CN104821478A - Integratable automatic debugging circuit for optical eye pattern transmitted by optical module - Google Patents

Integratable automatic debugging circuit for optical eye pattern transmitted by optical module Download PDF

Info

Publication number
CN104821478A
CN104821478A CN201510288932.5A CN201510288932A CN104821478A CN 104821478 A CN104821478 A CN 104821478A CN 201510288932 A CN201510288932 A CN 201510288932A CN 104821478 A CN104821478 A CN 104821478A
Authority
CN
China
Prior art keywords
module
current
imod
ibias
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510288932.5A
Other languages
Chinese (zh)
Other versions
CN104821478B (en
Inventor
郭东辉
王韦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201510288932.5A priority Critical patent/CN104821478B/en
Publication of CN104821478A publication Critical patent/CN104821478A/en
Application granted granted Critical
Publication of CN104821478B publication Critical patent/CN104821478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

一种可集成的光模块发送光眼图的自动调试电路,涉及光模块。设有算法模块、Ibias电流DAC模块、Imod电流DAC模块、Ibias电流监控模块、Imod电流监控模块;算法模块输出端分别接Ibias电流DAC模块输入端和Imod电流DAC模块输入端,Ibias电流DAC模块输出端接Ibias电流监控模块输入端,Imod电流DAC模块输出端接Imod电流监控模块输入端,Ibias电流监控模块的Ibias电流输出端和Imod电流监控模块的Imod电流输出端分别接激光器的驱动器芯片输入端;Ibias电流监控模块和Imod电流监控模块接回算法模块。

An integrated optical module sending optical eye diagram automatic debugging circuit relates to the optical module. There are algorithm module, Ibias current DAC module, Imod current DAC module, Ibias current monitoring module, and Imod current monitoring module; the output terminals of the algorithm module are respectively connected to the input terminal of Ibias current DAC module and the input terminal of Imod current DAC module, and the output terminal of Ibias current DAC module The terminal is connected to the input terminal of the Ibias current monitoring module, the output terminal of the Imod current DAC module is connected to the input terminal of the Imod current monitoring module, the Ibias current output terminal of the Ibias current monitoring module and the Imod current output terminal of the Imod current monitoring module are respectively connected to the input terminal of the laser driver chip ; The Ibias current monitoring module and the Imod current monitoring module are connected back to the algorithm module.

Description

一种可集成的光模块发送光眼图的自动调试电路A kind of automatic debugging circuit of optical module transmitting optical eye diagram that can be integrated

技术领域technical field

本发明涉及光模块,尤其是涉及一种可集成的光模块发送光眼图的自动调试电路。The invention relates to an optical module, in particular to an integrated automatic debugging circuit for sending an optical eye diagram of the optical module.

背景技术Background technique

光纤通信网络连接到用户终端的接入网,接入网的技术由于网络宽带需求的发展正在演绎着“光进铜退”的浪潮。无源光网络因维护简便、便于安装和扩展而得到广泛应用,GPON(Gigabit-capable Passive Optical Network,吉比特无源光网络)成为光纤接入的最佳解决方案。GPON是一种点到多点的结构,可以灵活的组成树型、星型、总线型等拓扑结构,GPON由安装在中心控制站的OLT(Optical Line Termination,光线路终端)、安装于用户场所的光网络单元ONU(Optical Network Unit,光网络单元)及OLT和ONU之间的无源光网络ODN(Optical Distribution Network)。GPON系统采用WDM(Wavelength DivisionMultiplexing)波分复用技术,实现单纤双向传输,在OLT到ONU下行方向实现广播方式,ONU到OLT的上行方向采用突发方式。The optical fiber communication network is connected to the access network of the user terminal. Due to the development of network broadband demand, the technology of the access network is performing a wave of "light advances copper and retreats". Passive optical network is widely used because of its easy maintenance, easy installation and expansion, and GPON (Gigabit-capable Passive Optical Network, Gigabit-capable Passive Optical Network) has become the best solution for optical fiber access. GPON is a point-to-multipoint structure, which can flexibly form tree, star, bus and other topological structures. GPON is composed of OLT (Optical Line Termination) installed in the central control station and installed in the user's place. The optical network unit ONU (Optical Network Unit, optical network unit) and the passive optical network ODN (Optical Distribution Network) between the OLT and the ONU. The GPON system adopts WDM (Wavelength Division Multiplexing) wavelength division multiplexing technology to realize single-fiber bidirectional transmission. The broadcast mode is implemented in the downlink direction from OLT to ONU, and the burst mode is used in the uplink direction from ONU to OLT.

光模块是ONU的核心部件,主要包括激光器驱动芯片、激光器组件,实现光/电、电/光信号转换,BOSA(Bi-direction Optical Sub Assembly,光收发一体组件)是ONU光模块的核心器件,包括发送端和接收端,发送端速率为1.25Gbps,接收端组件速率为2.488Gbps。在发送端,激光器发出的1310nm激光经过光波导,呈一定角度到达滤波片的前端面,在此被端面全部反射进入光纤,而从光纤进来的1310nm的光信号却能够全部经过滤波片,被转换成电信号,实现单纤双向的功能。为了监控激光器的工作状态,实现自动功率调整,激光器发出的光的一部分约10%进入分支波导,被监控二极管吸收,转变为监控信号。发送光眼图是ONU发送端最关键的指标,眼图包含丰富的信息,体现数字信号的整体特征,能够有效评估数字信号的品质。如果发送光眼图质量不好,严重影响ONU与OLT之间的业务能力。The optical module is the core component of the ONU, mainly including laser driver chips, laser components, to achieve optical/electrical, electrical/optical signal conversion, BOSA (Bi-direction Optical Sub Assembly, optical transceiver integrated component) is the core device of the ONU optical module, Including the sending end and the receiving end, the rate of the sending end is 1.25Gbps, and the rate of the receiving end component is 2.488Gbps. At the sending end, the 1310nm laser light emitted by the laser passes through the optical waveguide and reaches the front end of the filter at a certain angle, where it is completely reflected by the end face and enters the optical fiber, while the 1310nm optical signals coming in from the optical fiber can all pass through the filter and be converted into electrical signals to realize the single-fiber bidirectional function. In order to monitor the working state of the laser and realize automatic power adjustment, about 10% of the light emitted by the laser enters the branch waveguide, is absorbed by the monitoring diode, and is transformed into a monitoring signal. The transmit optical eye diagram is the most critical indicator of the ONU transmitting end. The eye diagram contains rich information, reflects the overall characteristics of the digital signal, and can effectively evaluate the quality of the digital signal. If the quality of the optical eye diagram is not good, it will seriously affect the service capability between the ONU and the OLT.

激光二极管为电流控制器件,其正向电流超过阈值电流Ith则发光,一般情况,为了实现快速开启和关断,会对激光二极管加上略大于阈值电流的直流偏置电流Ibias;激光器输出取决于其驱动电流幅度以及斜效率,其阈值电流Ith和斜效率都与温度相关,离散型较大。The laser diode is a current control device, and its forward current exceeds the threshold current Ith to emit light. In general, in order to realize fast turn-on and turn-off, a DC bias current Ibias slightly greater than the threshold current will be added to the laser diode; the output of the laser depends on Its driving current amplitude and slope efficiency, its threshold current Ith and slope efficiency are all related to temperature, and the discrete type is relatively large.

中国专利公开号为CN201010519598.7的“一种光模块光眼图的自动调试方法”是通过得到激光器的阈值电流,然后通过计算机设置光模块的偏置电流为阈值电流与平衡系数之和,实现自动调试光眼图,无需由人工进行调试。The Chinese Patent Publication No. CN201010519598.7 "A Method for Automatically Debugging the Optical Eye Diagram of an Optical Module" is to obtain the threshold current of the laser, and then set the bias current of the optical module to the sum of the threshold current and the balance coefficient through the computer. Automatically debug the optical eye diagram without manual debugging.

中国专利公开号为CN 201110177788.X的“一种稳定EML TOSA稳定输出光眼图的方法”中只有发送端模块的核心温度的温度补偿查找表以模块温度为索引,而Ibias电流、Imod电流、偏压、交叉点的温度补偿查找表则以发送端模块的核心温度为索引,通过此方法使模块输出的光眼图更稳定。Chinese Patent Publication No. CN 201110177788.X "A Method for Stable EML TOSA Output Optical Eye Diagram" only has the temperature compensation lookup table of the core temperature of the transmitting end module indexed by the module temperature, and Ibias current, Imod current, The temperature compensation lookup table for bias voltage and cross point is indexed by the core temperature of the transmitter module, and this method makes the optical eye diagram output by the module more stable.

传统光模块眼图调试方式为:使用眼图仪和光功率计,采用逐点调节、测试、再调试,直到满足要求,效率很低,每个模块调试完成需要5min左右,调试过程中强依赖眼图仪和光功率计,如果没有眼图仪,便不知道眼图质量如何,对仪器的依赖性太强。目前常用的眼图仪主要为泰克和安捷伦的,但仪器内部的计算方法有所不同,所以对眼图调试的结果判断也会有所影响。并且仪器在使用过程中需要主要温度补偿、暗电流校准等,如果忘记,会导致测试失败,也会影响光眼图的测试效率。目前为了防止高低温环境下眼图质量的变化,会对眼图的消光比建立温度补偿表,而发送光功率在高低温下变化不大。The traditional optical module eye diagram debugging method is: use an eye diagram instrument and an optical power meter, adopt point-by-point adjustment, test, and then debug until the requirements are met, and the efficiency is very low. It takes about 5 minutes to complete the debugging of each module, and the debugging process is strongly dependent on the eye. Plotter and optical power meter, if there is no eye diagram, the quality of the eye diagram will not be known, and the dependence on the instrument is too strong. At present, the commonly used eye diagram instruments are mainly from Tektronix and Agilent, but the calculation methods inside the instruments are different, so the judgment of the eye diagram debugging results will also be affected. In addition, the instrument needs main temperature compensation, dark current calibration, etc. during use. If you forget, it will lead to test failure and affect the test efficiency of the optical eye diagram. At present, in order to prevent changes in the quality of the eye diagram under high and low temperature environments, a temperature compensation table is established for the extinction ratio of the eye diagram, and the transmitted optical power does not change much under high and low temperature conditions.

发明内容Contents of the invention

本发明的目的是提供可集成在激光器驱动芯片内部,可调试出合适的发送光功率和消光比,可实现光眼图的免人工调试,提升光眼图的调试效率、降低调试成本的一种可集成的光模块发送光眼图的自动调试电路。The purpose of the present invention is to provide a device that can be integrated in the laser driver chip, can debug the appropriate transmission optical power and extinction ratio, can realize the manual debugging of the optical eye diagram, improve the debugging efficiency of the optical eye diagram, and reduce the debugging cost. The integrated optical module sends the automatic debugging circuit of the optical eye diagram.

本发明设有算法模块、Ibias电流数字模拟转换模块、Imod电流数字模拟转换模块、Ibias电流监控模块、Imod电流监控模块;所述Ibias电流代表直流偏置电流,Imod电流代表调试电流;The present invention is provided with an algorithm module, an Ibias current digital-to-analog conversion module, an Imod current digital-to-analog conversion module, an Ibias current monitoring module, and an Imod current monitoring module; the Ibias current represents a DC bias current, and the Imod current represents a debugging current;

算法模块输出端分别接Ibias电流数字模拟转换模块输入端和Imod电流数字模拟转换模块输入端,Ibias电流数字模拟转换模块的输出端接Ibias电流监控模块的输入端,Imod电流数字模拟转换模块的输出端接Imod电流监控模块的输入端,Ibias电流监控模块的Ibias电流输出端和Imod电流监控模块的Imod电流输出端分别接激光器的驱动器芯片输入端;Ibias电流监控模块和Imod电流监控模块再连接回算法模块。The output terminal of the algorithm module is respectively connected to the input terminal of the Ibias current digital-analog conversion module and the input terminal of the Imod current digital-analog conversion module, the output terminal of the Ibias current digital-analog conversion module is connected to the input terminal of the Ibias current monitoring module, and the output terminal of the Imod current digital-analog conversion module The terminal is connected to the input terminal of the Imod current monitoring module, the Ibias current output terminal of the Ibias current monitoring module and the Imod current output terminal of the Imod current monitoring module are respectively connected to the input terminal of the driver chip of the laser; the Ibias current monitoring module and the Imod current monitoring module are connected back to the Algorithm module.

本发明的工作原理如下:The working principle of the present invention is as follows:

利用Ibias电流数字模拟转换(Digital to Analog Converter,DAC)模块、Ibias电流监控模块、Imod电流数字模拟转换模块、Imod电流监控模块实现激光器驱动芯片内部自动检测,然后根据反馈数据在内部的算法模块根据发送光功率Power和消光比ER的计算公式来自动调节Ibias电流和Imod电流对应的DA值(寄存器中十六进制数),直至调试出合适的发送光功率和消光比。从而实现光眼图的免人工调试。提升光眼图的调试效率,降低调试成本。Use the Ibias current digital-to-analog converter (Digital to Analog Converter, DAC) module, Ibias current monitoring module, Imod current digital-analog conversion module, and Imod current monitoring module to realize automatic detection inside the laser driver chip, and then according to the feedback data in the internal algorithm module according to The calculation formulas of transmit optical power Power and extinction ratio ER are used to automatically adjust the DA value (hexadecimal number in the register) corresponding to Ibias current and Imod current until the appropriate transmit optical power and extinction ratio are debugged. In this way, the manual debugging of the optical eye diagram is realized. Improve the debugging efficiency of the optical eye diagram and reduce the debugging cost.

根据发送光功率的计算公式:Pwr=(Imod/2+Ibias-Ith)*S(S为激光器的斜效率,Ith为激光器的阈值电流,均由光模块厂家提供),及ONU规定的发送光功率的最优值及范围。根据发送光眼图的消光比的计算公式:ER=10lg[(Imod+Ibias-Ith)/(Ibias-Ith)],及ONU规定的发送光眼图消光比的最优值及范围。According to the calculation formula of the transmitted optical power: Pwr=(Imod/2+Ibias-Ith)*S (S is the slope efficiency of the laser, and Ith is the threshold current of the laser, both of which are provided by the optical module manufacturer), and the transmitted optical power specified by the ONU The optimal value and range of power. According to the calculation formula of the extinction ratio of the transmit optical eye diagram: ER=10lg[(Imod+Ibias-Ith)/(Ibias-Ith)], and the optimal value and range of the extinction ratio of the transmit optical eye diagram specified by the ONU.

本发明在原有的激光器驱动器芯片内部集成一个自动调节Ibias电流和Imod电流对应DA值的功能模块,根据Pwr和ER与Ibias电流与Imod电流的关系计算公式及其设定规范值,采用逐渐逼近的方法自动调节芯片内部寄存器,自动调试出合适的Ibias电流和Imod电流对应的DA值,并且输出Ibias电流和Imod电流驱动激光器正常工作。The present invention integrates a function module that automatically adjusts the DA value corresponding to the Ibias current and the Imod current in the original laser driver chip, and adopts the gradually approaching The method automatically adjusts the internal registers of the chip, automatically debugs the appropriate DA value corresponding to the Ibias current and the Imod current, and outputs the Ibias current and the Imod current to drive the laser to work normally.

通过这种可集成电路实现光模块发送光眼图的自动调试相比于传统光模块发送光眼图的调试方法省去了人工调试的繁琐,节省了人力与设备成本,并且避免了人的主观因数和仪器误差影响对光眼图质量的判断。Through this integrated circuit, the automatic debugging of the optical eye diagram of the optical module can be realized. Compared with the traditional debugging method of the optical eye diagram of the optical module, it saves the tedious manual debugging, saves manpower and equipment costs, and avoids human subjectivity. Factors and instrument errors affect the judgment of the quality of the optical eye diagram.

附图说明Description of drawings

图1为本发明实施例结构组成框图。Fig. 1 is a block diagram of the structure composition of the embodiment of the present invention.

图2为集成有本发明实施例的激光器发送端匹配电路原理图。Fig. 2 is a schematic diagram of a laser transmitter matching circuit integrated with an embodiment of the present invention.

图3为集成有本发明实施例的激光器驱动电路特性分析图。Fig. 3 is a characteristic analysis diagram of a laser driving circuit integrated with an embodiment of the present invention.

图4为本发明实施例使用时光眼图自动调试流程图。Fig. 4 is a flow chart of automatic debugging of the eye diagram when using the embodiment of the present invention.

图5为传统光眼图手动调试流程图。Figure 5 is a flow chart of traditional optical eye diagram manual debugging.

具体实施方式Detailed ways

参见图1,本发明实施例设有算法模块1、Ibias电流数字模拟转换模块2、Imod电流数字模拟转换模块3、Ibias电流监控模块4、Imod电流监控模块5;所述Ibias电流代表直流偏置电流,Imod电流代表调试电流。算法模块1输出端分别接Ibias电流数字模拟转换模块2输入端和Imod电流数字模拟转换模块3输入端,Ibias电流数字模拟转换模块2的输出端接Ibias电流监控模块4的输入端,Imod电流数字模拟转换模块3的输出端接Imod电流监控模块5的输入端,Ibias电流监控模块4的Ibias电流输出端和Imod电流监控模块5的Imod电流输出端分别接激光器6的驱动器芯片输入端;Ibias电流监控模块4和Imod电流监控模块5再连接回算法模块1。在图1中,标记100表示本发明。Referring to Fig. 1, the embodiment of the present invention is provided with algorithm module 1, Ibias current digital-to-analog conversion module 2, Imod current digital-to-analog conversion module 3, Ibias current monitoring module 4, Imod current monitoring module 5; Described Ibias current represents DC bias Current, Imod current represents the debugging current. The output terminal of the algorithm module 1 is respectively connected to the input terminal of the Ibias current digital-analog conversion module 2 and the input terminal of the Imod current digital-analog conversion module 3, the output terminal of the Ibias current digital-analog conversion module 2 is connected to the input terminal of the Ibias current monitoring module 4, and the Imod current digital The output terminal of the analog conversion module 3 is connected to the input terminal of the Imod current monitoring module 5, and the Ibias current output terminal of the Ibias current monitoring module 4 and the Imod current output terminal of the Imod current monitoring module 5 are respectively connected to the driver chip input terminal of the laser 6; the Ibias current The monitoring module 4 and the Imod current monitoring module 5 are connected back to the algorithm module 1 again. In FIG. 1, numeral 100 denotes the present invention.

使用时,本发明可以集成在激光器的驱动器芯片内部,其中算法模块根据Pwr和ER的计算公式进行计算并且调整Ibias电流和Imod电流的DA值;Ibias电流的DA值输入到Ibias电流数字模拟转换模块电路,可以实现Ibias的数模转换,输出的Ibias电流值,输入到Ibias电流监控模块,Ibias电流一路反馈到算法模块电路,一路作为激光器芯片输出提供给激光器作为激光二极管的偏置电流。Imod电流的DA值输入到Imod电流数字模拟转换模块电路,可以实现Imod的数模转换,输出的Imod电流值,输入到Imod电流监控模块,Imod电流一路反馈到算法模块电路,一路作为激光器芯片输出提供给激光器作为激光二极管的调制电流。经过算法模块最终调试出的合适的DA值对应输出的偏置电流Ibias与调制电流Imod一起驱动激光器的正常工作。When in use, the present invention can be integrated in the driver chip of the laser, wherein the algorithm module calculates and adjusts the DA value of the Ibias current and Imod current according to the calculation formula of Pwr and ER; the DA value of the Ibias current is input to the Ibias current digital-to-analog conversion module The circuit can realize the digital-to-analog conversion of Ibias. The output Ibias current value is input to the Ibias current monitoring module. The Ibias current is fed back to the algorithm module circuit one way, and one way is used as the output of the laser chip to provide the laser as the bias current of the laser diode. The DA value of the Imod current is input to the Imod current digital-to-analog conversion module circuit, which can realize the digital-to-analog conversion of Imod. The output Imod current value is input to the Imod current monitoring module, and the Imod current is fed back to the algorithm module circuit one way, and one way is output as a laser chip. The modulation current supplied to the laser as a laser diode. The appropriate DA value finally debugged by the algorithm module corresponds to the output bias current Ibias and the modulation current Imod to drive the laser to work normally.

参加图2,通过集成在激光器的驱动器芯片61内部的本发明100最终调试出的合适的DA值对应输出的Ibias电流与Imod电流一起驱动激光器的正常工作,并且需要配合以合适的激光器发送端匹配电路才能保证发送端光眼图的质量。Referring to Fig. 2, the appropriate DA value finally debugged by the present invention 100 integrated in the driver chip 61 of the laser corresponds to the output Ibias current and Imod current to drive the normal operation of the laser, and needs to be matched with a suitable laser sending end The circuit can guarantee the quality of the optical eye diagram at the sending end.

图3给出激光器驱动电路特性,得到发送光功率即平均值Pwr与激光器的斜效率S、阈值电流Ith、直流偏置电流Ibias、调制电流Imod的关系表达式为:Figure 3 shows the characteristics of the laser drive circuit, and the relationship between the transmitted optical power, that is, the average value Pwr, and the slope efficiency S, threshold current Ith, DC bias current Ibias, and modulation current Imod of the laser is obtained as follows:

Pwr=(Imod/2+Ibias-Ith)*S  (1)Pwr=(Imod/2+Ibias-Ith)*S (1)

消光比指模块输出“1”的平均光功率P1与输出“0”的平均光功率P0的比值。即消光比ER与激光器的阈值电流Ith、直流偏置电流Ibias、调制电流Imod的关系表达式为:The extinction ratio refers to the ratio of the average optical power P1 of the module output "1" to the average optical power P0 of the output "0". That is, the relationship expression between the extinction ratio ER and the laser threshold current Ith, DC bias current Ibias, and modulation current Imod is:

ER=10lg(P1/P0)  (2)ER=10lg(P1/P0) (2)

ER=10lg[(Imod+Ibias-Ith)/(Ibias-Ith)]  (3)ER=10lg[(Imod+Ibias-Ith)/(Ibias-Ith)] (3)

参见图4,采用本发明实施例工作时,包括以下步骤:Referring to Fig. 4, when adopting the embodiment of the present invention to work, comprise the following steps:

1、配置是否开启自动调试的寄存器,0为不开启自动调试,可以进行手动调试;1. Configure whether to enable automatic debugging registers, 0 means not to enable automatic debugging, and manual debugging can be performed;

2、配置DA0和DA1的步长寄存器,选择DA0和DA1的步长;2. Configure the step size registers of DA0 and DA1, and select the step size of DA0 and DA1;

3、配置激光器的阈值电流Ith和斜效率的值(BOSA厂家提供);3. Configure the threshold current Ith and slope efficiency of the laser (provided by the BOSA manufacturer);

4、配置发送光功率Pwr和消光比ER的目标值;4. Configure the target values of transmit optical power Pwr and extinction ratio ER;

5、配置DA0和DA1的初始值;5. Configure the initial values of DA0 and DA1;

6、使能自动计算开关;6. Enable automatic calculation switch;

7、得出最后的DA0和DA1的值,并把自动计算开关使能关闭,下一次计算再开使能。7. Get the final values of DA0 and DA1, and turn off the automatic calculation switch, and enable it again for the next calculation.

传统光眼图手动调试流程图参见图5。Refer to Figure 5 for the flow chart of traditional optical eye diagram manual debugging.

Claims (1)

1. the optical module of accessible site sends an automatic Debugging circuit for light eye pattern, it is characterized in that being provided with algoritic module, Ibias current digital analog conversion module, Imod current digital analog conversion module, Ibias current monitoring module, Imod current monitoring module;
Algoritic module output connects Ibias current digital analog conversion module input and Imod current digital analog conversion module input respectively, the input of the output termination Ibias current monitoring module of Ibias current digital analog conversion module, the input of the output termination Imod current monitoring module of Imod current digital analog conversion module, the Ibias current output terminal of Ibias current monitoring module and the Imod current output terminal of Imod current monitoring module connect the driver chip input of laser respectively; Ibias current monitoring module is connected back algoritic module again with Imod current monitoring module.
CN201510288932.5A 2015-05-31 2015-05-31 A kind of optical module integrated sends the automatic debug circuit of light eye figure Active CN104821478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510288932.5A CN104821478B (en) 2015-05-31 2015-05-31 A kind of optical module integrated sends the automatic debug circuit of light eye figure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510288932.5A CN104821478B (en) 2015-05-31 2015-05-31 A kind of optical module integrated sends the automatic debug circuit of light eye figure

Publications (2)

Publication Number Publication Date
CN104821478A true CN104821478A (en) 2015-08-05
CN104821478B CN104821478B (en) 2019-02-01

Family

ID=53731696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510288932.5A Active CN104821478B (en) 2015-05-31 2015-05-31 A kind of optical module integrated sends the automatic debug circuit of light eye figure

Country Status (1)

Country Link
CN (1) CN104821478B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493131A (en) * 2017-07-17 2017-12-19 武汉电信器件有限公司 The chip-scale eye diagram testing method and test device of a kind of semiconductor laser chip
CN108170109A (en) * 2017-12-19 2018-06-15 武汉恒泰通技术有限公司 A kind of optical transmitting set debugging apparatus and its adjustment method
CN112104424A (en) * 2020-09-03 2020-12-18 南京捷澳德信息科技有限公司 High-temperature extinction ratio optimization method for 5G forward-transmission industrial-grade optical module
CN112346242A (en) * 2020-12-03 2021-02-09 长飞光纤光缆股份有限公司 Method and device for quickly and automatically adjusting transmission eye pattern parameters of optical module
CN117233457A (en) * 2023-11-16 2023-12-15 成都明夷电子科技有限公司 Method and equipment for testing high-speed modulation current of laser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050152413A1 (en) * 2004-01-14 2005-07-14 Yi-Yang Chang Laser driver circuit for burst mode transmission and manufacturing method
US20050152416A1 (en) * 2004-01-14 2005-07-14 Asia Optical Co., Inc. Laser driver circuit for burst mode transmission and fabrication method thereof
US20080187033A1 (en) * 2006-04-27 2008-08-07 Finisar Corporation Displaying eye-diagram and digital diagnostic data using network analyzers
CN102013624A (en) * 2010-10-26 2011-04-13 江苏奥雷光电有限公司 Automatic debugging method for optical eye diagram of optical module
CN102347584A (en) * 2011-06-29 2012-02-08 索尔思光电(成都)有限公司 Method for stabilizing light eye diagram output by EML (equal matrix language) TOSA (transmitter optical subassembly)
WO2015041609A1 (en) * 2013-09-19 2015-03-26 Agency For Science, Technology And Research Method and system for determining an optical eye diagram of a modulated optical beam of an interferometer device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050152413A1 (en) * 2004-01-14 2005-07-14 Yi-Yang Chang Laser driver circuit for burst mode transmission and manufacturing method
US20050152416A1 (en) * 2004-01-14 2005-07-14 Asia Optical Co., Inc. Laser driver circuit for burst mode transmission and fabrication method thereof
US20080187033A1 (en) * 2006-04-27 2008-08-07 Finisar Corporation Displaying eye-diagram and digital diagnostic data using network analyzers
CN102013624A (en) * 2010-10-26 2011-04-13 江苏奥雷光电有限公司 Automatic debugging method for optical eye diagram of optical module
CN102347584A (en) * 2011-06-29 2012-02-08 索尔思光电(成都)有限公司 Method for stabilizing light eye diagram output by EML (equal matrix language) TOSA (transmitter optical subassembly)
WO2015041609A1 (en) * 2013-09-19 2015-03-26 Agency For Science, Technology And Research Method and system for determining an optical eye diagram of a modulated optical beam of an interferometer device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493131A (en) * 2017-07-17 2017-12-19 武汉电信器件有限公司 The chip-scale eye diagram testing method and test device of a kind of semiconductor laser chip
CN108170109A (en) * 2017-12-19 2018-06-15 武汉恒泰通技术有限公司 A kind of optical transmitting set debugging apparatus and its adjustment method
CN112104424A (en) * 2020-09-03 2020-12-18 南京捷澳德信息科技有限公司 High-temperature extinction ratio optimization method for 5G forward-transmission industrial-grade optical module
CN112104424B (en) * 2020-09-03 2022-04-01 南京捷澳德信息科技有限公司 High-temperature extinction ratio optimization method for 5G forward-transmission industrial-grade optical module
CN112346242A (en) * 2020-12-03 2021-02-09 长飞光纤光缆股份有限公司 Method and device for quickly and automatically adjusting transmission eye pattern parameters of optical module
CN112346242B (en) * 2020-12-03 2021-05-28 长飞光纤光缆股份有限公司 Method and device for quickly and automatically adjusting transmission eye pattern parameters of optical module
CN117233457A (en) * 2023-11-16 2023-12-15 成都明夷电子科技有限公司 Method and equipment for testing high-speed modulation current of laser
CN117233457B (en) * 2023-11-16 2024-03-12 成都明夷电子科技有限公司 Method and equipment for testing high-speed modulation current of laser

Also Published As

Publication number Publication date
CN104821478B (en) 2019-02-01

Similar Documents

Publication Publication Date Title
CN101895350B (en) 10G Ethernet passive network single-fiber bidirectional optical module
CN102625199B (en) Dual-channel GEPON OLT CSFP (Gigabitcapable Passive Optical Network Optical Line Terminal Compact Small Form Factor Pluggable) optical module
CN104821478A (en) Integratable automatic debugging circuit for optical eye pattern transmitted by optical module
CN107517080B (en) Optical power detection method, device, equipment and optical module
CN101447830B (en) Ethernet passive optical network (EPON) optical line terminal photoelectric module with digital supervision and reporting functions
US20160006503A1 (en) OTDR optical path detection device and method
CN202696605U (en) PON light module detecting device
CN104993873A (en) Optical module
CN102868439A (en) Control system for realizing multiplexing of pin of OLT (optical line terminal) optical module
CN102209281A (en) 10G EPON OLT (Ethernet passive optical network optical line terminal) single-fiber three-dimensional optical module
CN105871471A (en) Optical module
CN104269737A (en) Optical module as well as debugging system and debugging method thereof
CN103475406A (en) ONU optical module emergent emission optical power monitoring system and monitoring method thereof
CN103580748A (en) Optical line terminal with OTDR function and optical module thereof
CN102200671B (en) Extinction ratio debugging device and method of optical module
KR20240116533A (en) optical module
CN112491466B (en) Light intensity modulation radio frequency signal phase consistency measuring device and measuring method
CN106559139A (en) A kind of optical module
CN103236890A (en) ONU (optical network unit) intelligent optical transceiver module capable of automatically closing long-emission laser device
CN109347564B (en) Optical module
CN107070544B (en) Optical module, detection device using the same, and determination method
CN115333617A (en) Multi-channel optical module evaluation board and optical module test system
CN106656339A (en) GSM-R repeater Ethernet double-fiber optical transmitter/receiver with an optical loss automatic gain compensation function
CN209562553U (en) A kind of burst reception signal strength instruction RSSI calibrating installation
CN105807534B (en) The optionally intelligent semiconductor light fiber amplifier of operating mode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant