基)-亚乙基]二苯酐(9FDA),得到固含量为30wt.%的均相溶液。将0.79克(0.01摩尔)吡啶和38克二甲苯加入到上述均相溶液中,反应体系升温至140℃反应12小时后,蒸出二甲苯,停止加热。将反应液冷却到80~120℃后倒入异丙醇中得到纤维状粗产物,收集析出的粗产物,用异丙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为96%,数均分子量(Mn)为5.01×104g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 39.72 grams (0.105 moles) of α,α-bis(4-amino-3,5-difluorophenyl)-1-(4 '-Fluorophenyl) ethane and N,N-dimethylformamide (DMF) 230 grams, stirred under nitrogen protection until completely dissolved, then added 58.83 grams (0.1 mole) 4,4'-[2,2 , 2-trifluoromethyl-1-(3,5-bistrifluoromethylphenyl)-ethylene]diphthalic anhydride (9FDA) to obtain a homogeneous solution with a solid content of 30wt.%. 0.79 g (0.01 mole) of pyridine and 38 g of xylene were added to the above homogeneous solution, and the temperature of the reaction system was raised to 140° C. to react for 12 hours, then the xylene was distilled off and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into isopropanol to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with isopropanol and water, filter, pulverize, and dry to obtain a polyimide resin. The yield was 96%, and the number average molecular weight (M n ) was 5.01×10 4 g/mol.
将上述聚酰亚胺树脂溶解于N,N-二甲基甲酰胺(DMF)中得到固含量为25wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。Dissolve the above polyimide resin in N,N-dimethylformamide (DMF) to obtain a resin solution with a solid content of 25wt.%. After filtering and vacuum defoaming, apply it to a smooth glass plate or After the stainless steel plate is heated in an air atmosphere at 80°C/1 hour, 120°C/1 hour, and 160°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to automatically peel off the separation membrane. After 120 °C and vacuum-dried to obtain a polyimide separation membrane with a certain thickness. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例12、聚酰亚胺气体分离膜的制备Embodiment 12, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入44.31克(0.095摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-双三氟甲基苯基)甲烷和γ-丁内酯195克,在氮气保护下搅拌至完全溶解后,加入39.43克(0.1摩尔)三蝶烯-2,3,6,7-四酸二酐(TDA),得到固含量为30wt.%的均相溶液。将0.65克(0.005摩尔)异喹啉和32克二甲苯加入到上述均相溶液中,反应体系升温至180℃反应12小时后,蒸出二甲苯,停止加热。将反应液冷却到80~120℃后倒入丁醇中得到纤维状粗产物,收集析出的粗产物,用丁醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为97%,数均分子量(Mn)为8.15×104g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 44.31 grams (0.095 moles) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 3',5'-bistrifluoromethylphenyl)methane and 195 grams of γ-butyrolactone, stirred under nitrogen protection until completely dissolved, then added 39.43 grams (0.1 moles) of triptycene-2,3,6 , 7-tetraacid dianhydride (TDA) to obtain a homogeneous solution with a solid content of 30wt.%. 0.65 g (0.005 mole) of isoquinoline and 32 g of xylene were added to the above-mentioned homogeneous solution, and the temperature of the reaction system was raised to 180° C. and reacted for 12 hours, then the xylene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into butanol to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with butanol and water, filter, pulverize, and dry to obtain a polyimide resin. The yield is is 97%, and the number average molecular weight (M n ) is 8.15×10 4 g/mol.
将上述聚酰亚胺树脂溶解于γ-丁内酯中得到固含量为30wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时,200℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。The above-mentioned polyimide resin is dissolved in γ-butyrolactone to obtain a resin solution with a solid content of 30wt.%. After filtering and vacuum defoaming, it is coated on a glass plate or a stainless steel plate with a smooth surface. After heating at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, 180°C/1 hour, and 200°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to make the separation membrane Automatic peeling, vacuum drying at 120°C to obtain a polyimide separation membrane with a certain thickness. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例13、聚酰亚胺气体分离膜的制备Embodiment 13, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入38.05克(0.1摩尔)α,α-双(4-氨基-3,5-二甲基苯基)-1-(3’,5’-二氟苯基)乙烷和二甲基亚砜(DMSO)178克,在氮气保护下搅拌至完全溶解后,加入57.85克(0.1摩尔)1,4-双(3’,4’-二羧基苯氧基)三蝶烯二酐(TODA),得到固含量为35wt.%的均相溶液。将0.50克(0.005摩尔)三乙胺和30克二甲苯加入到上述均相溶液中,反应体系升温至160℃反应12小时后,蒸出二甲苯,停止加热。将反应液冷却到80~120℃后倒入乙醇中得到纤维状粗产物,收集析出的粗产物,用乙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为97%,数均分子量(Mn)为9.24×104g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 38.05 grams (0.1 moles) of α,α-bis(4-amino-3,5-dimethylphenyl)-1-( 3',5'-Difluorophenyl)ethane and 178 grams of dimethyl sulfoxide (DMSO), stirred under nitrogen protection until completely dissolved, then added 57.85 grams (0.1 moles) of 1,4-bis(3' , 4'-dicarboxyphenoxy) triptycene dianhydride (TODA), to obtain a homogeneous solution with a solid content of 35wt.%. 0.50 g (0.005 mol) of triethylamine and 30 g of xylene were added to the above homogeneous solution, the temperature of the reaction system was raised to 160° C. and reacted for 12 hours, the xylene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into ethanol to obtain a fibrous crude product, collect the precipitated crude product, wash repeatedly with ethanol and water, filter, pulverize, and dry to obtain a polyimide resin with a yield of 97%, and the number average molecular weight (M n ) is 9.24×10 4 g/mol.
将上述聚酰亚胺树脂溶解于N,N-二甲基乙酰胺(DMAc)中得到固含量为40wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。Dissolve the above polyimide resin in N,N-dimethylacetamide (DMAc) to obtain a resin solution with a solid content of 40wt.%. After filtering and vacuum defoaming, apply it to a smooth glass plate or After the stainless steel plate is heated in an air atmosphere at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, and 180°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to separate The membrane is automatically peeled off, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
实施例14、聚酰亚胺气体分离膜的制备Embodiment 14, the preparation of polyimide gas separation membrane
在配有机械搅拌、分水器、氮气出入口及温度计的三口烧瓶中,加入44.98克(0.105摩尔)α,α-双(4-氨基-3,5-二氟苯基)-1-(4’-三氟甲基苯基)乙烷和N-甲基吡咯烷酮(NMP)203克,在氮气保护下搅拌至完全溶解后,加入64.26克(0.1摩尔)9,9-双(3,4-二酐基苯氧基苯基)芴(BAOFL),得到固含量为35wt.%的均相溶液。将0.65克(0.005摩尔)喹啉和34克甲苯加入到上述均相溶液中,反应体系升温至180℃反应10小时后,蒸出甲苯,停止加热。将反应液冷却到80~120℃后倒入乙醇/水混合液(乙醇/水体积比=1:1)中得到纤维状粗产物,收集析出的粗产物,用乙醇和水反复洗涤后过滤、粉碎、烘干,得到聚酰亚胺树脂,产率为96%,数均分子量(Mn)为5.93×104g/mol。In a three-necked flask equipped with a mechanical stirrer, a water separator, a nitrogen inlet and outlet, and a thermometer, add 44.98 grams (0.105 moles) of α,α-bis(4-amino-3,5-difluorophenyl)-1-(4 '-Trifluoromethylphenyl) ethane and N-methylpyrrolidone (NMP) 203 grams, stirred under nitrogen protection until completely dissolved, then added 64.26 grams (0.1 moles) of 9,9-bis(3,4- Dianhydride-based phenoxyphenyl) fluorene (BAOFL) to obtain a homogeneous solution with a solid content of 35 wt.%. 0.65 g (0.005 mol) of quinoline and 34 g of toluene were added to the above homogeneous solution, the temperature of the reaction system was raised to 180° C. and reacted for 10 hours, the toluene was distilled off, and the heating was stopped. Cool the reaction solution to 80-120°C and pour it into the ethanol/water mixture (ethanol/water volume ratio = 1:1) to obtain a fibrous crude product. Collect the precipitated crude product, wash it repeatedly with ethanol and water, and then filter it. Pulverized and dried to obtain a polyimide resin with a yield of 96% and a number average molecular weight (M n ) of 5.93×10 4 g/mol.
将上述聚酰亚胺树脂溶解于N,N-二甲基乙酰胺(DMAc)中得到固含量为30wt.%的树脂溶液,经过滤、真空脱泡后,涂覆到表面光滑的玻璃板或不锈钢板上,在空气氛围下经过80℃/1小时,120℃/1小时,160℃/1小时,180℃/1小时阶梯升温热烘后,将玻璃板或不锈钢板浸入去离子水中使分离膜自动剥离,经120℃真空干燥得到一定厚度的聚酰亚胺分离膜。分离膜的厚度可以通过调节涂膜辊的型号来控制。该聚酰亚胺分离膜的主要性能见表1。Dissolve the above polyimide resin in N,N-dimethylacetamide (DMAc) to obtain a resin solution with a solid content of 30wt.%. After filtering and vacuum defoaming, apply it to a smooth glass plate or After the stainless steel plate is heated in an air atmosphere at 80°C/1 hour, 120°C/1 hour, 160°C/1 hour, and 180°C/1 hour, the glass plate or stainless steel plate is immersed in deionized water to separate The membrane is automatically peeled off, and a polyimide separation membrane with a certain thickness is obtained by vacuum drying at 120°C. The thickness of the separation film can be controlled by adjusting the model of the coating roller. The main properties of the polyimide separation membrane are shown in Table 1.
表1、聚酰亚胺气体分离膜的主要性能Table 1. Main properties of polyimide gas separation membrane
a耐热性能采用动态机械分析测定,其中Tg为玻璃化转变温度。 aHeat resistance is determined by dynamic mechanical analysis, where T g is the glass transition temperature.
b力学性能采用万能材料试验机按照GB/T 1040.3-2006测定,TS为拉伸强度。 bMechanical properties are measured by a universal material testing machine in accordance with GB/T 1040.3-2006, and T S is the tensile strength.
c气体分离性能采用VAC-V2压差法气体渗透仪测试按照ISO15105-1测定,测试条件为1个大气压/30℃,分离膜试样厚度为50μm。气体渗透系数P单位为barrer,1barrer=1×10-10cm3(STP)cm/cm2s cmHg,选择系数α=PA/PB。 c. The gas separation performance is tested by VAC-V2 differential pressure gas permeation instrument according to ISO15105-1. The test condition is 1 atmosphere/30°C, and the thickness of the separation membrane sample is 50 μm. The unit of gas permeability coefficient P is barrer, 1 barrer=1×10 -10 cm 3 (STP)cm/cm 2 s cmHg, selectivity coefficient α=PA/ P B .
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510249582.1A CN104829853B (en) | 2015-05-15 | 2015-05-15 | A kind of polyimide gas separating film and preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510249582.1A CN104829853B (en) | 2015-05-15 | 2015-05-15 | A kind of polyimide gas separating film and preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104829853A CN104829853A (en) | 2015-08-12 |
CN104829853B true CN104829853B (en) | 2017-12-12 |
Family
ID=53808074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510249582.1A Active CN104829853B (en) | 2015-05-15 | 2015-05-15 | A kind of polyimide gas separating film and preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104829853B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105921037B (en) * | 2016-06-22 | 2018-03-30 | 辽宁科技大学 | A kind of preparation method of the porous gas separation membrane material with thermic rigid structure |
CN106139934B (en) * | 2016-07-07 | 2017-09-12 | 南京工业大学 | Preparation method of triptycene-based polymer separation membrane |
CN107376672B (en) * | 2017-06-23 | 2020-05-22 | 江南大学 | Green preparation method of polyimide gas separation membrane |
CN107638815B (en) * | 2017-10-20 | 2019-09-27 | 大连欧科膜技术工程有限公司 | A kind of cellulose acetate anisotropic membrane and its application |
CN107778504B (en) * | 2017-10-31 | 2020-09-08 | 吉林省中科聚合工程塑料有限公司 | Continuous preparation method of soluble polyarylethersulfone film |
CN108440754A (en) * | 2018-03-15 | 2018-08-24 | 常州大学 | One kind is containing tertiary butyl substitution m-Terphenyl structure polyimide film material and preparation method thereof |
TW202007688A (en) * | 2018-07-20 | 2020-02-16 | 美商杜邦股份有限公司 | Polymers for use in electronic devices |
CN110156990B (en) * | 2019-05-30 | 2020-12-08 | 武汉华星光电半导体显示技术有限公司 | Polyimide compound, preparation method and application thereof |
CN111019133B (en) * | 2019-12-31 | 2022-06-07 | 山东华夏神舟新材料有限公司 | Polyimide resin for gas separation membrane, preparation method thereof and method for preparing polyimide gas separation membrane by using polyimide resin |
CN111116912B (en) * | 2019-12-31 | 2022-12-06 | 山东华夏神舟新材料有限公司 | Polyimide resin and its preparation method, method for preparing polyimide film/cross-linked polyimide film using it |
CN111229061B (en) * | 2020-01-17 | 2021-11-19 | 西安交通大学 | Porous graphene separation membrane and preparation method thereof |
CN112480406A (en) * | 2020-11-30 | 2021-03-12 | 山东华夏神舟新材料有限公司 | High-permeability high-selectivity polyimide film and preparation method thereof |
CN112574412A (en) * | 2020-12-20 | 2021-03-30 | 天津工业大学 | Polyimide prepared based on diamino triptycene and derivatives thereof and used for gas separation and preparation method thereof |
CN113072703A (en) * | 2021-04-19 | 2021-07-06 | 中国科学院化学研究所 | Thermoplastic polyimide with excellent comprehensive performance and preparation method and application thereof |
CN115501758B (en) * | 2021-06-23 | 2023-08-11 | 中国石油化工股份有限公司 | Polyimide copolymers and membranes, their preparation and use, and systems and methods for purifying helium |
CN116272441B (en) * | 2022-04-24 | 2023-10-27 | 中国科学院过程工程研究所 | Structure and preparation method of a gas separation membrane used to extract helium from natural gas and resist plasticization effects |
CN115232026B (en) * | 2022-07-19 | 2024-07-30 | 东华大学 | Cyano diamine-containing cyano functionalized polyimide mixed matrix membrane and preparation thereof |
CN115382357A (en) * | 2022-08-04 | 2022-11-25 | 北京石大油源科技开发有限公司 | Adapt to medium and high concentration CO 2 Membrane separation technology with high-efficiency capture |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1970527A (en) * | 2005-11-23 | 2007-05-30 | 中国科学院化学研究所 | Diamine derivative containing fluorinated aromatic ateral group and its preparation method |
JP5915376B2 (en) * | 2011-05-30 | 2016-05-11 | セントラル硝子株式会社 | Gas separation membrane |
US8758491B2 (en) * | 2011-06-17 | 2014-06-24 | Honeywell International Inc. | Thin film gas separation membranes |
-
2015
- 2015-05-15 CN CN201510249582.1A patent/CN104829853B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104829853A (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104829853B (en) | A kind of polyimide gas separating film and preparation method and application | |
JP6397000B2 (en) | Self-crosslinking and self-crosslinking aromatic polyimide membranes for separation | |
CN105289337B (en) | A kind of crosslinkable polyimide gas separation membrane and preparation method | |
CN111019133B (en) | Polyimide resin for gas separation membrane, preparation method thereof and method for preparing polyimide gas separation membrane by using polyimide resin | |
CN114591503B (en) | Soluble poly (benzimidazole-co-imide) polymer and preparation and application thereof | |
CN108114615A (en) | A kind of polyimide gas separating film material and preparation and application | |
CN114854060A (en) | A kind of preparation method of fluorine-containing polyimide membrane for gas separation | |
CN109833784A (en) | A kind of Silicone Containing Polyimides gas separation membrane and preparation method | |
CN111116912B (en) | Polyimide resin and its preparation method, method for preparing polyimide film/cross-linked polyimide film using it | |
JP6142730B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
CN114395127B (en) | Polyimide resin for separating fluorine-containing gas and preparation method thereof | |
CN101733027A (en) | Flexible chain segment polyether-containing polyimide film material and method for preparing homogeneous film | |
CN107778484A (en) | A kind of polyimide hollow fiber and its preparation method and application | |
CN108745006A (en) | Fluorinated polyimide hollow-fibre membrane and preparation method thereof | |
CN106132522A (en) | Asymmetric gas separation membrane and the method for separation and recovery gas | |
JP6067205B2 (en) | Method for producing nitrogen-enriched air from hot gas | |
JP4857593B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
JP4978602B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
CN110591092A (en) | Novel polyimide polymer material based on 2,5-diallyloxy-p-phenylenediamine monomer and its preparation method | |
JP5136667B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
JP5099242B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method | |
JP2018001118A (en) | Gas separation membrane | |
Wang et al. | Synthesis, characterization, and gas permeation properties of 6FDA-2, 6-DAT/mPDA copolyimides | |
JP2016175000A (en) | Polyimide gas separation membrane and gas separation method | |
JP4857592B2 (en) | Asymmetric hollow fiber gas separation membrane and gas separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |