CN104819990A - Microscopic displacement experimental system and microscopic displacement experimental method based on CT digital core - Google Patents
Microscopic displacement experimental system and microscopic displacement experimental method based on CT digital core Download PDFInfo
- Publication number
- CN104819990A CN104819990A CN201510236593.6A CN201510236593A CN104819990A CN 104819990 A CN104819990 A CN 104819990A CN 201510236593 A CN201510236593 A CN 201510236593A CN 104819990 A CN104819990 A CN 104819990A
- Authority
- CN
- China
- Prior art keywords
- displacement
- core
- holding unit
- microscopic
- phase intermediate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 70
- 238000002474 experimental method Methods 0.000 title claims abstract description 34
- 239000011435 rock Substances 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 3
- 239000012530 fluid Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000011160 research Methods 0.000 claims description 4
- 239000012071 phase Substances 0.000 claims 8
- 239000008346 aqueous phase Substances 0.000 claims 6
- 238000013461 design Methods 0.000 claims 2
- 238000012360 testing method Methods 0.000 claims 2
- 238000001035 drying Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 17
- 239000004696 Poly ether ether ketone Substances 0.000 abstract description 8
- 229920002530 polyetherether ketone Polymers 0.000 abstract description 8
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 25
- 238000004088 simulation Methods 0.000 description 7
- 238000002591 computed tomography Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
一种基于CT数字岩心的微观驱替实验系统,包括岩心夹持器和微观驱替设备;所述岩心夹持器,包括进口端、出口端、岩心区、外壳;所述外壳为聚醚醚酮材料PEEK;所述微观驱替设备,包括并联的油相中间容器和水相中间容器、用于驱替油相中间容器和水相中间容器的平流泵,所述油相中间容器和水相中间容器的出液端均与所述岩心夹持器的进口端相连,所述岩心夹持器通过手摇泵实现对其中夹持的岩心进行加压,在所述岩心夹持器的出口端设置有计量瓶。本发明所述系统适用于小容量、小规模微观驱替实验,所含技术设备较传统驱替实验设备相比操作精度、测量精度更高。
A microscopic displacement experiment system based on CT digital rock core, including a core holder and a microscopic displacement device; the core holder includes an inlet end, an outlet end, a core area, and a casing; the casing is polyether ether Ketone material PEEK; the microscopic displacement equipment, including parallel oil phase intermediate container and water phase intermediate container, advection pump for displacing oil phase intermediate container and water phase intermediate container, said oil phase intermediate container and water phase The liquid outlet ends of the intermediate containers are all connected to the inlet end of the core holder, and the core holder realizes pressurization of the core held therein through a hand pump, and at the outlet end of the core holder Set with metering bottle. The system of the invention is suitable for small-capacity and small-scale microscopic displacement experiments, and the technical equipment contained in it is higher in operating precision and measurement precision than traditional displacement experimental equipment.
Description
技术领域technical field
本发明涉及一种基于CT数字岩心的微观驱替实验系统及微观驱替实验方法,属于石油天然气的物理实验的技术领域。The invention relates to a CT digital rock core-based microscopic displacement experiment system and a microscopic displacement experiment method, belonging to the technical field of physical experiments of oil and gas.
背景技术Background technique
油田开发的最终目的就是如何从地层孔隙中尽可能多的采出原油,以减少资源浪费。原油存在于地下数千米的沉积岩孔隙中,由于沉积环境以及地层中的流体分布的复杂性,人们没有办法直接大范围的认识地下的油水分布。如何认识地下原油的富集区域和富集形式,如何确定储层中剩余油的分布,是油田开发的主要问题,也是石油上游工业迄今未得到完全解决的重大课题。从微观、小尺度微纳米级别研究剩余油的分布,了解和掌握剩余油的微观形成机理和分布规律,直观再现油藏开发现状,在此基础上开展提高采收率研究,是油藏经营管理决策的重要依据。因此,微观驱替实验以及驱替后岩心内流体的空间分布研究备受国内外各大石油生产国的重视。The ultimate goal of oil field development is how to extract as much crude oil as possible from formation pores to reduce waste of resources. Crude oil exists in the pores of sedimentary rocks thousands of meters underground. Due to the complexity of the depositional environment and fluid distribution in the formation, people have no way to directly understand the distribution of oil and water underground in a large scale. How to understand the enrichment area and enrichment form of underground crude oil, and how to determine the distribution of remaining oil in the reservoir are the main problems in oil field development, and also a major issue that has not been completely resolved in the upstream oil industry. Study the distribution of remaining oil from the micro and small-scale micro-nano level, understand and master the microcosmic formation mechanism and distribution law of remaining oil, intuitively reproduce the status quo of reservoir development, and carry out enhanced oil recovery research on this basis, which is the key to reservoir management important basis for decision-making. Therefore, microscopic displacement experiments and the study of the spatial distribution of fluids in cores after displacement have attracted the attention of major oil-producing countries at home and abroad.
多孔介质中的流体分布研究常用的方法主要有微观物理模拟和计算机数值模拟两种。计算机数值模拟是通过建立数学模型来研究油藏的物理性质及流体的流动、分布规律。该方法虽然得到广泛的应用,但仍存在明显的不确定性;微观物理模拟就是借助显微镜的放大、录像以及图像处理技术研究储层流体的微观渗流过程,从而揭示多孔介质中流体的微观分布特征。目前,微观物理模拟主要以仿真模型和二维视图为主,但仿真模型不能完全模拟岩心的所有特征,而且流体在岩石孔隙中总是以三维形式分布,单纯从二维的角度观察,很容易带来较大误差。There are mainly two methods commonly used in the study of fluid distribution in porous media: microscopic physical simulation and computer numerical simulation. Computer numerical simulation is to study the physical properties of reservoirs and the flow and distribution of fluids by establishing mathematical models. Although this method is widely used, there are still obvious uncertainties; microscopic physical simulation is to study the microscopic seepage process of reservoir fluid with the help of microscope magnification, video and image processing technology, so as to reveal the microscopic distribution characteristics of fluid in porous media . At present, the microscopic physical simulation is mainly based on the simulation model and two-dimensional view, but the simulation model cannot completely simulate all the characteristics of the core, and the fluid is always distributed in three-dimensional form in the rock pores. It is easy to observe from a two-dimensional perspective lead to large errors.
发明内容Contents of the invention
针对现有技术的不足,本发明提供一种基于CT数字岩心的微观驱替实验系统。Aiming at the deficiencies of the prior art, the present invention provides a microscopic displacement experiment system based on CT digital rock core.
本发明还提供利用上述实验系统进行微观驱替实验的方法。本发明将常规驱替实验与CT技术有效结合起来,利用CT扫描技术对不同驱替阶段的岩心进行扫描,从而观测岩心孔隙结构,能够实时再现孔隙中流体分布的变化。The present invention also provides a method for performing microscopic displacement experiments using the above-mentioned experimental system. The present invention effectively combines conventional displacement experiments with CT technology, uses CT scanning technology to scan rock cores in different displacement stages, thereby observing the core pore structure, and can reproduce the change of fluid distribution in the pores in real time.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种基于CT数字岩心的微观驱替实验系统,包括岩心夹持器和微观驱替设备;A micro-displacement experimental system based on CT digital core, including a core holder and micro-displacement equipment;
所述岩心夹持器,包括进口端、出口端、岩心区、外壳;所述外壳为聚醚醚酮材料(PEEK),PEEK是一种性能优异的特种工程塑料,耐高温(260℃)、机械性能优异、抗辐射、自润滑性好、耐化学品腐蚀等;与金属相比,PEEK材料具有射线透射性,制成的夹持器外壳不会影响CT设备X射线的正常使用;现有传统夹持器外壳为金属材料,X射线无法穿透导致无法利用CT设备扫描获取岩心驱替状态信息,且传统夹持器体型偏大,与CT扫描样品尺寸不符,影响扫描效果;The core holder includes an inlet port, an outlet port, a core area, and a shell; the shell is made of polyether ether ketone (PEEK), and PEEK is a special engineering plastic with excellent performance, which is resistant to high temperature (260°C), Excellent mechanical properties, radiation resistance, good self-lubrication, chemical corrosion resistance, etc.; compared with metals, PEEK material has ray transmission, and the holder shell made of it will not affect the normal use of CT equipment X-rays; existing The shell of the traditional gripper is made of metal material, X-rays cannot penetrate, so it is impossible to use CT equipment to scan to obtain the information of the core displacement state, and the size of the traditional gripper is too large, which does not match the size of the CT scanning sample, which affects the scanning effect;
所述微观驱替设备,包括并联的油相中间容器和水相中间容器、用于驱替油相中间容器和水相中间容器的平流泵,所述油相中间容器和水相中间容器的出液端均与所述岩心夹持器的进口端相连,所述岩心夹持器通过手摇泵实现对其中夹持的岩心进行加压,在所述岩心夹持器的出口端设置有计量瓶。The microscopic displacement equipment includes a parallel oil phase intermediate container and a water phase intermediate container, an advection pump for displacing the oil phase intermediate container and the water phase intermediate container, the outlet of the oil phase intermediate container and the water phase intermediate container The liquid ends are all connected to the inlet end of the core holder, and the core holder pressurizes the core held therein through a hand pump, and a metering bottle is arranged at the outlet end of the core holder .
根据本发明优选的,在所述岩心夹持器底部设置有转动座。所述转动座用于在CT扫描过程中将岩心夹持器固定在CT样品台上,驱替实验过程中卸下以便岩心夹持器接入驱替流程。Preferably, according to the present invention, a rotating seat is provided at the bottom of the core holder. The rotating seat is used to fix the core holder on the CT sample stage during the CT scanning process, and remove it during the displacement experiment so that the core holder can be connected to the displacement process.
根据本发明优选的,所述油相中间容器和水相中间容器的容量均为50-150mL。Preferably, according to the present invention, the capacities of the oil phase intermediate container and the water phase intermediate container are both 50-150 mL.
根据本发明优选的,在所述手摇泵和岩心夹持器之间的管路上设置有压力表,所述压力表的量程为10MPa,精度0.25MPa。Preferably according to the present invention, a pressure gauge is provided on the pipeline between the hand pump and the core holder, and the range of the pressure gauge is 10MPa, and the accuracy is 0.25MPa.
根据本发明优选的,在所述岩心夹持器的进口端设置有进口压力表,所述进口压力表的量程为6MPa,精度0.25MPa。Preferably, according to the present invention, an inlet pressure gauge is provided at the inlet end of the core holder, the range of the inlet pressure gauge is 6 MPa, and the accuracy is 0.25 MPa.
利用上述实验系统进行微观驱替实验的方法,包括步骤如下:Utilize above-mentioned experiment system to carry out the method for microcosmic displacement experiment, comprise steps as follows:
1)将岩心干燥后安装在所述岩心夹持器中,置于Zeiss MCT-400 CT中定位,扫描岩心,获取岩心分析区域三维数字岩心数据体;1) dry the core and install it in the core holder, place it in the Zeiss MCT-400 CT for positioning, scan the core, and obtain the three-dimensional digital core data volume in the core analysis area;
2)将岩心夹持器接入微观驱替设备,对所述岩心实现单相水相驱替、单相油相驱替或水相、油相多相混合驱替实验;2) Connect the core holder to the micro-displacement equipment, and realize single-phase water phase displacement, single-phase oil phase displacement or multi-phase mixed displacement experiment of water phase and oil phase on the core;
3)根据驱替实验的研究内容设计观测时刻点,即为驱替时刻,在所述观测时刻暂停对所述岩心驱替,关闭岩心夹持器出口端、进口端、手摇泵;3) According to the research content of the displacement experiment, the observation time point is designed, which is the displacement time, and the displacement of the core is suspended at the observation time, and the outlet port, the inlet port and the hand pump of the core holder are closed;
4)将岩心夹持器放入Zeiss MCT-400 CT中扫描,获取该驱替时刻时,所述岩心中的流体分布;4) put the core holder into the Zeiss MCT-400 CT to scan, and obtain the fluid distribution in the core at the moment of displacement;
5)重复步骤2)至步骤4),直到按照所述步骤3)所有的设计观测时刻点获取所述岩心中的流体分布。5) Step 2) to step 4) are repeated until the fluid distribution in the core is obtained at all designed observation time points according to step 3).
根据本发明优选的,所述步骤1)中的岩心的直径为1-2cm,长度为2-4cm。Preferably according to the present invention, the diameter of the rock core in step 1) is 1-2 cm, and the length is 2-4 cm.
本发明的优势在于:The advantages of the present invention are:
1、本发明采用现场岩心,最大程度还原油藏孔隙结构,模拟油藏流体流动状况,保证实验的可靠性。同时直径1-2cm的岩样大小较直径2.5cm的标准岩样相比,更易于得到精确的CT扫描结果。1. The present invention uses on-site rock cores to restore the pore structure of the oil reservoir to the greatest extent, simulate the fluid flow conditions of the oil reservoir, and ensure the reliability of the experiment. At the same time, the rock sample with a diameter of 1-2 cm is easier to obtain accurate CT scanning results than the standard rock sample with a diameter of 2.5 cm.
2、本发明所述实验方法不仅能通过实验测得数据,而且能对不同驱替阶段下岩心内的流体分布进行可视化分析。2. The experimental method of the present invention can not only obtain data through experiments, but also can perform visual analysis on the fluid distribution in the rock core under different displacement stages.
3、本发明所述系统和方法不但可获取多孔介质中流体的三维分布,还保证了测得的流体分布结果的准确性,较二维相比更加符合实际情况。3. The system and method of the present invention can not only obtain the three-dimensional distribution of the fluid in the porous medium, but also ensure the accuracy of the measured fluid distribution result, which is more in line with the actual situation than the two-dimensional one.
4、本发明保证了石油行业各类驱替室内实验的进行,可以模拟多种驱替方式、驱替条件。4. The invention guarantees the implementation of various displacement indoor experiments in the petroleum industry, and can simulate various displacement methods and displacement conditions.
5、本发明所述系统适用于小容量、小规模微观驱替实验,所含技术设备较传统驱替实验设备相比操作精度、测量精度更高。5. The system of the present invention is suitable for small-capacity and small-scale microscopic displacement experiments, and the technical equipment contained in it is higher in operation accuracy and measurement accuracy than traditional displacement experimental equipment.
附图说明Description of drawings
图1为本发明所述驱替系统的结构连接图;Fig. 1 is a structural connection diagram of the displacement system of the present invention;
在图1中,1、平流泵;2、油相中间容器;3、水相中间容器;4、岩心夹持器;4-1、进口端;4-2、出口端;5、手摇泵;6、岩心夹持器和手摇泵之间设置的压力表;7、计量瓶。In Fig. 1, 1, advection pump; 2, intermediate container of oil phase; 3, intermediate container of water phase; 4, core holder; 4-1, inlet port; 4-2, outlet port; 5, hand pump ; 6. The pressure gauge set between the core holder and the hand pump; 7. The metering bottle.
图2为本发明所述驱替实验方法所扫描得到的某时刻的数字岩心中流体分布图。Fig. 2 is a fluid distribution diagram in a digital core at a certain moment scanned by the displacement experiment method of the present invention.
具体实施方式Detailed ways
下面结合实施例和说明书附图对本发明做详细的说明,但不限于此。The present invention will be described in detail below in conjunction with the embodiments and the accompanying drawings, but is not limited thereto.
如图1、图2所示。As shown in Figure 1 and Figure 2.
实施例1、Embodiment 1,
一种基于CT数字岩心的微观驱替实验系统,包括岩心夹持器和微观驱替设备;A micro-displacement experimental system based on CT digital core, including a core holder and micro-displacement equipment;
所述岩心夹持器4,包括进口端4-1、出口端4-2、岩心区、外壳;所述外壳为聚醚醚酮材料(PEEK);The core holder 4 includes an inlet port 4-1, an outlet port 4-2, a core area, and a shell; the shell is made of polyether ether ketone (PEEK);
所述微观驱替设备,包括并联的油相中间容器2和水相中间容器3、用于驱替油相中间容器2和水相中间容器3的平流泵1,所述油相中间容器2和水相中间容器3的出液端均与所述岩心夹持器4的进口端4-1相连,所述岩心夹持器4通过手摇泵5实现对其中夹持的岩心进行加压,在所述岩心夹持器4的出口端4-2设置有计量瓶7。The microscopic displacement equipment includes a parallel oil phase intermediate container 2 and a water phase intermediate container 3, an advection pump 1 for displacing the oil phase intermediate container 2 and the water phase intermediate container 3, the oil phase intermediate container 2 and the water phase intermediate container 3 The liquid outlet ends of the water-phase intermediate container 3 are all connected to the inlet port 4-1 of the core holder 4, and the core holder 4 pressurizes the rock core held therein through the hand pump 5. The outlet end 4-2 of the core holder 4 is provided with a metering bottle 7 .
实施例2、Embodiment 2,
如实施例1所述的一种基于CT数字岩心的微观驱替实验系统,其区别在于,在所述岩心夹持器4底部设置有转动座。所述转动座用于在CT扫描过程时将岩心夹持器固定在CT样品台上,驱替实验过程中卸下以便岩心夹持器接入驱替流程。A microscopic displacement experiment system based on CT digital core as described in Example 1, the difference is that a rotating seat is provided at the bottom of the core holder 4 . The rotating seat is used to fix the core holder on the CT sample stage during the CT scanning process, and remove it during the displacement experiment so that the core holder can be connected to the displacement process.
实施例3、Embodiment 3,
如实施例1所述的一种基于CT数字岩心的微观驱替实验系统,其区别在于,所述油相中间容器2和水相中间容器3的容量均为50-150mL。A microscopic displacement experiment system based on CT digital core as described in Example 1, the difference is that the capacities of the oil phase intermediate container 2 and the water phase intermediate container 3 are both 50-150 mL.
在所述手摇泵5和岩心夹持器4之间的管路上设置有压力表6,所述压力表6的量程为10MPa,精度0.25MPa。A pressure gauge 6 is arranged on the pipeline between the hand pump 5 and the core holder 4, the range of the pressure gauge 6 is 10MPa, and the accuracy is 0.25MPa.
在所述岩心夹持器4的进口端4-1设置有进口压力表,所述进口压力表的量程为6MPa,精度0.25MPa。An inlet pressure gauge is provided at the inlet end 4-1 of the core holder 4, the range of the inlet pressure gauge is 6MPa, and the precision is 0.25MPa.
实施例4、Embodiment 4,
利用如实施例1-3任意一项所述实验系统进行微观驱替实验的方法,包括步骤如下:Utilize the method for microcosmic displacement experiment as described in any one of embodiment 1-3 experimental system, comprise steps as follows:
1)将岩心干燥后安装在所述岩心夹持器4中,置于Zeiss MCT-400 CT中定位,扫描岩心,获取岩心分析区域三维数字岩心数据体;1) dry the rock core and install it in the rock core holder 4, place it in Zeiss MCT-400 CT for positioning, scan the rock core, and obtain the three-dimensional digital rock core data volume in the core analysis area;
2)将岩心夹持器4接入微观驱替设备,对所述岩心实现单相水相驱替、单相油相驱替或水相、油相多相混合驱替实验;2) Connecting the core holder 4 to the micro-displacement equipment, and performing single-phase water displacement, single-phase oil phase displacement or multi-phase mixed displacement experiments of water phase and oil phase on the core;
3)根据驱替实验的研究内容设计观测时刻点,即为驱替时刻,在所述观测时刻暂停对所述岩心驱替,关闭岩心夹持器出口端4-2、进口端4-1、手摇泵5;3) According to the research content of the displacement experiment, the observation time point is designed, which is the displacement time. At the observation time, the displacement of the core is suspended, and the outlet port 4-2, the inlet port 4-1, and the core holder are closed. hand pump 5;
4)将岩心夹持器4放入Zeiss MCT-400 CT中扫描,获取该驱替时刻时,所述岩心中的流体分布;4) Put the core holder 4 into the Zeiss MCT-400 CT for scanning, and obtain the fluid distribution in the core during the displacement moment;
5)重复步骤2)至步骤4),直到按照所述步骤3)所有的设计观测时刻点获取所述岩心中的流体分布。5) Step 2) to step 4) are repeated until the fluid distribution in the core is obtained at all designed observation time points according to step 3).
所述步骤1)中的岩心的直径为1-2cm,长度为2-4cm。The rock core in the step 1) has a diameter of 1-2 cm and a length of 2-4 cm.
如图2可知,利用CT扫描可以实时监测到岩心中流体分布。As shown in Fig. 2, the fluid distribution in the core can be monitored in real time by using CT scanning.
Claims (7)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510236593.6A CN104819990A (en) | 2015-05-11 | 2015-05-11 | Microscopic displacement experimental system and microscopic displacement experimental method based on CT digital core |
PCT/CN2016/080031 WO2016180215A1 (en) | 2015-05-11 | 2016-04-22 | Ct digital core-based microscopic displacement experiment system and microscopic displacement experiment method |
AU2016102347A AU2016102347A4 (en) | 2015-05-11 | 2016-04-22 | CT digital core-based microscopic displacement experiment system and microscopic displacement experiment method |
AU2016260347A AU2016260347A1 (en) | 2015-05-11 | 2016-04-22 | CT digital core-based microscopic displacement experiment system and microscopic displacement experiment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510236593.6A CN104819990A (en) | 2015-05-11 | 2015-05-11 | Microscopic displacement experimental system and microscopic displacement experimental method based on CT digital core |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104819990A true CN104819990A (en) | 2015-08-05 |
Family
ID=53730346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510236593.6A Pending CN104819990A (en) | 2015-05-11 | 2015-05-11 | Microscopic displacement experimental system and microscopic displacement experimental method based on CT digital core |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN104819990A (en) |
AU (2) | AU2016102347A4 (en) |
WO (1) | WO2016180215A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105784939A (en) * | 2016-03-21 | 2016-07-20 | 西南石油大学 | Underground gas storage reservoir simulating experimental device and experimental method |
WO2016180215A1 (en) * | 2015-05-11 | 2016-11-17 | 中国石油大学(华东) | Ct digital core-based microscopic displacement experiment system and microscopic displacement experiment method |
CN106568981A (en) * | 2016-08-04 | 2017-04-19 | 中国石油大学(北京) | Automatic core displacement test device, and control method |
CN107132240A (en) * | 2017-06-07 | 2017-09-05 | 中国石油天然气股份有限公司 | High-temperature high-pressure fluid filling experimental device for CT |
CN107725016A (en) * | 2016-08-11 | 2018-02-23 | 中国石油天然气股份有限公司 | One-unit driving experimental device |
CN108169261A (en) * | 2018-01-05 | 2018-06-15 | 李中民 | A kind of core holding unit for CT scan |
CN108931541A (en) * | 2018-05-05 | 2018-12-04 | 青岛科技大学 | A kind of core chucking device for micro- CT equipment visual research porous media dynamic flow event |
CN109060608A (en) * | 2018-07-09 | 2018-12-21 | 西南石油大学 | The multiple dimensioned water seal mechanism of qi reason visual experimental apparatus of high temperature and pressure and method |
CN111735831A (en) * | 2019-12-18 | 2020-10-02 | 中国石油大学(华东) | A 3D Visualized Reciprocating Cyclic Displacement System |
CN113327832A (en) * | 2020-02-28 | 2021-08-31 | 中国石油天然气股份有限公司 | X-ray generation device, core accommodating assembly, oil displacement experiment system and method |
CN113740513A (en) * | 2021-09-08 | 2021-12-03 | 安徽理工大学 | In-situ CT (computed tomography) online scanning displacement experiment system and application method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108872230A (en) * | 2017-05-10 | 2018-11-23 | 中国石油天然气股份有限公司 | CO2Evaluation method and device for improving residual oil displacement effect by emulsion huff and puff |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102095740A (en) * | 2010-12-17 | 2011-06-15 | 中国石油天然气股份有限公司 | CT scanning heterogeneous model test system |
CN103063687A (en) * | 2013-01-06 | 2013-04-24 | 中国石油大学(华东) | Device for acquiring and testing microcosmic distribution image of remaining oil in porous medium |
CN103257101A (en) * | 2013-05-24 | 2013-08-21 | 中国石油大学(北京) | Coating-containing core as well as core holder anti-corrosion method and core displacement experiment method |
CN203161194U (en) * | 2013-01-30 | 2013-08-28 | 刘怀珠 | Data collection control device in process of displacement of chemical flooding physical model system |
CN203443906U (en) * | 2013-08-15 | 2014-02-19 | 中国石油天然气股份有限公司 | Experimental device for scanning heterogeneous model by utilizing CT |
CN103954544A (en) * | 2014-05-13 | 2014-07-30 | 中国石油大学(北京) | Experimental device and method for estimating water-controlling and air-intake effects of polymer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4663711A (en) * | 1984-06-22 | 1987-05-05 | Shell Oil Company | Method of analyzing fluid saturation using computerized axial tomography |
US5109398A (en) * | 1990-02-22 | 1992-04-28 | Bp America Inc. | Vertical core flow testing apparatus and method with computed tomography scanning |
CN102809528B (en) * | 2012-08-03 | 2015-02-25 | 中国石油天然气股份有限公司 | Three-phase Relative Permeability Test System Based on CT Scanning |
CN102809518B (en) * | 2012-08-27 | 2014-04-02 | 中国石油大学(华东) | Device and method for measuring gas phase saturation of parallel core during foam displacement |
CN103091346B (en) * | 2013-01-18 | 2016-03-30 | 上海大学 | A kind of visual evaluating method of rock core displacement effect |
CN103556994B (en) * | 2013-11-19 | 2016-11-23 | 中国石油大学(华东) | The experiment detecting system of fractured-vuggy reservoir remaining oil distribution and detection method |
CN104819990A (en) * | 2015-05-11 | 2015-08-05 | 中国石油大学(华东) | Microscopic displacement experimental system and microscopic displacement experimental method based on CT digital core |
-
2015
- 2015-05-11 CN CN201510236593.6A patent/CN104819990A/en active Pending
-
2016
- 2016-04-22 WO PCT/CN2016/080031 patent/WO2016180215A1/en active Application Filing
- 2016-04-22 AU AU2016102347A patent/AU2016102347A4/en not_active Ceased
- 2016-04-22 AU AU2016260347A patent/AU2016260347A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102095740A (en) * | 2010-12-17 | 2011-06-15 | 中国石油天然气股份有限公司 | CT scanning heterogeneous model test system |
CN103063687A (en) * | 2013-01-06 | 2013-04-24 | 中国石油大学(华东) | Device for acquiring and testing microcosmic distribution image of remaining oil in porous medium |
CN203161194U (en) * | 2013-01-30 | 2013-08-28 | 刘怀珠 | Data collection control device in process of displacement of chemical flooding physical model system |
CN103257101A (en) * | 2013-05-24 | 2013-08-21 | 中国石油大学(北京) | Coating-containing core as well as core holder anti-corrosion method and core displacement experiment method |
CN203443906U (en) * | 2013-08-15 | 2014-02-19 | 中国石油天然气股份有限公司 | Experimental device for scanning heterogeneous model by utilizing CT |
CN103954544A (en) * | 2014-05-13 | 2014-07-30 | 中国石油大学(北京) | Experimental device and method for estimating water-controlling and air-intake effects of polymer |
Non-Patent Citations (1)
Title |
---|
付国太 等: "PEEK的特性及应用", 《工程塑料应用》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016180215A1 (en) * | 2015-05-11 | 2016-11-17 | 中国石油大学(华东) | Ct digital core-based microscopic displacement experiment system and microscopic displacement experiment method |
CN105784939A (en) * | 2016-03-21 | 2016-07-20 | 西南石油大学 | Underground gas storage reservoir simulating experimental device and experimental method |
CN106568981A (en) * | 2016-08-04 | 2017-04-19 | 中国石油大学(北京) | Automatic core displacement test device, and control method |
CN107725016B (en) * | 2016-08-11 | 2020-10-09 | 中国石油天然气股份有限公司 | One-unit driving experimental device |
CN107725016A (en) * | 2016-08-11 | 2018-02-23 | 中国石油天然气股份有限公司 | One-unit driving experimental device |
CN107132240A (en) * | 2017-06-07 | 2017-09-05 | 中国石油天然气股份有限公司 | High-temperature high-pressure fluid filling experimental device for CT |
CN108169261A (en) * | 2018-01-05 | 2018-06-15 | 李中民 | A kind of core holding unit for CT scan |
CN108169261B (en) * | 2018-01-05 | 2021-02-19 | 四川省川建勘察设计院有限公司 | Rock core holder for CT scanning |
CN108931541A (en) * | 2018-05-05 | 2018-12-04 | 青岛科技大学 | A kind of core chucking device for micro- CT equipment visual research porous media dynamic flow event |
CN109060608A (en) * | 2018-07-09 | 2018-12-21 | 西南石油大学 | The multiple dimensioned water seal mechanism of qi reason visual experimental apparatus of high temperature and pressure and method |
CN111735831A (en) * | 2019-12-18 | 2020-10-02 | 中国石油大学(华东) | A 3D Visualized Reciprocating Cyclic Displacement System |
CN111735831B (en) * | 2019-12-18 | 2023-01-17 | 中国石油大学(华东) | A three-dimensional visualized reciprocating circulation displacement system |
CN113327832A (en) * | 2020-02-28 | 2021-08-31 | 中国石油天然气股份有限公司 | X-ray generation device, core accommodating assembly, oil displacement experiment system and method |
CN113740513A (en) * | 2021-09-08 | 2021-12-03 | 安徽理工大学 | In-situ CT (computed tomography) online scanning displacement experiment system and application method |
CN113740513B (en) * | 2021-09-08 | 2023-10-20 | 安徽理工大学 | In-situ CT online scanning displacement experiment system and application method |
Also Published As
Publication number | Publication date |
---|---|
AU2016260347A1 (en) | 2017-04-27 |
AU2016102347A4 (en) | 2017-07-27 |
WO2016180215A1 (en) | 2016-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104819990A (en) | Microscopic displacement experimental system and microscopic displacement experimental method based on CT digital core | |
Yang et al. | Microscopic determination of remaining oil distribution in sandstones with different permeability scales using computed tomography scanning | |
CN103163057B (en) | Testing device and measuring and calculating method for gas permeability of compact rock material | |
CN106771090B (en) | A method and device for measuring the emulsification ability of crude oil along the process of simulating surfactant flooding | |
CN102128837B (en) | Real-time acquisition experimental device for flowing foam structural images in porous media | |
CN108729908A (en) | A kind of oily flow simulating of densification based on pore network model and Permeability Prediction method | |
CN107045054A (en) | Husky behavior and the experimental provision and method of the relation of porous media radial direction deformation are produced in a kind of researching natural gas hydrate recovery process | |
CN102621034A (en) | Reservoir capillary pressure curve determinator under high temperature and pressure | |
CN107741390A (en) | A Physical Simulation Method for Reproducing the Propagation Law of Micro-fractures Induced by Water Injection under Formation Conditions | |
CN105571647A (en) | Natural gas hydrate exploitation multi-physical field evolution simulation test device and method | |
CN108051643A (en) | Multipair dynamic monitoring displacement system of multi-functional long cores radial direction | |
CN103278516B (en) | Rock core CT scanning method based on top vertical gas injection | |
CN108119132B (en) | Tight sandstone gas reservoir near-wellbore-zone radial seepage water saturation simulation device and method | |
CN109459556B (en) | Dynamic imbibition device and experimental method for dynamic imbibition experiments | |
CN105259018A (en) | Natural gas hydrate synthesis and decomposition multi-parameter test device | |
CN102809528A (en) | Three-phase Relative Permeability Test System Based on CT Scanning | |
CN205786187U (en) | A kind of gas hydrates borehole axis is to the one-dimensional physical simulating device that shakes out | |
CN112098155B (en) | Oil reservoir oil-water-rock reaction experimental device and method and sampling position determination method | |
CN106501493A (en) | A kind of displacement test heterogeneous body self-constant temperature sandpack column and loading method | |
CN206038586U (en) | Physical simulation experiment device is invaded to gas reservoir water | |
CN206497006U (en) | A Measurement System of Oil-Salt Water Contact Angle Based on CT Scanning | |
CN106814011A (en) | It is a kind of to determine the device and method that foam generates boundary in porous media | |
CN115078355A (en) | Visualization device and method for simulating gas injection phase state characteristics of crude oil in porous medium | |
CN116150559A (en) | Calculating CO 2 Diffusion coefficient method in three-phase system | |
CN206737911U (en) | Sand screen net erosion degree experimental provision after a kind of simulated formation temperature Gas well dewatering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150805 |