CN104820673B - 基于自适应性分段统计近似的时间序列相似性度量方法 - Google Patents

基于自适应性分段统计近似的时间序列相似性度量方法 Download PDF

Info

Publication number
CN104820673B
CN104820673B CN201510139785.5A CN201510139785A CN104820673B CN 104820673 B CN104820673 B CN 104820673B CN 201510139785 A CN201510139785 A CN 201510139785A CN 104820673 B CN104820673 B CN 104820673B
Authority
CN
China
Prior art keywords
lpv
time series
local mode
apsa
characteristic vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510139785.5A
Other languages
English (en)
Other versions
CN104820673A (zh
Inventor
蔡青林
陈岭
孙建伶
陈蕾英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510139785.5A priority Critical patent/CN104820673B/zh
Publication of CN104820673A publication Critical patent/CN104820673A/zh
Application granted granted Critical
Publication of CN104820673B publication Critical patent/CN104820673B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种基于自适应性分段统计近似的时间序列相似性度量方法,首先基于时间序列编码识别转折点,将时间序列切分为包含完整波动趋势的子序列;然后依次提取每条子序列的多种统计特征,构造局部模式特征向量;最后利用规范化距离计算局部模式特征向量之间的距离,实现局部模式匹配,并以此作为动态规划算法的子程序,实现全局模式匹配。本发明在度量精度和计算效率方面都以较大的程度优于其他度量方法,在人们的日常活动和工业生产中可发挥重要作用,如在金融交易、交通监管、空气质量和温度监测、工业流程监控、医疗诊断等应用中,对大规模采样数据或高速动态数据流进行相似性查询、分类、聚类、预测、异常检测、在线模式识别等处理。

Description

基于自适应性分段统计近似的时间序列相似性度量方法
技术领域
本发明涉及数据库、数据挖掘、机器学习、信息检索等领域,尤其涉及时间序列数据分析和挖掘。
背景技术
时间序列广泛存在于人们的日常生活及工业生产中,如基金或股票的实时交易数据,零售市场的日销量数据,流程工业的传感器监测数据,天文观测数据,航空航天雷达、卫星监测数据,实时天气温度及空气质量指数等。工业界迄今提出了许多时间序列分析方法,包括相似性查询方法、分类方法、聚类方法、预测方法、异常检测方法等。其中,许多方法都需要对时间序列进行相似性判断,比如kNN分类器、k-means聚类方法等,因此,时间序列相似性度量方法在工业界有着广泛的应用需求。
目前工业界最常用的时间序列相似性度量方法可分为锁步度量方法和弹性度量方法。前者采用了一对一的度量方式,即时间序列T1和T2之间的距离是通过严格比较T1和T2在各自第i个位置的点对,再累加所有点对的距离得到。该类方法最常见的有曼哈顿距离、欧氏距离和切比雪夫距离,它们都是Lp-norms距离在p取不同值时的特例。该类方法具有易实现、计算复杂度低、满足距离三角不等式、无参等优点;但是,其度量精度对噪声、异常点、幅值伸缩和漂移、相位偏移等非常敏感,并且只能用于度量等长的时间序列。弹性度量方法采用了一对多的度量方式,即时间序列T1的一个点可以与T2的多个连续点相对应,通过动态规划方法遍历T1和T2的所有点对之间的距离。该类方法最常见的有动态时间弯曲距离(DTW)和编辑距离的变种(如LCSS、EDR、ERP)等。与锁步度量相比,弹性度量能够实现两条时间序列的最佳对齐匹配,可以有效处理时间弯曲、相位偏移、幅值伸缩和漂移等基本形态变化,对噪声和异常点具有鲁棒性,因此,弹性度量具有较高的度量精度。但是,该类方法具有较高的计算复杂度,当度量高维的时间序列时会导致高昂的时间开销,难以在工业生产中处理大规模的时间序列或高速的动态数据流。
基于时间序列的特征计算弹性度量是改进其高计算复杂度的一种有效方法,即首先采用数据表示方法将原始时间序列映射到低维的特征空间,然后进行弹性度量。目前工业界常用的数据表示方法可分为非数据适应性方法和数据适应性方法。对于前者,变换参数不受单独的时间序列影响,而始终保持不变;该类表示大多基于频谱分解实现,如离散傅里叶变换、离散小波变换、离散余弦变换,它们主要通过对原始时间序列做相应的频域变换,提取主要的频谱系数作为特征;该类方法各有缺陷,如离散傅里叶变换只能提取总体形态特征而忽略了局部特征,离散小波变换只能处理长度为2的指数次的时间序列,离散余弦变换的信息丢失较多,对原始数据的重构误差较大。数据适应性表示是指对变换参数的确定需要依赖数据本身;通过增加数据敏感的选择处理过程,可以把大部分非数据适应性方法变为数据适应性方法。该类方法有分段聚集近似、分段线性近似、符号化聚集近似、奇异值分解、主成分分析等,前三种都需要先对原始时间序列进行分段,然后对每一子段单独处理:分段聚集近似是对各段求平均值;分段线性近似是对各段做线段拟合;符号化聚集近似是在分段聚集近似基础上将每段平均值离散化为符号;由于它们所提取的特征较为单一,使其对时间序列波动模式的表达能力较弱。奇异值分解和主成分分析是通过对所有时间序列做统一的特征矩阵分解实现的;这两类方法的典型缺陷是,它们具有很高的计算复杂度,而且分解过程只能在内存完成,数据规模的可扩展性很低。
发明内容
本发明要解决的问题是如何高效及高精度地度量时间序列之间的相似性。为了解决该问题,本发明提出了一种基于自适应性分段统计近似的时间序列相似性度量方法。
本发明的目的是通过以下技术方案来实现的:一种基于自适应性分段统计近似的时间序列相似性度量方法,包括以下步骤:
(1)自适应性分段,具体包括以下子步骤:
(1.1)读取原始时间序列T和Q;
(1.2)对T和Q做Z-规范化处理,得到规范化的时间序列T'和Q';
(1.3)对规范化的时间序列T'和Q'做移动平滑处理,得到平滑时间序列T"和Q";
(1.4)基于滑动窗口依次截取T"和Q"的相邻3点,并计算平均值,通过判断各点与相应平均值的大小关系对其编码,得到T和Q的编码序列CT和CQ,并定义转折模式表TP_table;
(1.5)顺序扫描CT和CQ,对每对相邻编码组合查询TP_table中的转折模式,如果模式匹配,则将该编码组合所在位置作为分段点;
(1.6)扫描完毕,分别将T和Q分为M和N段子序列,得到子序列集合ST={S1,...,SM}和SQ={S'1,...,S'N};
(2)特征提取,具体包括以下子步骤:
(2.1)依次扫描ST和SQ,依次读取T和Q的每条子序列Si和S'i
(2.2)依次计算Si和S'i的平均值μ、标准差σ、离散系数CV、偏态SK、峰态K,构造局部模式特征向量LPV=[μ,σ,CV,SK,K];
(2.3)扫描完毕,得到T和Q的自适应性分段统计近似表示APSA(T)和APSA(Q);
(3)动态模式匹配,具体包括以下子步骤:
(3.1)初始化动态规划表Table=cell(M,N);
(3.2)依次计算APSA(T)的第1个局部模式特征向量LPV1与APSA(Q)的N个局部模式特征向量LPV'1~LPV'N之间的加权欧氏距离{dist(LPV1,LPV'1),...,dist(LPV1,LPV'N)},并存入Table的第1行Table(1,1:N);
(3.3)依次计算APSA(Q)的第1个局部模式特征向量LPV'1与APSA(T)的M个局部模式特征向量LPV1~LPVM之间的加权欧氏距离{dist(LPV1,LPV'1),...,dist(LPVM,LPV'1)},并存入Table的第1列Table(1:M,1);
(3.4)利用动态规划方法,依次扫描APSA(T)的第2到第M个局部模式特征向量LPV2~LPVM和APSA(Q)的第2到第N个局部模式特征向量LPV'2~LPV'N,基于加权欧氏距离计算Table(2:M,2:N)的每个单元值;
(3.5)返回Table(M,N)的值作为最终的度量结果。
进一步地,所述步骤3.4包括以下子步骤:
(3.4.1)顺序扫描LPV2~LPVM,对于第i个局部模式特征向量LPVi,依次计算它与LPV'2~LPV'N之间的加权欧氏距离{dist(LPVi,LPV'2),...,dist(LPVi,LPV'N)};
(3.4.2)根据先行后列的顺序扫描Table(2:M,2:N),在每个单元Ta ble(i,j)中,首先比较Table(i-1,j)、Table(i,j-1)和Table(i-1,j-1)的大小,选择最小值记为min,然后计算dist(LPVi,LPV'j)+min的值赋予Table(i,j)。
本发明的有益效果是:
1、在自适应性分段阶段,采用了简单有效的编码方法和转折模式识别方法,可高效识别转折点,保证了切分出的子序列具有完整的波动趋势。
2、在特征提取阶段,对每条子序列提取多种统计特征,从多方面反映了时间序列的波动特性,可全面捕捉时间序列的局部波动模式,实现了较高的时间序列局部模式匹配精度。
3、在动态模式匹配阶段,基于局部模式层次的动态规划计算,克服了时间弯曲造成的局部模式之间的相位偏移问题,实现了较高的时间序列全局模式匹配精度。
附图说明
图1为基于自适应性分段统计近似的时间序列相似性度量方法流程图;
图2为自适应性分段时间序列的流程图;
图3为采用自适应性分段统计近似表示时间序列的流程图;
图4为时间序列相似性计算的动态模式匹配过程。
具体实施方式
下面结合附图对本发明作进一步详细说明。
如图1所示,本发明一种基于自适应性分段统计近似的时间序列相似性度量方法,包括以下步骤:
(1)自适应性分段,如图2所示,具体包括以下子步骤:
(1.1)读取原始时间序列T={t1,t2,…,ti,…,tn}和Q={q1,q2,…,qi,…,qn};
(1.2)对时间序列T和Q,分别计算T的采样点的平均值m'和标准差σ',Q的采样点的平均值m'和标准差σ',根据公式(1)对T和Q做Z-规范化处理,得到规范化的时间序列T'={t'1,t'2,…,t'i,…,t'n}和Q'={q'1,q'2,…,q'i,…,q'n};
(1.3)依次计算T'和Q'相邻3点的平均值,对其做移动平滑处理,得到平滑时间序列T"={t"1,t"2,…,t"i,…,t"n}和Q"={q"1,q"2,…,q"i,…,q"n};
(1.4)基于滑动窗口依次截取T"和Q"的相邻3点,并计算平均值,通过判断各点与相应平均值的大小关系对其编码,得到T和Q的编码序列CT和CQ,并定义转折模式表TP_table,该过程包括以下子步骤:
(1.4.1)采用滑动窗口W,依次截取T"和Q"的相邻3点<t"i-1,t"i,t"i+1>和<q"i-1,q"i,q"i+1>,并计算平均值mt i和mq i
(1.4.2)判断<t"i-1,t"i,t"i+1>和<q"i-1,q"i,q"i+1>的各点与相应平均值mt i和mq i的关系,若t"i>mt i,则code(t"i)=1;否则code(t"i)=0,由此将<t"i-1,t"i,t"i+1>和<q"i-1,q"i,q"i+1>编码为dt i=<ct i-1,ct i,ct i+1>和dq i=<cq i-1,cq i,cq i+1>;由此得到T和Q的编码序列CT={dt 1,dt 2,...,dt n}和CQ={dq 1,dq 2,...,dq n};
(1.4.3)根据编码定义所有转折模式TP,得到转折模式表TP_table={上升-下降:001-100,001-110,011-100,011-110,001/011-010-100/110;下降-上升:100-001,100-011,110-001,110-011,100/110-101-001/011};
(1.5)顺序扫描CT和CQ,对每对相邻编码组合<dt i,dt i+1>和<dq i,dq i+1>查询TP_table,如果模式匹配,则将该将i作为分段点,得到T和Q的第i条子序列Si和S'i
(1.6)扫描完毕,对T和Q完成分段,得到子序列集合ST={S1,S2,...,SM}和SQ={S'1,S'2,...,S'N};
(2)特征提取,如图3所示,具体包括以下子步骤:
(2.1)依次扫描ST和SQ,依次读取T和Q的每条子序列Si和S'i
(2.2)依次对Si和S'i计算多种统计特征,构造局部模式特征向量LPVi和LPV'i,该过程包括以下子步骤:
(2.2.1)初始化T和Q的分段统计近似表示APSA(T)和APSA(Q)为空集;
(2.2.2)根据公式(2),计算长度为l的子序列Si和S'i的平均值μi和μ'i
(2.2.3)依次根据公式(3)~(7),计算Si和S'i的方差D、标准差σ、离散系数CV、偏态SK、峰态K,分别构造局部模式特征向量LPVi=[μi,Dii,CVi,SKi,Ki]和LPV'i=[μ'i,D'i,σ'i,CV'i,SK'i,K'i],并分别插入APSA(T)和APSA(Q);
(2.3)扫描完毕,得到T和Q的自适应性分段统计近似表示APSA(T)和APSA(Q);
(3)动态模式匹配,如图4所示,具体包括以下子步骤:
(3.1)初始化动态规划表Table=cell(M,N);
(3.2)根据公式(8),依次计算APSA(T)的第1个局部模式特征向量LPV1与APSA(Q)的N个局部模式特征向量LPV'1~LPV'N之间的加权欧氏距离{dist(LPV1,LPV'1),...,dist(LPV1,LPV'N)},并依次存入Table的第1行Table(1,1:N);
其中,ak表示局部模式特征向量第k个特征的权重系数,vk和v'k分别表示LPV和LPV'的第k个元素。
(3.3)根据公式(8),依次计算APSA(Q)的第1个局部模式特征向量LPV'1与APSA(T)的M个局部模式特征向量LPV1~LPVM之间的加权欧氏距离{dist(LPV1,LPV'1),...,dist(LPVM,LPV'1)},并依次存入Table的第1列Table(1:M,1);
(3.4)利用动态规划方法,基于公式(8)计算Table(2:M,2:N)的每个单元值,该过程包括以下子步骤:
(3.4.1)顺序扫描LPV2~LPVM,对于APSA(T)的第i个局部模式特征向量LPVi,依次计算它与LPV'2~LPV'N之间的加权欧氏距离{dist(LPVi,LPV'2),...,dist(LPVi,LPV'N)};
(3.4.2)当扫描LPVi与LPV'j时,首先比较Table(i-1,j)、Table(i,j-1)和Table(i-1,j-1)的大小,选择最小值记为min,然后计算dist(LPVi,LPV'j)+min的值赋予Table(i,j)。
(3.5)返回Table(M,N)的值作为最终的度量结果。
时间序列相似性度量,在人们的日常活动及工业生产中可发挥重要作用,有着广泛的应用需求。本发明针对工业界当前提出的众多时间序列分析方法,提出了一种基于自适应性分段统计近似表示的时间序列相似性度量方法,可以对时间序列进行数据适应性地分段,并实现高效及高精度地相似性度量,由此实现对大规模采样数据或高速动态数据流进行相似性查询、分类、聚类、预测、异常检测、在线模式识别等处理,以满足工业生产的应用需求。

Claims (2)

1.一种基于自适应性分段统计近似的时间序列相似性度量方法,其特征在于,包括以下步骤:
(1)自适应性分段,具体包括以下子步骤:
(1.1)读取原始时间序列T和Q;
(1.2)对T和Q做Z-规范化处理,得到规范化的时间序列T'和Q';
(1.3)对规范化的时间序列T'和Q'做移动平滑处理,得到平滑时间序列T"和Q";
(1.4)基于滑动窗口依次截取T"和Q"的相邻3点,并计算平均值,通过判断各点与相应平均值的大小关系对其编码,得到T和Q的编码序列CT和CQ,并定义转折模式表TP_table;
(1.5)顺序扫描CT和CQ,对每对相邻编码组合查询TP_table中的转折模式,如果模式匹配,则将该编码组合所在位置作为分段点;
(1.6)扫描完毕,分别将T和Q分为M和N段子序列,得到子序列集合ST={S1,...,SM}和SQ={S'1,...,S'N};
(2)特征提取,具体包括以下子步骤:
(2.1)依次扫描ST和SQ,依次读取T和Q的每条子序列Si和S'i
(2.2)依次计算Si和S'i的平均值μ、标准差σ、离散系数CV、偏态SK、峰态K,构造局部模式特征向量LPV=[μ,σ,CV,SK,K];
(2.3)扫描完毕,得到T和Q的自适应性分段统计近似表示APSA(T)和APSA(Q);
(3)动态模式匹配,具体包括以下子步骤:
(3.1)初始化动态规划表Table=cell(M,N);
(3.2)依次计算APSA(T)的第1个局部模式特征向量LPV1与APSA(Q)的N个局部模式特征向量LPV'1~LPV'N之间的加权欧氏距离{dist(LPV1,LPV'1),...,dist(LPV1,LPV'N)},并存入Table的第1行Table(1,1:N);
(3.3)依次计算APSA(Q)的第1个局部模式特征向量LPV'1与APSA(T)的M个局部模式特征向量LPV1~LPVM之间的加权欧氏距离{dist(LPV1,LPV'1),...,dist(LPVM,LPV'1)},并存入Table的第1列Table(1:M,1);
(3.4)利用动态规划方法,依次扫描APSA(T)的第2到第M个局部模式特征向量LPV2~LPVM和APSA(Q)的第2到第N个局部模式特征向量LPV'2~LPV'N,基于加权欧氏距离计算Table(2:M,2:N)的每个单元值;
(3.5)返回Table(M,N)的值作为最终的度量结果。
2.根据权利要求1所述一种基于自适应性分段统计近似的时间序列相似性度量方法,其特征在于,所述步骤(3.4)包括以下子步骤:
(3.4.1)顺序扫描LPV2~LPVM,对于第i个局部模式特征向量LPVi,依次计算它与LPV'2~LPV'N之间的加权欧氏距离{dist(LPVi,LPV'2),...,dist(LPVi,LPV'N)};
(3.4.2)根据先行后列的顺序扫描Table(2:M,2:N),在每个单元Ta ble(i,j)中,首先比较Table(i-1,j)、Table(i,j-1)和Table(i-1,j-1)的大小,选择最小值记为min,然后计算dist(LPVi,LPV'j)+min的值赋予Table(i,j)。
CN201510139785.5A 2015-03-27 2015-03-27 基于自适应性分段统计近似的时间序列相似性度量方法 Expired - Fee Related CN104820673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510139785.5A CN104820673B (zh) 2015-03-27 2015-03-27 基于自适应性分段统计近似的时间序列相似性度量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510139785.5A CN104820673B (zh) 2015-03-27 2015-03-27 基于自适应性分段统计近似的时间序列相似性度量方法

Publications (2)

Publication Number Publication Date
CN104820673A CN104820673A (zh) 2015-08-05
CN104820673B true CN104820673B (zh) 2018-03-06

Family

ID=53730970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510139785.5A Expired - Fee Related CN104820673B (zh) 2015-03-27 2015-03-27 基于自适应性分段统计近似的时间序列相似性度量方法

Country Status (1)

Country Link
CN (1) CN104820673B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295026B (zh) * 2016-08-15 2019-12-20 中国水利水电科学研究院 流量相似性分析方法及装置
CN109325060B (zh) * 2018-07-27 2021-10-12 山东大学 一种基于数据特征的时间序列流数据快速搜索方法
CN109359135B (zh) * 2018-09-04 2021-11-12 河海大学 一种基于分段权重的时间序列相似性搜索方法
CN110427996B (zh) * 2019-07-24 2022-03-15 清华大学 基于模糊匹配的时间序列异常模式识别方法及装置
CN112035718B (zh) * 2020-08-13 2023-07-21 西安外事学院 基于趋势一致性匹配的时间序列分类方法的肉类检测方法
CN115358647A (zh) * 2022-10-24 2022-11-18 齐鲁云商数字科技股份有限公司 基于大数据的氢能产业链风险监测系统及监测方法
CN115409131B (zh) * 2022-10-28 2023-02-17 武汉惠强新能源材料科技有限公司 基于spc过程管控系统的生产线异常检测方法
CN116592951B (zh) * 2023-07-17 2023-09-08 陕西西特电缆有限公司 一种电缆数据智能采集方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251433A2 (en) * 2001-04-20 2002-10-23 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. A method for segmentation and identification of nonstationary time series
CN103136327A (zh) * 2012-12-28 2013-06-05 中国矿业大学 一种基于局部特征聚类的时间序列符号化方法
CN104462217A (zh) * 2014-11-09 2015-03-25 浙江大学 一种基于分段统计近似表示的时间序列相似性度量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251433A2 (en) * 2001-04-20 2002-10-23 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. A method for segmentation and identification of nonstationary time series
CN103136327A (zh) * 2012-12-28 2013-06-05 中国矿业大学 一种基于局部特征聚类的时间序列符号化方法
CN104462217A (zh) * 2014-11-09 2015-03-25 浙江大学 一种基于分段统计近似表示的时间序列相似性度量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Necessary Conditions for the Application of Moving Average Process of Order Three;O.E.Okereke等;《Applied Mathematics》;20150119;全文 *
在线分段时间序列流:一种有限自动机方法;陈胜利等;《计算机应用研究》;20100531;全文 *

Also Published As

Publication number Publication date
CN104820673A (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN104462217B (zh) 一种基于分段统计近似表示的时间序列相似性度量方法
CN104820673B (zh) 基于自适应性分段统计近似的时间序列相似性度量方法
CN104794484B (zh) 基于分段正交多项式分解的时序数据最近邻分类方法
CN103077512B (zh) 基于主成分析的数字图像的特征提取与匹配方法
CN107451102B (zh) 一种基于改进自训练算法的半监督高斯过程回归软测量建模对脱丁烷塔底丁烷浓度进行预测的方法
Nasreddine et al. Variational shape matching for shape classification and retrieval
CN103294987A (zh) 指纹匹配方法与实现方式
CN101980250A (zh) 基于降维局部特征描述子和隐条件随机场的目标识别方法
Wan et al. A formal approach to chart patterns classification in financial time series
Chen et al. Weighted multiscale Rényi permutation entropy of nonlinear time series
CN108549908A (zh) 基于多采样概率核主成分模型的化工过程故障检测方法
CN105334185A (zh) 基于光谱投影判别的近红外模型维护方法
Chen et al. Invariant leaf image recognition with histogram of Gaussian convolution vectors
Dilmi et al. Iterative multiscale dynamic time warping (IMs-DTW): a tool for rainfall time series comparison
CN109034179B (zh) 一种基于马氏距离idtw的岩层分类方法
CN109635724A (zh) 一种动作智能比对方法
US20050207653A1 (en) Method for analysis of line objects
Michis Wavelet multidimensional scaling analysis of European economic sentiment indicators
CN113449006A (zh) 基于目标特征的时间序列相似性计算方法
Yun et al. Forecasting of heart rate variability using wrist-worn heart rate monitor based on hidden Markov model
CN112329654B (zh) 基于多流形学习算法的高光谱影像数据分类方法及系统
CN112949491B (zh) 基于DMD和t-SNE的液压泵故障分析方法及系统
Taleb et al. Improving deep learning Parkinson’s disease detection through data augmentation training
CN106803255A (zh) 一种基于多锚点跟踪的目标检测和定位的方法
KR20150043697A (ko) 이분된 로컬 영역을 가지는 윤곽선 분할 기반 특징을 이용한 물체 인식 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180306

Termination date: 20200327

CF01 Termination of patent right due to non-payment of annual fee