CN104820756B - 一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法 - Google Patents

一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法 Download PDF

Info

Publication number
CN104820756B
CN104820756B CN201510250508.1A CN201510250508A CN104820756B CN 104820756 B CN104820756 B CN 104820756B CN 201510250508 A CN201510250508 A CN 201510250508A CN 104820756 B CN104820756 B CN 104820756B
Authority
CN
China
Prior art keywords
gear
stiffness
engagement
matrix
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510250508.1A
Other languages
English (en)
Other versions
CN104820756A (zh
Inventor
马辉
冯然娇
逄旭
闻邦椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201510250508.1A priority Critical patent/CN104820756B/zh
Publication of CN104820756A publication Critical patent/CN104820756A/zh
Application granted granted Critical
Publication of CN104820756B publication Critical patent/CN104820756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gears, Cams (AREA)

Abstract

本发明涉及一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,该方法为获取健康齿轮的基本参数和裂纹齿轮的基本参数及裂纹参数,建立齿轮的包含基体刚度的齿轮啮合刚度模型,利用有限元方法计算齿轮的主动轮的基体刚度和从动轮的基体刚度,确定包含基体刚度的啮合刚度模型的齿轮基体刚度修正系数,利用求解齿轮传递误差方法确定齿轮的轮齿变形,得到考虑延长啮合的齿轮时变啮合刚度,获取齿轮转子系统的轴及轴承的基本参数,得到齿轮转子系统的刚度矩阵K,根据齿轮转子系统的刚度矩阵K构建出考虑延长啮合的齿轮转子系统振动响应分析模型,确定健康齿轮和裂纹齿轮的系统振动响应结果。

Description

一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法
技术领域
本发明属于机械动力学技术领域,具体涉及一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法。
背景技术
时变啮合刚度的计算是裂纹齿轮动力学研究的一个重要领域,许多研究者提出了计算时变啮合刚度的模型,根据时变啮合刚度的求法不同,现有的裂纹齿轮转子系统动力参数确定方法主要有以下几种方法:方法1:有限元法,此方法应用最为广泛,因为它有高的准确率同时可以模拟复杂的齿轮结构,基于有限元模型,时变啮合刚度可以通过在理论接触点上施加一个代表齿轮传递载荷的啮合力或在啮合轮齿之间建立接触单元来实现的,但是此方法计算效率较低;方法2:解析法,是基于具有高计算效率的变截面悬臂梁假设,但是,它的计算准确率低于有限元方法。时变啮合刚度的解析法广泛应用于振动估计和齿轮故障诊断;方法3:实验法,是基于传统的光弹性技术来测量时变啮合刚度的变化;方法4:有限元分析法,结合了有限元法(高计算准确性)和解析法(高计算效率)的优点。基于有限元分析模型,对于裂纹齿轮的时变啮合刚度计算尽管为了提高计算准确性许多因素被考虑进来,但是还是有许多限制需要突破,例如延长啮合作用和裂纹对齿轮基体刚度的削弱。现在,许多研究者在计算时变啮合刚度时假设实际啮合位置与设计的位置(此位置假设轮齿为刚体)相同。但是,实际上齿轮是弹性的,且这种弹性(尤其在有裂纹时)可能导致齿轮对比理论接触点(由现有的不考虑延长啮合的解析法计算得到)提前啮入,同时延后啮出,即,延长啮合现象。另外,由于两个同时啮合的轮齿公用一个齿体,将导致在双齿啮合区的时变啮合刚度远高于实际刚度。
发明内容
针对现有技术的不足,本发明提出一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法。
本发明技术方案如下:
一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,包括以下步骤:
步骤1:获取健康齿轮的基本参数和裂纹齿轮的基本参数及裂纹参数;
步骤2:建立齿轮的包含基体刚度的齿轮啮合刚度模型;
步骤2.1:令j为当前齿轮啮合位置,i=1、2、3为齿轮转动方向相邻的三个齿对,令不考虑延长啮合的齿轮对1处于啮合状态且齿轮对2刚发生接触为初始位置,利用传统解析法建立第i对轮齿的齿轮啮合刚度模型;
利用传统解析法建立第i对轮齿的齿轮啮合刚度模型表示如下:
其中,为第i对轮齿的齿轮啮合刚度,为第i对轮齿的局部接触刚度,为第i对轮齿的主动轮的轮齿部分刚度,第i对轮齿的从动轮的轮齿部分刚度,的计算公式如下:
其中,为第i对轮齿不包含裂纹时的主动轮的轮齿弯曲刚度,为第i对轮齿不包含裂纹时的主动轮的轮齿剪切刚度,为第i对轮齿不包含裂纹时的主动轮的轮齿轴向压缩刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿弯曲刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿剪切刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿轴向压缩刚度,为第i对轮齿包含裂纹时的主动轮的轮齿弯曲刚度,为第i对轮齿包含裂纹时的主动轮的轮齿剪切刚度,为第i对轮齿当包裂纹时的从动轮的轮齿弯曲刚度,为第i对轮齿包含裂纹时的从动轮的轮齿剪切刚度;
步骤2.2:利用解析法建立齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型;
利用解析法建立齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型如下:
其中,(k)j为齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度,λ1为主动轮的齿轮基体刚度修正系数、λ2为从动轮的齿轮基体刚度修正系数,(kf1)j为齿轮在j啮合位置时主动轮的基体刚度,(kf2)j为齿轮在j啮合位置时从动轮的基体刚度,(ktooth)j为齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度;
步骤3:计算考虑延长啮合的齿轮时变啮合刚度;
步骤3.1:利用有限元方法计算齿轮的主动轮的基体刚度和从动轮的基体刚度,确定包含基体刚度的啮合刚度模型的主动轮的齿轮基体刚度修正系数和从动轮的齿轮基体刚度修正系数;
利用有限元方法计算出啮合位置在不考虑延长啮合的主动轮双齿啮合区结束点处时的主动轮的基体刚度kfA,啮合位置在不考虑延长啮合的主动轮单齿啮合区开始点处时的主动轮的基体刚度kfB,啮合位置在不考虑延长啮合的从动轮双齿啮合区开始点处时的从动轮的基体刚度kfA′,啮合位置在不考虑延长啮合的从动轮单齿啮合区开始点处时的从动轮的基体刚度kfB′,确定的主动轮的齿轮基体刚度修正系数λ1和从动轮的齿轮基体刚度修正系数λ2表示如下:
其中,kfB_health为啮合位置在不考虑延长啮合的主动轮单齿啮合区开始点且啮合齿轮为健康齿对时的主动轮的基体刚度,kfB′_health表示啮合位置在不考虑延长啮合的从动轮单齿啮合区开始点且啮合齿轮为健康齿对时的从动轮的基体刚度;
步骤3.2:利用求解齿轮传递误差方法确定齿轮的轮齿变形,得到不同啮合位置的考虑延长啮合的齿轮啮合刚度,即考虑延长啮合的齿轮时变啮合刚度;
步骤3.2.1:计算齿轮在初始位置时的包含基体刚度的齿轮啮合刚度;
计算齿轮在初始位置时的包含基体刚度的齿轮啮合刚度的公式如下:
其中,(k)0为齿轮在初始位置时的包含基体刚度的齿轮啮合刚度,N=3,(ktooth)0是齿轮在初始位置时的齿轮啮合刚度,为齿轮在初始位置时的第i对轮齿的齿轮啮合刚度,(kf1)0为齿轮在初始位置时主动轮的基体刚度,(kf2)0为齿轮在初始位置时从动轮的基体刚度;
步骤3.2.2:根据齿轮在j前一个啮合位置时的包含基体刚度的齿轮啮合刚度确定齿轮在j啮合位置时齿轮传递误差;
根据齿轮在j前一个啮合位置时的包含基体刚度的齿轮啮合刚度确定齿轮在j啮合位置时齿轮传递误差的计算公式表示如下:
其中,F为齿轮传递载荷,(k)j-1为j前一个啮合位置时的包含基体刚度的齿轮啮合刚度,(Ep)j为齿轮在j啮合位置时齿廓误差或者由齿廓修形引起的齿廓偏差,为齿轮在j啮合位置时啮合的齿对中齿廓误差或者由齿廓修形引起的齿廓偏差的最小值;
步骤3.2.3:根据齿轮在j啮合位置时齿轮传递误差确定齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度,代入齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型,得到齿轮在j啮合位置时的考虑延长啮合的齿轮啮合刚度;
根据齿轮在j啮合位置时齿轮传递误差确定齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度的过程具体为:
当啮合位置j处于不考虑延长啮合时齿轮对1和齿轮对2同时啮合的双齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度表示如下:
时,为齿轮三齿接触,当时,为齿轮两齿接触:
其中,为齿轮在j啮合位置时第i对轮齿的单位力作用下的轮齿变形,为齿轮在j啮合位置时第i对轮齿的齿轮啮合刚度,为齿轮在j啮合位置时第i对轮齿的齿廓误差或者由齿廓修形引起的齿廓偏差,为齿轮在j啮合位置时第i对轮齿的间隙误差,(Sa)j为齿轮在j啮合位置时将要进入啮合的齿对3在啮合线方向上的分离距离,(Sr)j为齿轮在j啮合位置时将要退出啮合的齿对1在啮合线方向上的分离距离;
当啮合位置j处于仅齿轮对2啮合的单齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度表示如下:
时,为齿轮双齿接触,当时,为齿轮双齿啮合,当时,为齿轮三齿啮合,当时,为齿轮单齿啮合:
当啮合位置j处于齿轮对2和3同时啮合的双齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度表示如下:
时,为齿轮双齿啮合,当时,为齿轮单齿啮合:
步骤3.2.4:计算齿轮在不同啮合位置的考虑延长啮合的齿轮啮合刚度,即考虑延长啮合的齿轮时变啮合刚度;
步骤4:确定齿轮转子系统的刚度矩阵K;
步骤4.1:获取齿轮转子系统的轴及轴承的基本参数;
步骤4.2:利用矩阵变换将考虑延长啮合的齿轮时变啮合刚度和齿轮转子系统的轴及轴承的基本参数进行扩展,得到齿轮转子系统的刚度矩阵K;
步骤5:根据齿轮转子系统的刚度矩阵K构建出考虑延长啮合的齿轮转子系统振动响应分析模型:其中,M为齿轮转子系统的质量矩阵,C为齿轮转子系统的阻尼矩阵,G为齿轮转子系统的陀螺矩阵,u为齿轮转子系统的位移,为u的一阶导数,ü为u的二阶导数,Fu为齿轮转子系统的外力向量;
步骤6:获取齿轮转子系统的质量矩阵M、齿轮转子系统的阻尼矩阵C和齿轮转子系统的陀螺矩阵G,利用齿轮转子系统的刚度矩阵K,采用Newmark-β数值算法求解考虑延长啮合的齿轮转子系统振动响应分析模型,确定健康齿轮和裂纹齿轮的系统振动响应结果:齿轮转子系统的固有特性、齿轮转子系统的时域分析图和齿轮转子系统的频域分析图。
本发明的有益效果是:
本发明提出一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,对现有的动力学参数的计算方法进行了改进,修正了在以往齿轮时变啮合刚度计算中基体刚度重复计算的问题,并进一步考虑了延长啮合对齿轮时变啮合刚度的影响。进而使动力学参数更加准确且计算效率高,得到的振动响应分析结果更加真实可信,为之后的故障诊断,齿轮转子系统预估提供了前提。
附图说明
图1为本发明具体实施方式中的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法的流程图;
图2为本发明具体实施方式中的裂纹齿轮原理图;
图3为本发明具体实施方式中的齿轮的主动轮的包含裂纹的有限元模型;
其中,(a)为单齿啮合区,(b)为双齿啮合区;
图4为本发明具体实施方式中的利用有限元方法得到的齿轮的基体刚度示意图;
图5为本发明具体实施方式中的啮合的齿轮的原理图;
图6为本发明具体实施方式中的齿轮传递误差;
其中,(a)为在实际齿轮啮合刚度较大或承受转矩较小时的传递误差,(b)为在际齿轮啮合刚度相对较小或承受转矩较大时的传递误差,(c)为在实际齿轮啮合刚度很小或承受转矩很大时的传递误差;
图7为本发明具体实施方式中的转矩T=60Nm、裂纹深度q=0mm、q=1mm、q=2mm和q=3mm时的齿轮时变啮合刚度;
其中,(a)为传统解析法的齿轮时变啮合刚度,(b)为有限元方法的齿轮时变啮合刚度,(c)本发明考虑延长啮合的齿轮时变啮合刚度;
图8为本发明具体实施方式中的裂纹深度q=3mm转矩T=10Nm、T=100Nm、T=150Nm和T=300Nm时的齿轮时变啮合刚度;
其中,(a)为转矩T=10Nm时的齿轮时变啮合刚度,(b)为转矩T=100Nm时的齿轮时变啮合刚度,(c)为转矩T=150Nm时的齿轮时变啮合刚度,(d)为转矩T=300Nm时的齿轮时变啮合刚度;
图9为本发明具体实施方式中的齿轮-转子系统有限元模型和齿轮副动力学模型;
图10为本发明具体实施方式中的转矩T=60Nm、裂纹深度q=1mm和q=3mm时齿轮转子系统的时域分析图;
其中,(a)为转矩T=60Nm、裂纹深度q=1mm时齿轮转子系统的时域分析图,(b)为转矩T=60Nm、裂纹深度q=3mm时齿轮转子系统的时域分析图;
图11为本发明具体实施方式中的裂纹深度q=3mm、转矩T=10Nm和T=150Nm时齿轮转子系统的时域分析图;
其中,(a)为转矩T=10Nm、裂纹深度q=3mm时齿轮转子系统的时域分析图,(b)为转矩T=150Nm、裂纹深度q=3mm时齿轮转子系统的时域分析图。
具体实施方式
下面结合附图对本发明具体实施方式加以详细的说明。
一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,如图1所示,包括以下步骤:
步骤1:获取健康齿轮的基本参数和裂纹齿轮的基本参数及裂纹参数。
本实施方式中,获取健康齿轮的基本参数和裂纹齿轮的基本参数如表1所示:
表1健康齿轮的基本参数和裂纹齿轮的基本参数
裂纹齿轮原理图如图2所示:裂纹的几何参数(q、υ、ψ),其中q表示裂纹深度,υ表示裂纹扩展方向,ψ表示裂纹起始位置,G为齿顶圆与渐开线的交点,H为渐开线起始点,Q为裂纹起始点,P为裂纹终止点。
本实施方式中,裂纹齿轮的裂纹参数为:裂纹深度q=1mm,q=2mm和q=3mm,裂纹扩展方向υ=45°,裂纹起始位置ψ=35°。
步骤2:建立齿轮的包含基体刚度的齿轮啮合刚度模型。
步骤2.1:令j为当前齿轮啮合位置,i=1、2、3为齿轮转动方向相邻的三个齿对,令不考虑延长啮合的齿轮对1处于啮合状态且齿轮对2刚发生接触为初始位置,利用传统解析法建立第i对轮齿的齿轮啮合刚度模型。
利用传统解析法建立第i对轮齿的齿轮啮合刚度模型如公式(1)所示:
其中,为第i对轮齿的齿轮啮合刚度,为第i对轮齿的局部接触刚度,为第i对轮齿的主动轮的轮齿部分刚度,第i对轮齿的从动轮的轮齿部分刚度,的计算公式如式(2)和式(3)所示:
其中,为第i对轮齿不包含裂纹时的主动轮的轮齿弯曲刚度,为第i对轮齿不包含裂纹时的主动轮的轮齿剪切刚度,为第i对轮齿不包含裂纹时的主动轮的轮齿轴向压缩刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿弯曲刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿剪切刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿轴向压缩刚度,为第i对轮齿包含裂纹时的主动轮的轮齿弯曲刚度,为第i对轮齿包含裂纹时的主动轮的轮齿剪切刚度,为第i对轮齿当包裂纹时的从动轮的轮齿弯曲刚度,为第i对轮齿包含裂纹时的从动轮的轮齿剪切刚度。
本实施方式中,第i对轮齿的局部接触刚度采用半经验法计算,如式(4)所示:
其中,L为齿轮的齿宽,E为齿轮的弹性模量,F为齿轮传递载荷。
本实施方式中,齿轮的裂纹采取直线模拟,而过渡曲线为抛物线,通过MATLAB编程进行计算,得到相应的时变啮合刚度,即第i对轮齿不包含裂纹时的主动轮的轮齿弯曲刚度第i对轮齿不包含裂纹时的主动轮的轮齿剪切刚度第i对轮齿不包含裂纹时的主动轮的轮齿轴向压缩刚度第i对轮齿不包含裂纹时的从动轮的轮齿弯曲刚度第i对轮齿不包含裂纹时的从动轮的轮齿剪切刚度第i对轮齿不包含裂纹时的从动轮的轮齿轴向压缩刚度第i对轮齿包含裂纹时的主动轮的轮齿弯曲刚度第i对轮齿包含裂纹时的主动轮的轮齿剪切刚度第i对轮齿当包裂纹时的从动轮的轮齿弯曲刚度第i对轮齿包含裂纹时的从动轮的轮齿剪切刚度
步骤2.2:利用解析法建立齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型。
利用解析法建立齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型如公式(5)所示:
其中,(k)j为齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度,λ1为主动轮的齿轮基体刚度修正系数、λ2为从动轮的齿轮基体刚度修正系数,(kf1)j为齿轮在j啮合位置时主动轮的基体刚度,(kf2)j为齿轮在j啮合位置时从动轮的基体刚度,(ktooth)j为齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度。
步骤3:计算考虑延长啮合的齿轮时变啮合刚度;
步骤3.1:利用有限元方法计算齿轮的主动轮的基体刚度和从动轮的基体刚度,确定包含基体刚度的啮合刚度模型的主动轮的齿轮基体刚度修正系数和从动轮的齿轮基体刚度修正系数。
利用有限元方法计算出啮合位置在不考虑延长啮合的主动轮双齿啮合区结束点处时的主动轮的基体刚度kfA,啮合位置在不考虑延长啮合的主动轮单齿啮合区开始点处时的主动轮的基体刚度kfB,啮合位置在不考虑延长啮合的从动轮双齿啮合区开始点处时的从动轮的基体刚度kfA′,啮合位置在不考虑延长啮合的从动轮单齿啮合区开始点处时的从动轮的基体刚度kfB′,确定的主动轮的齿轮基体刚度修正系数λ1如式(6)所示,从动轮的齿轮基体刚度修正系数λ2如式(7)所示:
其中,kfB_health为啮合位置在不考虑延长啮合的主动轮单齿啮合区开始点且啮合齿轮为健康齿对时的主动轮的基体刚度,kfB′_health表示啮合位置在不考虑延长啮合的从动轮单齿啮合区开始点且啮合齿轮为健康齿对时的从动轮的基体刚度。
本实施方式中,采用ANSYS有限元分析软件进行计算,齿轮的主动轮的包含裂纹的有限元模型如图3所示:
基于平面应力假设,采用平面单元Plane183来划分网格,裂纹尖端采用二维奇异单元。为不考虑齿轮的柔性,将啮合齿轮所有节点与啮合位置处Mass21单元进行刚性耦合,并约束啮合线方向自由度。其中齿轮内孔节点与内孔中心主控节点进行耦合,约束主控节点平动自由度。主动轮所受扭矩T等效为内孔切向力,施加在齿轮内孔节点。然后对有限元模型进行求解(不同裂纹深度分别建立有限元模型分别求解),提取出对应裂纹深度的齿轮转角变形量,进而可以求得对应的齿轮基体刚度,基体刚度随着裂纹的增加而减少。
利用有限元方法得到的齿轮的基体刚度示意图如图4所示:
取主动轮双齿啮合区结束点为参考点A,之后的单齿啮合区起始点为参考点B,取从动轮双齿啮合区起始点为参考点A’,之前的单齿啮合区结束点为参考点B’,评估齿体刚度的增加或减少。通过公式(6)和(7)分别计算主动轮的齿轮基体刚度修正系数λ1和从动轮的齿轮基体刚度修正系数λ2
本实施方式中,考虑包括裂纹齿的4个啮合周期。同时,对于三齿啮合区齿轮基体刚度修正系数采取和双齿啮合区相同的(扭矩对齿轮基本修正系数产生影响很小)。
根据图4中各点位置的刚度通过主动轮的齿轮基体刚度修正系数λ1、从动轮的齿轮基体刚度修正系数λ2计算公式,计算得从动轮基体刚度的修正系数λ2如表2所示:
表2从动轮基体刚度的修正系数λ2
步骤3.2:利用求解齿轮传递误差方法确定齿轮的轮齿变形,得到不同啮合位置的考虑延长啮合的齿轮啮合刚度,即考虑延长啮合的齿轮时变啮合刚度。
本实施方式中,啮合的齿轮的原理图如图5所示:j为当前齿轮啮合位置,i=1、2、3为齿轮转动方向相邻的三个齿对,令不考虑延长啮合的齿轮对1处于啮合状态且齿轮对2刚发生接触为初始位置,图中直线和虚线分别代表实际和理论的齿轮边缘,AB和CD代表理论的双齿接触区,同时BC代表理论单齿啮合区。Sa为将要进入啮合的齿对3在啮合线方向上的分离距离,Sr为将要退出啮合的齿对1在啮合线方向上的分离距离。
步骤3.2.1:计算齿轮在初始位置时的包含基体刚度的齿轮啮合刚度。
计算齿轮在初始位置时的包含基体刚度的齿轮啮合刚度如式(8)所示:
其中,(k)0为齿轮在初始位置时的包含基体刚度的齿轮啮合刚度,N=3,(ktooth)0是齿轮在初始位置时的齿轮啮合刚度,为齿轮在初始位置时的第i对齿轮啮合刚度,(kf1)0为齿轮在初始位置时主动轮的基体刚度,(kf2)0为齿轮在初始位置时从动轮的基体刚度。
步骤3.2.2:根据齿轮在j前一个啮合位置时的包含基体刚度的齿轮啮合刚度确定齿轮在j啮合位置时齿轮传递误差。
齿轮在不同参数条件下的齿轮传递误差如图6所示,图中B和C点分别表示理论啮出点和啮入点,B′和C′分别表示实际啮出点和啮入点。由图可以看出,整个齿廓被上述4点分成5个区域,I和V对应双齿啮合区,II和IV为过渡区,分别为延长啮出区和提前啮入区,III为单齿啮合区。
如图6(a),当实际齿轮啮合刚度较大或转矩较小时,延长啮合现象使双齿啮合区延长但并未发生三齿啮合现象;如图6(b),当实际齿轮啮合刚度相对较小或承受扭矩较大时,导致单齿啮合消失甚至出现三齿啮合现象;如图6(c),当实际齿轮啮合刚度很小或承受扭矩很大时,单齿区完全变为三齿啮合区,在原双齿啮合区也出现了三齿啮合现象。可以看到本发明更真实的反映了齿轮实际的工作状态,尤其在齿轮刚度较小或转矩很大时,本发明作用更加突出。
根据齿轮在j前一个啮合位置时的包含基体刚度的齿轮啮合刚度确定齿轮在j啮合位置时齿轮传递误差的计算公式如式(9)所示:
其中,F为齿轮传递载荷,(k)j-1为j前一个啮合位置时的包含基体刚度的齿轮啮合刚度,(Ep)j为齿轮在j啮合位置时齿廓误差或者由齿廓修形引起的齿廓偏差,为齿轮在j啮合位置时啮合的齿对中齿廓误差或者由齿廓修形引起的齿廓偏差的最小值,(Ep)j的计算公式如式(10)所示:
为j啮合位置时第i对轮齿对齿廓误差或者由齿廓修形引起的齿廓偏差,当齿廓移除材料时,当齿廓增加材料时,
步骤3.2.3:根据齿轮在j啮合位置时齿轮传递误差确定齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度,代入齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型,得到齿轮在j啮合位置时的考虑延长啮合的齿轮啮合刚度。
根据齿轮在j啮合位置时齿轮传递误差确定齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度的过程具体为:
当啮合位置j处于不考虑延长啮合时齿轮对1和齿轮对2同时啮合的双齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度如式(11)所示:
时,为齿轮三齿接触,当时,为齿轮两齿接触:
其中,为齿轮在j啮合位置时第i对轮齿的单位力作用下的轮齿变形,为齿轮在j啮合位置时第i对轮齿的齿轮啮合刚度,为齿轮在j啮合位置时第i对轮齿的齿廓误差或者由齿廓修形引起的齿廓偏差,为齿轮在j啮合位置时第i对轮齿间隙误差,(Sa)j为齿轮在j啮合位置时将要进入啮合的齿对3在啮合线方向上的分离距离,(Sr)j为齿轮在j啮合位置时将要退出啮合的齿对1在啮合线方向上的分离距离。
当啮合位置j处于仅齿轮对2啮合的单齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度如式(12)所示:
时,为齿轮双齿接触,当时,为齿轮双齿啮合,当时,为齿轮三齿啮合,当时,为齿轮单齿啮合:
其中,时,为齿轮双齿接触,时,为齿轮双齿啮合,时,为齿轮三齿啮合,若时,为齿轮单齿啮合。
当啮合位置j处于齿轮对2和3同时啮合的双齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度如式(13)所示:
时,为齿轮双齿啮合,当时,为齿轮单齿啮合:
步骤3.2.4:计算齿轮在不同啮合位置的考虑延长啮合的齿轮啮合刚度,即考虑延长啮合的齿轮时变啮合刚度。
本实施方式中,转矩在T=60Nm、裂纹深度q=0mm、q=1mm、q=2mm和q=3mm时的齿轮时变啮合刚度如图7所示,(a)为传统解析法的齿轮时变啮合刚度,(b)为有限元方法的齿轮时变啮合刚度,(c)本发明考虑延长啮合的齿轮时变啮合刚度。
由图7可以看出,在单齿和双齿啮合之间的过渡区,有限元方法和本发明的方法得到的时变啮合刚度曲线不像传统方法出现突变而是较平滑的过度。同时除了理论的裂纹齿接触区(如放大图)本发明的模型与传统的所获得的时变啮合刚度相比裂纹齿的啮合刚度变小了。这是因为轮齿基体刚度的减小造成的。同时,明显可以看到本发明的结果更接近于有限元模型。单齿区的最大误差出现在无裂纹情况下为7.85%,同样双齿啮合取得最大误差在裂纹深度为q=3mm时出现为4.84%。但是对于传统模型的结果单双齿取得最大值分别为8.03%和30.39%。转矩在T=60Nm、裂纹深度为q=1mm和q=3mm时传统解析法的齿轮时变啮合刚度、有限元方法的齿轮时变啮合刚度、本发明考虑延长啮合的齿轮时变啮合刚度如表3所示:
表3转矩在60Nm、裂纹深度为1mm和3mm时的齿轮时变啮合刚度
本实施方式中,裂纹深度q=3mm转矩为T=10Nm、T=100Nm、T=150Nm和T=300Nm时的齿轮时变啮合刚度如图8所示,(a)为转矩T=10Nm时的齿轮时变啮合刚度,(b)为转矩T=100Nm时的齿轮时变啮合刚度,(c)为转矩T=150Nm时的齿轮时变啮合刚度,(d)为转矩T=300Nm时的齿轮时变啮合刚度。
由图8可知,随着扭矩的增加,延长啮合现象越来越明显。在扭矩为T=100Nm、T=150Nm和T=300Nm时,三齿啮合区出现(如图8(b)、图8(c)和图8(d))。对于传统解析法的结果单齿啮合区的最大误差出现在扭矩为T=300Nm时,为32.55%,同样双齿区的最大值实在扭矩为10Nm时,为26.52%(见表4)。但是对于本发明的结果单双齿区的最大误差分别为12.08%and 6.3%。对比传统解析法,可以很明显的看出本发明的结果更接近有限元方法。
裂纹深度q=3mm转矩为T=10Nm、T=100Nm、T=150Nm和T=300Nm时的传统解析法的齿轮时变啮合刚度、有限元方法的齿轮时变啮合刚度、本发明考虑延长啮合的齿轮时变啮合刚度如表4所示:
表4裂纹深度q=3mm转矩为T=10Nm、T=100Nm、T=150Nm和T=300Nm时的齿轮时变啮合刚度
步骤4:确定齿轮转子系统的刚度矩阵K。
步骤4.1:获取齿轮转子系统的轴及轴承的基本参数。
本实施方式中,齿轮-转子系统有限元模型和齿轮副动力学模型如图9所示,转子系统轴系参数如表5所示,转子系统轴承参数如表6所示:
转子系统轴承的材料为45号钢,密度7850kg/m3。两个转轴分别划分为13个集中质量单点,齿轮1所处的集中质量点编号为8,齿轮2编号为22。
表5转子系统轴系参数
表6转子系统轴承参数
步骤4.2:利用矩阵变换将考虑延长啮合的齿轮时变啮合刚度和齿轮转子系统的轴及轴承的基本参数进行扩展,得到齿轮转子系统的刚度矩阵K。
步骤5:根据齿轮转子系统的刚度矩阵K构建出考虑延长啮合的齿轮转子系统振动响应分析模型如式(14)所示:
其中,M为齿轮转子系统的质量矩阵,C为齿轮转子系统的阻尼矩阵,G为齿轮转子系统的陀螺矩阵,u为齿轮转子系统的位移,为u的一阶导数,ü为u的二阶导数,Fu为齿轮转子系统的外力向量。
步骤6:获取齿轮转子系统的质量矩阵M、齿轮转子系统的阻尼矩阵C和齿轮转子系统的陀螺矩阵G,利用齿轮转子系统的刚度矩阵K,采用Newmark-β数值算法求解考虑延长啮合的齿轮转子系统振动响应分析模型,确定健康齿轮和裂纹齿轮的系统振动响应结果:齿轮转子系统的固有特性、齿轮转子系统的时域分析图和齿轮转子系统的频域分析图。
本实施方式中,转矩T=60Nm、裂纹深度q=1mm和q=3mm时齿轮转子系统的时域分析图如图10所示,(a)为转矩T=60Nm、裂纹深度q=1mm时齿轮转子系统的时域分析图,(b)为转矩T=60Nm、裂纹深度q=3mm时齿轮转子系统的时域分析图。由图10可知,传统分析法的振动响应远大于本发明和有限元方法。同时本发明的振动响应和有限元方法的相近度很高。
本实施方式中,裂纹深度q=3mm、转矩T=10Nm和T=150Nm时齿轮转子系统的时域分析图如图11所示,(a)为转矩T=10Nm、裂纹深度q=3mm时齿轮转子系统的时域分析图,(b)为转矩T=150Nm、裂纹深度q=3mm时齿轮转子系统的时域分析图。

Claims (8)

1.一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,包括以下步骤:
步骤1:获取健康齿轮的基本参数和裂纹齿轮的基本参数及裂纹参数;
步骤2:建立齿轮的包含基体刚度的齿轮啮合刚度模型;
步骤2.1:令j为当前齿轮啮合位置,i=1、2、3为齿轮转动方向相邻的三个齿对,令不考虑延长啮合的齿轮对1处于啮合状态且齿轮对2刚发生接触为初始位置,利用传统解析法建立第i对轮齿的齿轮啮合刚度模型;
步骤2.2:利用解析法建立齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型;
步骤3:计算考虑延长啮合的齿轮时变啮合刚度;
步骤3.1:利用有限元方法计算齿轮的主动轮的基体刚度和从动轮的基体刚度,确定包含基体刚度的啮合刚度模型的主动轮的齿轮基体刚度修正系数和从动轮的齿轮基体刚度修正系数;
步骤3.2:利用求解齿轮传递误差方法确定齿轮的轮齿变形,得到不同啮合位置的考虑延长啮合的齿轮啮合刚度,即考虑延长啮合的齿轮时变啮合刚度;
步骤3.2.1:计算齿轮在初始位置时的包含基体刚度的齿轮啮合刚度;
步骤3.2.2:根据齿轮在j前一个啮合位置时的包含基体刚度的齿轮啮合刚度确定齿轮在j啮合位置时齿轮传递误差;
步骤3.2.3:根据齿轮在j啮合位置时齿轮传递误差确定齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度,代入齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型,得到齿轮在j啮合位置时的考虑延长啮合的齿轮啮合刚度;
步骤3.2.4:计算齿轮在不同啮合位置的考虑延长啮合的齿轮啮合刚度,即考虑延长啮合的齿轮时变啮合刚度;
步骤4:确定齿轮转子系统的刚度矩阵K;
步骤4.1:获取齿轮转子系统的轴及轴承的基本参数;
步骤4.2:利用矩阵变换将考虑延长啮合的齿轮时变啮合刚度和齿轮转子系统的轴及轴承的基本参数进行扩展,得到齿轮转子系统的刚度矩阵K;
步骤5:根据齿轮转子系统的刚度矩阵K构建出考虑延长啮合的齿轮转子系统振动响应分析模型:其中,M为齿轮转子系统的质量矩阵,C为齿轮转子系统的阻尼矩阵,G为齿轮转子系统的陀螺矩阵,u为齿轮转子系统的位移,为u的一阶导数,为u的二阶导数,Fu为齿轮转子系统的外力向量;
步骤6:获取齿轮转子系统的质量矩阵M、齿轮转子系统的阻尼矩阵C和齿轮转子系统的陀螺矩阵G,利用齿轮转子系统的刚度矩阵K,采用Newmark-β数值算法求解考虑延长啮合的齿轮转子系统振动响应分析模型,确定健康齿轮和裂纹齿轮的系统振动响应结果:齿轮转子系统的固有特性、齿轮转子系统的时域分析图和齿轮转子系统的频域分析图。
2.根据权利要求1所述的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,所述的利用传统解析法建立第i对轮齿的齿轮啮合刚度模型表示如下:
其中,为第i对轮齿的齿轮啮合刚度,为第i对轮齿的局部接触刚度,为第i对轮齿的主动轮的轮齿部分刚度,第i对轮齿的从动轮的轮齿部分刚度,的计算公式如下:
其中,为第i对轮齿不包含裂纹时的主动轮的轮齿弯曲刚度,为第i对轮齿不包含裂纹时的主动轮的轮齿剪切刚度,为第i对轮齿不包含裂纹时的主动轮的轮齿轴向压缩刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿弯曲刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿剪切刚度,为第i对轮齿不包含裂纹时的从动轮的轮齿轴向压缩刚度, 为第i对轮齿包含裂纹时的主动轮的轮齿弯曲刚度,为第i对轮齿包含裂纹时的主动轮的轮齿剪切刚度,为第i对轮齿当包裂纹时的从动轮的轮齿弯曲刚度,为第i对轮齿包含裂纹时的从动轮的轮齿剪切刚度。
3.根据权利要求1所述的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,所述的利用解析法建立齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度模型如下:
其中,(k)j为齿轮在j啮合位置时包含基体刚度的齿轮啮合刚度,λ1为主动轮的齿轮基体刚度修正系数、λ2为从动轮的齿轮基体刚度修正系数,(kf1)j为齿轮在j啮合位置时主动轮的基体刚度,(kf2)j为齿轮在j啮合位置时从动轮的基体刚度,(ktooth)j为齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度。
4.根据权利要求1所述的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,所述的利用有限元方法计算齿轮的主动轮的基体刚度和从动轮的基体刚度,确定包含基体刚度的啮合刚度模型的主动轮的齿轮基体刚度修正系数和从动轮的齿轮基体刚度修正系数的过程具体如下:
利用有限元方法计算出啮合位置在不考虑延长啮合的主动轮双齿啮合区结束点处时的主动轮的基体刚度kfA,啮合位置在不考虑延长啮合的主动轮单齿啮合区开始点处时的主动轮的基体刚度kfB,啮合位置在不考虑延长啮合的从动轮双齿啮合区开始点处时的从动轮的基体刚度kfA′,啮合位置在不考虑延长啮合的从动轮单齿啮合区开始点处时的从动轮的基体刚度kfB′,确定的主动轮的齿轮基体刚度修正系数λ1和从动轮的齿轮基体刚度修正系数λ2表示如下:
其中,kfB_health为啮合位置在不考虑延长啮合的主动轮单齿啮合区开始点且啮合齿轮为健康 齿对时的主动轮的基体刚度,kfB′_health表示啮合位置在不考虑延长啮合的从动轮单齿啮合区开始点且啮合齿轮为健康齿对时的从动轮的基体刚度。
5.根据权利要求1所述的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,所述的计算齿轮在初始位置时的包含基体刚度的齿轮啮合刚度公式如下:
其中,(k)0为齿轮在初始位置时的包含基体刚度的齿轮啮合刚度,N=3,(ktooth)0是齿轮在初始位置时的齿轮啮合刚度,为齿轮在初始位置时的第i对轮齿的齿轮啮合刚度,(kf1)0为齿轮在初始位置时主动轮的基体刚度,(kf2)0为齿轮在初始位置时从动轮的基体刚度,λ1为主动轮的齿轮基体刚度修正系数、λ2为从动轮的齿轮基体刚度修正系数。
6.根据权利要求1所述的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,所述的根据齿轮在j前一个啮合位置时的包含基体刚度的齿轮啮合刚度确定齿轮在j啮合位置时齿轮传递误差的计算公式表示如下:
其中,F为齿轮传递载荷,(k)j-1为j前一个啮合位置时的包含基体刚度的齿轮啮合刚度,(Ep)j为齿轮在j啮合位置时齿廓误差或者由齿廓修形引起的齿廓偏差。
7.根据权利要求1所述的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,所述的根据齿轮在j啮合位置时齿轮传递误差确定齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度的过程具体为:
当啮合位置j处于不考虑延长啮合时齿轮对1和齿轮对2同时啮合的双齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度表示如下:
时,为齿轮三齿接触,当时,为齿轮两齿接触:
其中,为齿轮在j啮合位置时齿轮传递误差,F为齿轮传递载荷,为齿轮在j啮合位置时第i对轮齿的单位力作用下的轮齿变形,为齿轮在j啮合位置时第i对轮齿的齿轮啮合刚度,为齿轮在j啮合位置时第i对轮齿的齿廓误差或者由齿廓修形引起的齿廓偏差,为齿轮在j啮合位置时第i对轮齿的间隙误差,(Sa)j为齿轮在j啮合位置时将要进入啮合的齿对3在啮合线方向上的分离距离,(Sr)j为齿轮在j啮合位置时将要退出啮合的齿对1在啮合线方向上的分离距离;
当啮合位置j处于仅齿轮对2啮合的单齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度表示如下:
时,为齿轮双齿接触,当时,为齿轮双齿啮合,当时,为齿轮三齿啮合,当时,为齿轮单齿啮合:
当啮合位置j处于齿轮对2和3同时啮合的双齿啮合区时,齿轮在j啮合位置时同时啮合的所有轮齿对的齿轮啮合刚度表示如下:
时,为齿轮双齿啮合,当时,为齿轮单齿啮合:
8.根据权利要求6所述的考虑延长啮合的裂纹齿轮转子系统动力参数确定方法,其特征在于,所述的齿轮在j啮合位置时齿廓误差或者由齿廓修形引起的齿廓偏差(Ep)j,为齿轮在j啮合位置时啮合的齿对中齿廓误差或者由齿廓修形引起的齿廓偏差的最小值。
CN201510250508.1A 2015-05-18 2015-05-18 一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法 Active CN104820756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510250508.1A CN104820756B (zh) 2015-05-18 2015-05-18 一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510250508.1A CN104820756B (zh) 2015-05-18 2015-05-18 一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法

Publications (2)

Publication Number Publication Date
CN104820756A CN104820756A (zh) 2015-08-05
CN104820756B true CN104820756B (zh) 2017-12-05

Family

ID=53731051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510250508.1A Active CN104820756B (zh) 2015-05-18 2015-05-18 一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法

Country Status (1)

Country Link
CN (1) CN104820756B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224744B (zh) * 2015-09-29 2018-03-16 西安交通大学 一种基于啮合刚度的剥落齿轮啮合建模的方法
CN105930669B (zh) * 2016-04-28 2018-12-07 西安交通大学 一种非重力占优裂纹转子刚度呼吸函数计算方法
CN107436982B (zh) * 2017-07-27 2020-04-14 东北大学 考虑基体刚度修正的剥落斜齿轮副的啮合特性分析方法
CN107451359B (zh) * 2017-07-28 2020-04-14 东北大学 一种考虑基体裂纹影响的齿轮啮合特性有限元分析方法
CN107391876A (zh) * 2017-08-11 2017-11-24 东北大学 斜齿轮副时变啮合刚度计算方法
CN107798200B (zh) * 2017-11-10 2019-12-24 西安电子科技大学 一种考虑轴向变形的斜齿圆柱齿轮时变啮合刚度计算方法
CN109190227A (zh) * 2018-06-12 2019-01-11 南京聚能传动设备有限公司 基于解析-有限元的复杂齿基直齿圆柱齿轮啮合刚度计算方法
CN109684655B (zh) * 2018-11-01 2023-04-07 沈阳工业大学 非穿透型裂纹直齿轮啮合刚度计算方法
CN109726520B (zh) * 2019-02-01 2022-12-30 东北大学 考虑复杂基体与裂纹扩展路径的直齿轮啮合刚度计算方法
CN110059287B (zh) * 2019-04-16 2023-01-24 江苏省金象传动设备股份有限公司 考虑延长啮合和齿圈柔性的内啮合齿轮副啮合刚度计算方法
CN111027156B (zh) * 2019-12-17 2021-07-20 电子科技大学 含裂纹齿轮的工业机器人减速器传动精度可靠性分析方法
CN113092103B (zh) * 2021-04-08 2022-08-19 湖南交通工程学院 一种数据驱动的齿轮啮合刚度实时预测装置及预测方法
CN115828649B (zh) * 2023-02-22 2023-05-16 季华实验室 一种确定齿轮齿背侧啮合刚度的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344430A (zh) * 2013-07-09 2013-10-09 上海电机学院 齿轮箱的故障诊断方法
CN104198571A (zh) * 2014-09-24 2014-12-10 如皋市非标轴承有限公司 一种蜗轮齿轮组合回转轴承表面裂纹检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215946C (zh) * 2001-11-14 2005-08-24 王小椿 变传动比限滑差速器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344430A (zh) * 2013-07-09 2013-10-09 上海电机学院 齿轮箱的故障诊断方法
CN104198571A (zh) * 2014-09-24 2014-12-10 如皋市非标轴承有限公司 一种蜗轮齿轮组合回转轴承表面裂纹检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fault Feature Analysis of a Cracked Gear Coupled Rotor System;Hui Ma, et al.;《Mathematical Problems in Engineering》;20140624;第1-22页 *
Time-varying mesh stiffness calculation of cracked spur gears;Hui Ma, et al.;《Engineering Failure Analysis》;20140930;第179-194页 *
考虑齿顶修缘的直齿轮-转子系统非线性动力学特性研究;张素燕;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20150515;正文第9-83页 *

Also Published As

Publication number Publication date
CN104820756A (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN104820756B (zh) 一种考虑延长啮合的裂纹齿轮转子系统动力参数确定方法
Sánchez et al. Approximate equations for the meshing stiffness and the load sharing ratio of spur gears including hertzian effects
Zhan et al. A CAD-FEM-QSA integration technique for determining the time-varying meshing stiffness of gear pairs
Wang et al. Simulating coupling behavior of spur gear meshing and fatigue crack propagation in tooth root
CN107451359B (zh) 一种考虑基体裂纹影响的齿轮啮合特性有限元分析方法
CN101770538B (zh) 含损伤性单齿故障圆柱直齿轮啮合刚度仿真分析方法
Sanchez et al. Critical stress and load conditions for bending calculations of involute spur and helical gears
Sánchez et al. Calculation of tooth bending strength and surface durability of internal spur gear drives
Sankar et al. Profile modification for increasing the tooth strength in spur gear using CAD
Thirumurugan et al. Influence of finite element model, load-sharing and load distribution on crack propagation path in spur gear drive
Chen et al. Research on the variation of mesh stiffness and transmission error for spur gear with tooth profile modification and wear fault
Dong et al. Optimum design of the tooth root profile for improving bending capacity
CN105260536A (zh) 焊趾处热点应力的计算方法
CN105181327B (zh) 一种裂纹轮齿啮合刚度计算的方法
Sánchez et al. Strength model for bending and pitting calculations of internal spur gears
CN107341302A (zh) 一种汽车驱动桥主锥总成波形套的优化设计方法
Yang et al. An improved analytical method for mesh stiffness calculation of helical gear pair considering time-varying backlash
Zhang et al. Computerized design and simulation of meshing of modified double circular-arc helical gears by tooth end relief with helix
Zou et al. Improved algorithm of tooth surface topological modification and nonlinear dynamic analysis of herringbone gears
Yang et al. Research on the influence of time-varying excitation on vibration characteristics of the spiral bevel geared transmission system with broken teeth
Namboothiri et al. Influence of drive side pressure angle on fracture characteristics of asymmetric spur gear
Krup Kumar Increasing Bending Strength of Aluminium Silicon Carbide Metal Matrix Composite Spur Gear by Increasing Fillet Radius
Li et al. Time-varying mesh stiffness calculation of spiral bevel gear with spalling defect
Xin et al. Analysis of dynamic contact mechanical response and contact life of low speed spur gear
Wang et al. Finite element analysis for tooth profile modification of gear-box of tracklayer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant