CN104796800B - 光模块及具有该光模块的无源光网络 - Google Patents

光模块及具有该光模块的无源光网络 Download PDF

Info

Publication number
CN104796800B
CN104796800B CN201510170966.4A CN201510170966A CN104796800B CN 104796800 B CN104796800 B CN 104796800B CN 201510170966 A CN201510170966 A CN 201510170966A CN 104796800 B CN104796800 B CN 104796800B
Authority
CN
China
Prior art keywords
optical
optical module
temperature controller
network
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510170966.4A
Other languages
English (en)
Other versions
CN104796800A (zh
Inventor
赵其圣
何鹏
杨思更
张强
薛登山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Broadband Multimedia Technology Co Ltd
Original Assignee
Hisense Broadband Multimedia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Broadband Multimedia Technology Co Ltd filed Critical Hisense Broadband Multimedia Technology Co Ltd
Priority to CN201510170966.4A priority Critical patent/CN104796800B/zh
Publication of CN104796800A publication Critical patent/CN104796800A/zh
Application granted granted Critical
Publication of CN104796800B publication Critical patent/CN104796800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种光模块及具有该光模块的无源光网络。所述光模块包括主控单元和集成有温度控制器的光发射组件,还包括温度控制器驱动单元和波长调谐单元。本发明通过在光模块中设置波长调谐单元及温度控制器驱动单元,可方便地通过光模块的主控单元实现光模块发射波长的调整,波长调整方式简单,降低了利用光模块组建光网络的难度和成本。

Description

光模块及具有该光模块的无源光网络
本申请是2011年12月31日提出的发明名称为 “光模块及具有该光模块的无源光网络”的中国发明专利申请201110457829.0的分案申请。
技术领域
本发明涉及光通信技术领域,具体地说,是涉及一种波长可调谐的光模块及具有该光模块的无源光网络。
背景技术
无源光网络(PON)是一种点对多点的光纤传输和接入技术,起源于90年代中期,随着PON技术的演进,逐步出现了宽带无源光网络(BPON)、以太无源光网络(EPON)及吉比特无源光网络(GPON)等技术。无源光网络因为其宽带化、业务综合化、灵活的组网能力、低成本等优点,得到了迅速的发展,目前常用的无源光网络为EPON和GPON。
对于EPON和GPON技术,目前大都是采用时分多址复用(TDM)技术,并不能很好地满足用户带宽迅速增长的需求。而且,由于EPON和GPON的单纤接入容量受到限制(目前只有32线或64线),当局端机房跨区设置时,需要铺设数十芯光纤连接跨距在10~40km的光线路终端OLT和光网络单元ONU,不但建设成本与维护成本高,而且会面临接入管线光纤资源受限的矛盾。基于波分多址复用(WDM)技术的PON是一种更具优势的复用方案,该方案通过在一根光纤上承载多个波长系统实现复用,可以将一根光纤转换为多条“虚拟”光纤,每条虚拟光纤独立工作在不同波长上,极大地提高了光纤的传输容量。由于WDM技术的经济性与有效性,使之成为当前光纤通信网络扩容的主要手段。
采用WDM的PON系统中,每个OLT光模块及ONU光模块的发射波长需要各不相同,并通过不同的光信道分别进行传输。相应的,现有技术普遍采用两种方式来实现:第一,直接采用具有波长选择功能的光组件构成的光模块。由于光模块自身具有波长选择功能,可以采用相同结构和功能的光模块部署用户端的ONU,能保证不同光模块发出不同波长的光信号。但由于具有波长选择功能的光组件价格相当昂贵,并不适合在用户端的ONU光模块中使用,因而不能广泛推广和应用。第二,给每一个ONU光模块分配一个固定波长,则需要为每一个用户端的ONU选择一个具有特定接收波长的光模块,有多少个ONU,就需要选用多少种不同结构和功能的光模块,且每个光模块在部署时就要与光复用器件的端口一一对应,从而导致不仅组网复杂,且安装、维护均不方便,而且由于所使用的光模块不统一,造成库存及管理成本大大增加。
发明内容
本发明的目的之一在于提供一种光模块,通过在光模块中设置波长调谐单元及温度控制器驱动单元,可方便地通过光模块的主控单元实现光模块发射波长的调整,波长调整方式简单,降低了利用光模块组建光网络的难度和成本。
为实现上述发明目的,本发明采用下述技术方案予以实现:
一种光模块,包括主控单元和集成有温度控制器的光发射组件,还包括温度控制器驱动单元和波长调谐单元,波长调谐单元包括第一运放子单元和第二运放子单元,第一运放子单元的第一输入端通过电阻分压网络连接主控单元的温度控制信号输出端,第一运放子单元的输出端一方面通过电压反馈电路连接其第一输入端,另一方面连接温度控制器驱动单元的驱动电流控制端,第一运放子单元的第二输入端连接第二运放子单元的输出端;第二运放子单元的第一输入端连接光发射组件的温度反馈端子;温度控制器驱动单元的温度控制器驱动电流输出端连接光发射组件的温度控制器驱动电流输入端。
本发明所提供的上述光模块通过主控单元、温度控制器驱动单元、波长调谐单元及光发射组件构成对光发射组件的温度进行反馈式控制的结构,不仅可以对温度进行调整,而且能够保持温度的恒定;而又由于光发射组件发射光信号的波长与温度一一对应,进而通过光发射组件温度的调整实现对其发射波长进行调整,从而可以简单的结构实现多个光模块的波分复用,有利于降低光模块组网的难度和成本。
如上所述的光模块,所述温度控制器优选为半导体制冷器。
如上所述的光模块,所述第一运放子单元的第一输入端为反相输入端,所述电压反馈电路为电压负反馈电路,电压负反馈电路包括第一电容、第二电容和第一电阻,第一电容与第一电阻串联后与第二电容并联形成并联电路,并联电路一端连接第一运放子单元的反相输入端,另一端连接第一运放子单元的输出端。
如上所述的光模块,为保证快速反馈以达到温度平衡、同时又防止产生自振荡,所述第一电容容值优选为10uF,第二电容的容值优选为22nF,第一电阻的阻值优选为100
如上所述的光模块,所述温度控制器驱动单元的温度控制器驱动电流输出端通过滤波电感与所述光发射组件的温度控制器驱动电流输入端相连接,以保证温度控制器驱动电流信号的纯净。
如上所述的光模块,为防止供电电压变化而引起光发射组件发射的光信号波长的波动,所述分压网络的一个分压端还连接有参考电压输入端(REF4V5),参考电压输入端还通过限流电阻(R51)连接到光发射组件的温度反馈端。
如上所述的光模块,所述主控单元优选采用单片机来实现;在采用单片机作为主控单元时,所述温度控制信号输出端为单片机的数模转换输出端。
本发明的目的之二在于提供一种结构简单、容易实现、成本低廉的基于波分复用技术的无源光网络。
为实现上述发明目的,本发明采用下述技术方案来实现:
一种无源光网络,包括光线路终端、光缆及光网络单元;光线路终端包括有若干个OLT光模块,光网络单元包括有若干个ONU光模块,光缆一端通过第一光复用解复用器件连接至若干个OLT光模块,另一端通过第二光复用解复用器件连接至若干个ONU光模块,且OLT光模块及ONU光模块为上述第一个发明目的所提供的光模块。
本发明的目的之三在于提供一种结构简单、容易实现、成本低廉的波分和时分混合复用的无源光网络。
为实现上述发明目的,本发明采用下述技术方案来实现:
一种无源光网络,包括光线路终端、光缆及光网络单元,光线路终端包括有若干个OLT光模块,光缆一端通过第一光复用解复用器件连接至若干个OLT光模块,另一端通过第二光复用解复用器件连接有若干个分光计,每个分光计的另一端连接有若干个光网络单元用ONU光模块,且OLT光模块及ONU光模块为上述权利要求1至6中任一项所述的光模块。
如上所述的无源光网络,为充分利用OLT光模块、增加光网络中ONU的数量,所述OLT光模块的数量优选与所述分光计的数量相等。
与现有技术相比,本发明的优点和积极效果是:
1、本发明通过在光模块中增设波长调谐单元,并利用主控单元及温度控制器驱动单元与波长调谐单元构成温度反馈式控制结构,不仅可以对光模块中光发射组件的温度进行调整,而且能够保持温度的恒定;而又由于光发射组件发射光信号的波长与温度一一对应,进而通过光发射组件温度的调整实现对其发射波长进行调整,波长调整结构简单、容易实现、成本较低。
2、利用本发明所述的光模块组建无源光网络,能够灵活实现波分复用及波分与时分混合复用,且降低了组网复杂度、难度和成本。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是本发明所述光模块一个实施例的原理框图;
图2是图1实施例中波长调谐控制电路一个具体电路原理图;
图3是图1实施例中发射机控制电路一个具体的电路原理图;
图4是图1实施例中接收机控制电路一个具体的电路原理图;
图5是本发明无源光网络一个实施例的网络架构图;
图6是本发明无源光网络另一个实施例的网络架构图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案作进一步详细的说明。
请参考图1,该图所示为本发明所述光模块一个实施例的原理框图。
该实施例以光网络单元端的ONU光模块为例,如图1所示,光模块包括有光发射组件11和光接收组件12,其中,光发射组件11中集成有温度控制器。其中,温度控制器可以且优选采用半导体制冷器来实现。
光发射组件11与发射机控制电路14相连,发射机控制电路14为光发射组件11提供突发模式的驱动电流和调制电流,并受主板上的主控单元13输入的突发使能信号控制,实现上行突发的数据传输;同时,主控单元13实时监控光发射组件11的光功率和驱动电流。发射机控制电路14可采用现有技术常用的电路结构,例如,可以采用图3所示的电路原理图来实现。
光接收组件12与接收机控制电路16相连,该接收机控制电路16为连续工作模式,包括限幅放大电路和为光接收组件12提供电压的升压电路。光接收组件12将接收到的光信号转化为电信号后,输入至限幅放大器进行放大输出;同时,主控单元13实时监控接收光功率。接收机控制电路16可采用现有技术常用的电路结构,例如,可以采用图4所示的电路原理图来实现。
此外,为实现对光发射组件11发射信号的波长进行调整,该实施例还包括有与光发射组件11相连接的波长调谐控制电路15。波长调谐控制电路在主控单元13的控制下,对光发射组件11的温度进行控制,并能使其温度稳定在设定值。由于光发射组件11发光的波长是随着其温度不同而变化的,所以不同的温度设定值会使得光发射组件11发出不同波长的光,从而通过温度的控制实现对光发射组件11发射信号的波长进行控制,实现波长的调谐。波长调谐控制电路15可以采用图2所示的电路原理图来实现。
请参考图2,该图示出了图1实施例中波长调谐控制电路的一个具体电路原理图。
如图2所示,该图所示的波长调谐控制电路包括有温度控制器驱动芯片U11及其相应的外围电路构成的温度控制器驱动单元和由第一运放芯片U10、第二运放芯片U15及其相应的外围电路构成的波长调谐单元。
其中,第一运放芯片U10的反相输入端pin4通过由电阻R58、R48、R42及R53组成的电阻分压网络连接至构成光模块主控单元的单片机U6的温度控制信号输出端pin7;U10的输入端pin1一方面通过电压反馈电路连接U10的反相输入端pin4,另一方面连接温度控制器驱动芯片U11的驱动电流控制端;U10的同相输入端pin3连接第二运放芯片U15的输出端pin1,而U15的同相输入端pin3连接光发射组件TOSA的温度反馈端。而温度控制器驱动芯片U11的温度控制器驱动电流输出端pin1和pin15直接或分别通过滤波电感SI1和SI2连接至光发射组件TOSA的温度控制器驱动电流输入端pin2和pin1。通过设置电阻R58、R48、R42及R53组成的电阻分压网络,可以控制TOSA发光的波长调节范围。电阻分压网络除了可采用图2的结构之外,也可以采用其他形式的结构,具体可根据波长调节范围及单片机U6输出的温度控制信号的幅值来选择。
在该实施例中,由于将第一运放芯片U10的反相输入端pin4作为控制信号输入端,所以,U10的输出端pin1通过电压负反馈电路连接到反相输入端pin4。电压负反馈电路包括第一电容C50、第二电容C49和第一电阻R63,其中,第一电容C50与第一电阻R63串联后再与第二电容C49并联形成并联电路,并联电路一端连接U10的反相输入端pin4,另一端连接U10的输出端pin1。而且,在该实施例中,为保证光发射组件TOSA的温度能够快速达到平衡,同时又防止电路产生自振荡,电容C50的容值优选为10uF,电容C49的容值优选为22nF,电阻R63的阻值优选为100,以对整个电路进行优化。
上述波长调谐控制电路对光发射组件TOSA的发光波长进行调谐控制的工作原理如下:根据网络部署及光网络单元的需求要对ONU光模块选择特定发光波长时,根据预先设定的波长与相应控制参数的关系,控制单片机U6的数模转换输出端pin7输出与需求波长相对应的温度控制信号WAVELENGTH,该控制信号为一个电压信号。该温度控制信号通过电阻分压网络输入至第一运放芯片U10的反相输入端,使得U10的输出端的输出信号发生变化,也即VCTL1信号发生变化。由于VCTL1信号连接温度控制器驱动芯片U11的驱动电流控制端,U11将根据该信号计算温度控制器驱动电流,并通过其pin1和pin15输出至TOSA的温度控制器驱动电流输入端pin2和pin1,进而控制TOSA中集成的温度控制器工作,以调节TOSA的内部温度。TOSA中集成的热敏电阻起到温度传感器的作用,可将TOSA内部的温度转换成相应的电压信号,并通过其pin8和pin9的温度反馈端输出RTH信号。该RTH信号作为一个反馈信号输入至第二运放芯片U15的同相输入端pin3,经U15放大和缓冲后,从U15的输出端pin1输出与RTH成正比的一个反馈电压信号VRTH。而该反馈电压信号VRTH又输入至第一运放芯片U10的同相输入端,作为U10的同相输入端信号。根据运放负反馈的原理,当U10的同相输入端pin3的输入电压应该与其反相输入端pin4的输入电压相等时,可以使得整个光模块达到最终的平衡状态,此时,TOSA的温度将稳定在与单片机U6输出的温度控制信号WAVELENGTH相对应的设定值。TOSA在给温度设定值下工作,即可发出设定波长的光信号。通过控制单片机U6输出不同的温度控制信号WAVELENGTH,即可控制TOSA发出不同波长的光信号,从而实现了对TOSA发光波长的调谐。整个波长谐电路结构简单、调谐过程方便、调谐结果稳定,性能较高,而成本较低。
此外,在该实施例中,为防止因系统供电电压变化而引起TOSA发射的光信号波长的波动,在分压网络中的分压电阻R58分压端处还连接有参考电压REF4V5的输入端,而且,该参考电压REF4V5的输入端还通过限流电阻R51连接到光发射组件TOSA的温度反馈端。
上述实施例采用的是单片机U6的温度控制信号输入至第一运放芯片的反相输入端、第一运放芯片采用电压负反馈的电路结构,但不局限于此,也可以采用将温度控制信号输入至第一运放芯片的同相输入端,只要相应地调整其电压反馈结构以及与第二运放芯片U15及温度控制器驱动芯片U11的端子连接关系、保证实现上述所述的工作过程即可。
该实施例的波长调谐控制电路不仅可以应用在光网络单元端的ONU光模块中,也可以应用在光线路终端的OLT光模块中。
请参考图3,该图示出了图1实施例中发射机控制电路的一个具体电路原理图,该电路原理图是针对ONU光模块所用的发射机控制电路的一个电路结构。
如图3所示,发射机控制电路的结构及工作原理简述如下:待发射的电信号通过耦合电容C2和C8耦合进入突发模式驱动芯片U1中,经电阻R6、R7、R8及R9构成电平匹配网络进行系统信号输出电平与驱动芯片输入电平的匹配。芯片U1的一个驱动信号输出端pin17通过电阻R10和二极管D1连接到光发射组件TOSA的正极LD+,而另一个驱动信号输出端pin16通过电阻R11连接到TOSA的负极LD-,以提供TOSA的调制电流、即数据的加载。同时,TOSA的LD-通过电阻R37和电感L10构成的并联电路连接到U1的偏置电流输出端pin14,以通过U1为TOSA提供偏置电流。其他外围电路结构及其功能为现有技术,在此不作具体描述。
请参考图4,该图示出了图1实施例中接收机控制电路的一个具体电路原理图,该电路原理图也是针对ONU光模块所用的接收机控制电路的一个电路结构。
如图4所示,接收机控制电路的结构及工作原理简述如下:光接收组件ROSA 接收光信号并转换为电信号输出,该电信号经过耦合电容C36和C38输入到限幅放大和时钟数据恢复芯片U9中,经U9限幅放大处理之后,通过U9的差分电信号输出端pin15和pin16输出。其他外围电路结构及其功能为现有技术,在此不作具体描述。
上述具有波长调谐功能的光模块可以用来组建基于波分复用技术的无源光网络,也可以用来组建波分和时分混合复用的无源光网络。
请参考图5,该图示出了本发明无源光网络一个实施例的网络架构图。该实施例的无源光网络为采用图1至图4所示的光模块构建的、基于波分复用技术的一个无源光网络。
如图5所示,该实施例的无源光网络包括光线路终端、光缆及光网络单元,光线路终端包括有n个OLT光模块,分别为OLT1,OLT2,…,OLTn,光网络单元包括有n个ONU光模块,分别为ONU1,ONU2,…,ONUn。n个OLT光模块通过第一光复用解复用器件51与光缆54连接,进而经光缆54连接位于光网络单元端的第二光复用解复用器件52,而第二光复用解复用器件52的另一端连接n个ONU光模块。每个OLT光模块及每个ONU光模块均采用上述所述的波长可调谐的电路结构实现波长调谐,具体来说:
对于下行,OLT1发射波长为的光信号,OLT2发射波长为的光信号,…OLTn发射波长为的光信号,分别承载不同的业务和数据。n个OLT光模块发射的光信号通过第一光复用解复用器件51耦合到一根光缆54中,通过长距离传输后再通过第二光复用解复用器件52到达光网络单元端的ONU光模块,不同波长的信号到达不同的、指定的ONU光模块。由于每个OLT光模块的发射波长可以调整,所以在组网时无需将OLT光模块与光复用解复用器件51的端口一一对应,从而降低了组网的难度。在使用时仅需通过控制光模块的主控单元发出控制命令即可将OLT光模块的发射波长调整到与光复用解复用器件51端口相对应的波长,使用及其方便。
对于上行,ONU1发射波长为的光信号,ONU2发射波长为的光信号,…ONUn发射波长为的光信号,分别承载不同的业务和数据,根据类似于OLT光模块的工作过程实现不同波长光信号的上行传输。
在该实施例中,OLT光模块的数量与ONU光模块的数量相等,可以最大限度地利用光模块资源,扩展无源光网络的规模。
请参考图6,该图示出了本发明无源光网络另一个实施例的网络架构图。该实施例的无源光网络为采用图1至图4所示的光模块构建的、基于波分和时分混合复用技术的一个无源光网络。
如图6所示,该实施例的无源光网络包括光线路终端、光缆及光网络单元,光线路终端包括有n个OLT光模块,分别为OLT1,OLT2,…,OLTn。光缆65一端通过第一光复用解复用器件61连接至n个OLT光模块,另一端通过第二光复用解复用器件62连接有n个分光计63至6n,每个分光计的另一端分别连接有32个光网络单元用ONU光模块,这样,整个无源光网络中共包括有32*n个ONU光模块。每个OLT光模块采用上述所述的波长可调谐的电路结构实现波长调谐,其中,OLT1发射波长为的光信号,OLT2发射波长为的光信号,…OLTn发射波长为的光信号。每个ONU光模块也采用上述所述的波长可调谐的电路结构实现波长调谐,只不过,每个分光计所连接的32个ONU光模块采用一个波长,构成具有一个波长的时分复用网络,这样,n个分光计共包括有n个波长的时分复用网络。该实施例的无源光网络的工作过程如下:
对于下行,OLT1发射波长为的光信号,OLT2发射波长为的光信号,…OLTn发射波长为的光信号,分别承载不同的业务和数据。n个OLT光模块发射的光信号通过第一光复用解复用器件61耦合到一根光缆65中,通过长距离传输后到达光网络单元端的第二光复用解复用器件62,再将光信号解复用为n个波长,从而实现波分复用方式的下行传输。然后,每个波长分别对应一个由分光计及其连接的32个ONU光模块构成的时分复用网络,从而实现波分和时分的混合复用,不仅扩展了光网络单元端所配置的ONU光模块的数量,且组网容易,使用方便。
对于上行,波长为的32个ONU通过时分复用方式传输到所连接的分光计63中,经分光计63耦合后传输至第二光复用解复用器件62相应的端口,…,波长为的32个ONU通过时分复用方式传输到所连接的分光计64中,经分光计63耦合后传输至第二光复用解复用器件62相应的端口。然后,第二光复用解复用器件62再将n个波长通过波分复用方式复用到光缆65中,传输到光线路终端。在光线路终端,上行信号经第一光复用解复用器件61解复用为n个波长的光信号,并分别到达相对应的OLT模块,实现上行信号的传输。
在该实施例中,为充分利用OLT光模块、增加光网络中ONU的数量,OLT光模块的数量与分光计的数量相等。但是,并不局限于此,也可以是分光计的数量小于OLT光模块的数量。
在上述图5及图6两个无源光网络实施例中,第一光复用解复用器件51、61及第二光复用解复用器件52、62均优选采用阵列波导光栅来实现。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (8)

1.一种光模块,包括主控单元、集成有温度控制器的光发射组件及波长调谐控制电路,所述波长调谐控制电路在主控单元的控制下,调节所述光发射组件中温度控制器工作温度,其特征在于,所述波长调谐控制电路包括温度控制器驱动单元和波长调谐单元;
所述波长调谐单元包括第一运放子单元和第二运放子单元,所述第一运放子单元的第一输入端通过电阻分压网络连接所述主控单元的温度控制信号输出端,所述第一运放子单元的输出端一方面通过电压反馈电路连接其第一输入端,另一方面连接所述温度控制器驱动单元的驱动电流控制端,所述第一运放子单元的第二输入端连接所述第二运放子单元的输出端;所述第二运放子单元的第一输入端连接所述光发射组件的温度反馈端;
所述温度控制器驱动单元的温度控制器驱动电流输出端连接光发射组件的温度控制器驱动电流输入端。
2.根据权利要求1所述的光模块,其特征在于,所述第一运放子单元的第一输入端为反相输入端,所述电压反馈电路为电压负反馈电路,电压负反馈电路包括第一电容、第二电容和第一电阻,第一电容与第一电阻串联后与第二电容并联形成并联电路,并联电路一端连接第一运放子单元的反相输入端,另一端连接第一运放子单元的输出端。
3.根据权利要求2所述的光模块,其特征在于,所述第一电容容值为10uF,第二电容的容值为22nF,第一电阻的阻值为100
4.根据权利要求1所述的光模块,其特征在于,所述温度控制器驱动单元的温度控制器驱动电流输出端通过滤波电感与所述光发射组件的温度控制器驱动电流输入端相连接。
5.根据权利要求1至4中任一项所述的光模块,其特征在于,所述分压网络的一个分压端还连接有参考电压输入端,参考电压输入端还通过限流电阻连接到光发射组件的温度反馈端。
6.一种无源光网络,包括光线路终端、光缆及光网络单元,其特征在于,光线路终端包括有若干个OLT光模块,光网络单元包括有若干个ONU光模块,光缆一端通过第一光复用解复用器件连接至若干个OLT光模块,另一端通过第二光复用解复用器件连接至若干个ONU光模块,且OLT光模块及ONU光模块为上述权利要求1至5中任一项所述的光模块。
7.一种无源光网络,包括光线路终端、光缆及光网络单元,其特征在于,光线路终端包括有若干个OLT光模块,光缆一端通过第一光复用解复用器件连接至若干个OLT光模块,另一端通过第二光复用解复用器件连接有若干个分光计,每个分光计的另一端连接有若干个光网络单元用ONU光模块,且OLT光模块及ONU光模块为上述权利要求1至5中任一项所述的光模块。
8.根据权利要求7所述的无源光网络,其特征在于,所述OLT光模块的数量与所述分光计的数量相等。
CN201510170966.4A 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络 Active CN104796800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510170966.4A CN104796800B (zh) 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510170966.4A CN104796800B (zh) 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络
CN201110457829.0A CN102523540B (zh) 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201110457829.0A Division CN102523540B (zh) 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络

Publications (2)

Publication Number Publication Date
CN104796800A CN104796800A (zh) 2015-07-22
CN104796800B true CN104796800B (zh) 2018-06-08

Family

ID=46294313

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201110457829.0A Active CN102523540B (zh) 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络
CN201510170966.4A Active CN104796800B (zh) 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201110457829.0A Active CN102523540B (zh) 2011-12-31 2011-12-31 光模块及具有该光模块的无源光网络

Country Status (1)

Country Link
CN (2) CN102523540B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752055B (zh) * 2012-07-12 2015-08-19 青岛海信宽带多媒体技术有限公司 无源光网络及其光网络单元光模块
CN102752054A (zh) * 2012-07-12 2012-10-24 青岛海信宽带多媒体技术有限公司 光网络单元光模块
CN104993873B (zh) * 2012-10-17 2017-10-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN106535010A (zh) * 2015-09-15 2017-03-22 青岛海信宽带多媒体技术有限公司 无源光网络的光网络单元及其光模块
CN108333691A (zh) * 2017-01-20 2018-07-27 山东华云光电技术有限公司 一种波长可调单纤双向光发射接收组件
CN107168401B (zh) * 2017-06-30 2018-02-27 华中科技大学 一种时分复用闭环反馈热控制方法及系统
CN108391185B (zh) * 2018-02-12 2021-06-04 青岛海信宽带多媒体技术有限公司 一种光模块的控制方法、装置和光模块
CN111930162A (zh) * 2020-08-01 2020-11-13 武汉金信诺光电子有限公司 一种光模块的波长控制电路
CN114938243B (zh) * 2022-07-22 2023-04-25 深圳市亿联无限科技有限公司 调试bosa的方法、系统、调试仪及调试方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201413415Y (zh) * 2009-05-19 2010-02-24 深圳市易飞扬通信技术有限公司 一种波长可控的dwdm sfp
CN101986577A (zh) * 2010-09-15 2011-03-16 江苏烨鑫电子有限公司 光纤发射机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788232B2 (ja) * 2000-12-13 2006-06-21 日本電気株式会社 波長可変光送信器、その出力制御方法並及び光通信システム
CN102098106B (zh) * 2011-02-22 2014-05-21 深圳市易飞扬通信技术有限公司 波分复用-时分复用无源光纤网络的光线路终端
CN202395935U (zh) * 2011-12-31 2012-08-22 青岛海信宽带多媒体技术有限公司 光模块及具有该光模块的无源光网络

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201413415Y (zh) * 2009-05-19 2010-02-24 深圳市易飞扬通信技术有限公司 一种波长可控的dwdm sfp
CN101986577A (zh) * 2010-09-15 2011-03-16 江苏烨鑫电子有限公司 光纤发射机

Also Published As

Publication number Publication date
CN104796800A (zh) 2015-07-22
CN102523540B (zh) 2015-03-25
CN102523540A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN104796800B (zh) 光模块及具有该光模块的无源光网络
JP6482043B2 (ja) 光ポートオートネゴシエーション方法、光モジュール、中央局終端デバイス、及び終端デバイス
US8543001B2 (en) Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
CN101729949B (zh) 一种波长可动态分配的wdm pon装置
EP2056495A1 (en) Electrical point-to-multipoint repeater for PON
CN111355554B (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
CN102388547A (zh) 自注入光收发模块和波分复用无源光网络系统
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
CN101471731A (zh) 网络系统、光集线装置以及光网络装置
CN103354625B (zh) 基于ofdm的堆叠波分时分复用的无源光网络传输系统
CN101127571A (zh) 一种wdm-pon系统共享的公共光源及光源共享的方法
CN102511138B (zh) 可调光收发器、无源光网络系统及设备
WO2012065460A1 (zh) 无源光网络系统、方法及光线路终端和波长路由单元
US20220045750A1 (en) Monitoring multiple passive optical networks
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
CN101350670B (zh) 一种用于无源光网络中光信号的放大装置和方法以及光线路终端
CN103703701B (zh) 可调光接收机、可调光发射机和可调光收发机
CN105721098A (zh) 用低速光器件实现高速传输的对称twdm-pon系统中的olt
CN104954898A (zh) 一种环形子网扩展的twdm-pon结构、设备及控制方法
US8644708B2 (en) Coupled seed light injection for wavelength division multiplexing passive optical networks
CN103475955B (zh) 下行dpsk调制和上行直接调制的混合twdm-pon系统
US20120163818A1 (en) Passive optical network apparatus for transmitting optical signal
CN202395935U (zh) 光模块及具有该光模块的无源光网络
CN104969491B (zh) 一种带宽可调的光模块及系统
CN105743601A (zh) 用低速光器件实现高速传输的对称twdm-pon系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant