US20220045750A1 - Monitoring multiple passive optical networks - Google Patents

Monitoring multiple passive optical networks Download PDF

Info

Publication number
US20220045750A1
US20220045750A1 US17/499,453 US202117499453A US2022045750A1 US 20220045750 A1 US20220045750 A1 US 20220045750A1 US 202117499453 A US202117499453 A US 202117499453A US 2022045750 A1 US2022045750 A1 US 2022045750A1
Authority
US
United States
Prior art keywords
optical
port
wavelength
ports
ism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/499,453
Inventor
Patrick Iannone
Michael Straub
Thomas Pfeiffer
Joerg Hehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Solutions and Networks Oy
Original Assignee
Nokia Solutions and Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Solutions and Networks Oy filed Critical Nokia Solutions and Networks Oy
Priority to US17/499,453 priority Critical patent/US20220045750A1/en
Assigned to NOKIA SOLUTIONS AND NETWORKS OY reassignment NOKIA SOLUTIONS AND NETWORKS OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEHMANN, JOERG, PFEIFFER, THOMAS, STRAUB, MICHAEL, IANNONE, PATRICK
Publication of US20220045750A1 publication Critical patent/US20220045750A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/0058Crossbar; Matrix

Definitions

  • Various example embodiments relate to optical communication equipment and, more specifically but not exclusively, to passive optical networks.
  • a passive optical network typically has a point-to-multipoint architecture in which passive optical splitters are used to enable a single optical transmitter to broadcast data transmissions to multiple optical receivers.
  • An example PON includes an optical line terminal (OLT) at the service provider's central office (CO) and a plurality of optical network units (ONUs) near or at the individual end users, such as residences, businesses, radio towers, etc.
  • the ONUs are typically connected to the OLT by way of one or more passive optical splitters.
  • Downlink signals are usually broadcast to all ONUs or at least a group of ONUs.
  • Uplink signals are routed using a multiple access protocol, e.g., usually time division multiple access (TDMA).
  • TDMA time division multiple access
  • a PON is capable of advantageously reducing the amount of fiber, CO equipment, and active traffic-management equipment, e.g., compared to that required for point-to-point architectures.
  • a PON system comprising multiple PONs, each having a respective intelligent splitter monitor (ISM).
  • ISM intelligent splitter monitor
  • an ISM may have several remotely powered active components configured to monitor the presence of uplink light signals on the ports of the splitter and communicate with the central office using out-of-band optical signals. These ISM functionalities can be used to enable the network operator, e.g., to automatically map PON connectivity, pairing individual ports on the splitter with distinct ONUs.
  • the PON system may further comprise an optical module connected to the multiple PONs through an optical switch in a manner that supports shared access to said module by the corresponding multiple ISMs.
  • the optical module comprises an optical transceiver capable of communicating with the ISM transceivers and one or more lasers configured to provide light for remotely charging the ISM batteries.
  • the capability for shared access, by the multiple ISMs, to said optical module can advantageously be used, e.g., to reduce the cost and/or complexity of the ISM-enabled multi-PON system.
  • an apparatus comprising: a plurality of first optical data transceivers, each of the first optical data transceivers being connected to transmit and receive data-modulated light; an optical monitor; and an optical cross-connect configured to connect each of the first optical data transceivers to a corresponding optical fiber; and wherein the optical monitor is optically connected to the optical cross-connect, and the optical cross-connect is switchable to optically connect the optical monitor to selected individual ones of the optical fibers such that the optical monitor can transmit light to and receive light from the selected individual ones of the optical fibers.
  • an apparatus comprising: a passive optical router connectable to route light between a first optical fiber and a plurality of second optical fibers; an optical receiver configured to receive a first modulated optical signal applied to the apparatus by the first optical fiber, said first modulated optical signal having a first wavelength; a photovoltaic cell configured to charge a capacitor in response to light applied to the apparatus by the first optical fiber, said applied light having a second wavelength that is different from the first wavelength; and an electronic controller configured to control electrical-power distribution from the capacitor to power the optical receiver and the electronic controller.
  • FIG. 1 shows a block diagram of a conventional PON system
  • FIG. 2 shows a block diagram of a PON system according to an embodiment
  • FIG. 3 shows a block diagram of an optical monitoring module that can be used in the PON system of FIG. 2 according to an embodiment
  • FIG. 4 shows a block diagram of an intelligent splitter monitor that can be used in the PON system of FIG. 2 according to an embodiment
  • FIG. 5 shows a block diagram of an optical monitoring module that can be used in the PON system of FIG. 2 according to an alternative embodiment
  • FIG. 6 shows a block diagram of an intelligent splitter monitor that can be used in the PON system of FIG. 2 according to an alternative embodiment
  • FIG. 7 shows a block diagram of an optical cross-connect that can be used in the PON system of FIG. 2 according to an embodiment
  • FIGS. 8A-8B illustrate alternative embodiments of an optical switch that can be used in the optical cross-connect of FIG. 7 ;
  • FIG. 9 shows a block diagram of an optical cross-connect that can be used in the PON system of FIG. 2 according to another embodiment.
  • Some embodiments may benefit from the use of at least some features disclosed in U.S. Pat. No. 9,634,761 and U.S. Patent Application Publication No. 2012/0288273, both of which are incorporated herein by reference in their entirety.
  • WDM-PON wavelength-division-multiplexing PON
  • multiple carrier wavelengths are used for traffic in the same direction, e.g., downlink or uplink, over the same fiber network.
  • An example WDM-PON architecture is disclosed, e.g., in U.S. Pat. No. 8,923,672, which is incorporated herein by reference in its entirety.
  • ONT Optical Network Termination can be synonymous with ONU
  • ONU Optical Network Unit (can be synonymous with ONT);
  • FIG. 1 shows a block diagram of a conventional PON system 100 .
  • System 100 has an OLT 110 configured to communicate with ONUs 160 1 - 160 N .
  • the number N can be, e.g., in the range from 2 to 256.
  • ONUs 160 1 - 160 N can be configured to use (nominally) the same carrier wavelength for uplink transmissions.
  • ONUs 160 1 - 160 N can be configured to use different respective carrier wavelengths for uplink transmissions.
  • OLT 110 comprises an optical transmitter 112 and an optical receiver 114 , both coupled, by way of an optical circulator 120 or other suitable directional optical coupler (e.g., an optical diplexer or triplexer based on thin-film technologies), to an optical fiber 124 .
  • Operation, functions, and configurations of transmitter 112 and receiver 114 can be managed and controlled using control signals 111 and 113 generated by an electronic controller 118 .
  • a processor 102 that is coupled to transmitter 112 , receiver 114 , and controller 118 can be used for signal and data processing and, optionally, for supporting some functions of the controller.
  • optical fiber 124 can have a length between about 1 km and about 40 km.
  • Transmitter 112 is configured to broadcast downlink signals to ONUs 160 1 - 160 N using one or more downlink carrier wavelengths, with a suitable time-division multiplexing (TDM) protocol being used to transmit signals intended for different ONUs.
  • Receiver 114 is configured to receive uplink signals from ONUs 160 1 - 160 N transmitted using one or more uplink carrier wavelengths.
  • a suitable TDMA protocol executed using controller 118 is typically used to prevent collisions, at receiver 114 , between the uplink signals generated by different ONUs 160 .
  • Optical fiber 124 connects OLT 110 to a passive router 130 .
  • router 130 can be implemented using: (i) a (1 ⁇ N) passive optical splitter/combiner; (ii) a passive wavelength router (e.g., an arrayed waveguide grating, AWG); or (iii) any suitable combination of wavelength-insensitive and/or wavelength-sensitive passive optical elements.
  • a typical router 130 has (N+1) optical ports, including a single port 128 at its first or uplink side and a set of N ports 132 1 - 132 N at its second or downlink side.
  • the term “side” is used in an abstract sense to indicate “uplink” or “downlink” directions rather than in a physical-orientation sense.
  • Port 128 is internally optically connected to each of ports 132 1 - 132 N .
  • Port 128 is externally optically connected to optical fiber 124 as indicated in FIG. 1 .
  • Ports 132 1 - 132 N are externally optically connected to ONUs 160 1 - 160 N , respectively, e.g., via optical fibers, as further indicated in FIG. 1 , or via more complex, passive optical-fiber networks.
  • Example devices that can be used to implement router 130 are disclosed, e.g., in the above-cited U.S. Pat. No. 8,923,672.
  • each of ONUs 160 1 - 160 N includes a respective optical circulator 162 or other suitable directional optical coupler, a respective optical transmitter 164 , and a respective optical receiver 166 .
  • Optical circulator 162 is configured to (i) direct downlink signals received from router 130 to optical receiver 166 and (ii) direct uplink signals from optical transmitter 164 to router 130 .
  • system 100 can be configured to operate such that all downlink signals are spectrally located in a spectral band near 1.55 m, and all uplink signals are spectrally located in a spectral band near 1.3 m, or vice versa.
  • all or some of optical circulators 120 and 162 may be replaced by respective optical band-pass or dichroic optical filters.
  • FIG. 1 illustrates a PON with a single passive optical router 130
  • more-complex PON architectures are also possible, such as PON architectures having multiple passive optical routers and tree-and-branch sub-topologies.
  • FIG. 2 shows a block diagram of a PON system 200 according to an embodiment.
  • System 200 comprises K OLTs 110 , which are labeled in FIG. 2 using the reference numerals 110 1 - 110 K , where K is a positive integer greater than one. In an example embodiment, the number K can be between 2 and about 300.
  • the ONU set 260 1 has N 1 ONUs 160 , which are labeled 160 1,1 , 160 1,N1 , respectively.
  • the ONU set 260 K has N K ONUs 160 , which are labeled 160 K,1 , . . . 160 K,NK , respectively.
  • each of the numbers N k can be in the same range as the number N described above in reference to FIG. 1 .
  • any two numbers N k corresponding to different values of the index k may be the same or different.
  • the numbers N 1 and N K may be the same. In some other embodiments, the numbers N 1 and N K may be different.
  • All ONUs 160 from an ONU set 260 k are connected by respective distribution optical fibers 244 to downlink ports of a same intelligent splitter monitor (ISM) 240 k .
  • ISM intelligent splitter monitor
  • ONUs 160 1,1 , . . . , 160 1,N1 of the ONU set 260 1 are all connected to ISM 240 1 .
  • ONUs 160 K,1 , . . . , 160 K,NK of the ONU set 260 K are all connected to ISM 240 K .
  • Uplink ports of ISMs 240 1 - 240 K are connected by respective feeder optical fibers 238 to optical ports 234 1 - 234 K , respectively, of an optical cross-connect (OXC) 230 .
  • OXC optical cross-connect
  • An ISM 240 k is substantially a passive optical splitter, but with some additional, remotely powered active components that enable: (i) monitoring of the presence of uplink light signals; and (ii) communication with a central office (CO) 202 using out-of-band optical signals.
  • This functionality e.g., allows network operators to automatically map PON connectivity, pairing each downlink port of ISM 240 k with a distinct ONU 160 of the ONU set 260 k .
  • Example embodiments of an ISM 240 are described in more detail below in reference to FIGS. 4 and 6 .
  • CO 202 includes OLTs 110 1 - 110 K and an ODN monitoring module (OMM) 210 , where ODN stands for optical distribution network.
  • ODM ODN monitoring module
  • OMM 210 has a single optical input/output (I/O) port 214 that is connected to an optical port 224 of OXC 230 .
  • OMM 210 in addition to port 214 , OMM 210 also has an optional optical output port 216 that is connected to an optical port 226 of OXC 230 .
  • OMM 210 in addition to ports 214 and 216 , OMM 210 has another optical output port (labeled 218 ) that is connected to an optional optical port 228 of OXC 230 .
  • OLTs 110 1 - 110 K are connected to optical ports 222 1 - 222 K , respectively, of OXC 230 .
  • OXC 230 is configured to provide the following connectivity.
  • Each of ports 222 1 - 222 K is connected to a respective one of ports 234 1 - 234 K .
  • the indices (subscripts) of the two connected ports 222 and 234 do not need to be the same, although they can be in some configurations of OXC 230 .
  • port 222 1 may be connected to port 234 K .
  • Port 222 K may be connected to some other port 234 k (not explicitly shown in FIG. 2 ), etc.
  • the pairings of different ports 222 and 234 are usually established at the initial-setup or system-deployment stage and typically remain fixed (static) during regular operation, e.g., until system 200 needs to be reconfigured. These fixed connections between ports 222 and 234 , in effect, create K different PONs, each resembling PON 100 of FIG. 1 .
  • Port 224 can be connected to any one of ports 234 1 - 234 K . This connection is typically dynamic and can be changed during regular operation to support shared access of ISMs 240 1 - 240 K to OMM 210 . For example, the connection of port 224 can be switched based on any suitable TDMA schedule or protocol.
  • port 226 can be connected to any one of ports 234 1 - 234 K , as long as the connected port is not the same port 234 to which port 224 is connected at that time. This connection is also typically dynamic and can be changed during regular operation.
  • port 228 can be connected to any one of ports 234 1 - 234 K , as long as the connected port is not the same port 234 to which either of ports 224 and 226 is connected. This connection is also typically dynamic and can be changed during regular operation.
  • OXC 230 can be a (K+1) ⁇ K cross-connect, a (K+2) ⁇ K cross-connect, or a (K+3) ⁇ K cross-connect.
  • OXC 230 can be implemented using a wavelength-selective switch (WSS) of a suitable size.
  • WSS wavelength-selective switch
  • FIG. 3 shows a block diagram of an OMM 210 that can be used in system 200 ( FIG. 2 ) according to an embodiment.
  • output ports 216 and 218 are absent.
  • OMM 210 comprises a diplexer 310 connected to optical I/O port 214 and configured to: (i) route downlink signals from an optical transmitter 318 to optical I/O port 214 ; and (ii) route uplink signals from optical I/O port 214 to an optical receiver 350 .
  • Optical transmitter 318 is configured to generate uplink signals of carrier wavelength ⁇ 1 .
  • Optical receiver 350 is configured to receive downlink signals of carrier wavelength ⁇ 2 . Both of carrier wavelengths ⁇ 1 and k 2 are different from the carrier wavelength(s) used by the OLTs 110 1 - 110 K for transmissions to and from the various ONUs 160 (see FIG. 2 ).
  • wavelengths ⁇ 1 and ⁇ 2 can be 1430 nm and 1450 nm, respectively, whereas the uplink and downlink carrier wavelengths used by the OLTs 110 1 - 110 K can be about 1310 nm and about 1490 nm, respectively.
  • optical transmitter 318 comprises a laser 320 and an optical modulator 330 .
  • Laser 320 is a relatively powerful laser that generates continuous wave (CW) light 322 at wavelength ⁇ 1 .
  • Optical modulator 330 then modulates light 322 , in response to an electrical signal 312 received from an OMM controller 310 .
  • a resulting modulated optical signal 332 is applied by diplexer 340 to optical I/O port 214 for transmission to port 224 of OXC 230 .
  • modulated optical signal 332 serves a dual purpose of: (i) carrying control messages to the corresponding connected ISM 240 k , and (ii) providing a power source for the active components of that same ISM 240 k , e.g., as explained in reference to FIG. 4 .
  • OMM controller 310 may also generate an optional control signal 314 that can be used to set and/or change some operating parameters of laser 320 , such as the optical power and/or wavelength of light 322 .
  • optical transmitter 318 may directly modulate laser 320 rather than having the external modulator 330 to produce the data-modulated optical signal to transmit to diplexer 340 .
  • modulator 330 may be absent.
  • Optical receiver 350 operates to process a modulated optical signal 344 having carrier wavelength ⁇ 2 and received from I/O port 214 by way of diplexer 340 .
  • optical signal 344 carries messages generated by the corresponding connected ISM 240 k , e.g., to transmit relevant telemetry information regarding the corresponding ONUs.
  • An electrical signal 352 generated by optical receiver 350 in response to optical signal 344 is applied to OMM controller 310 to convey said messages thereto.
  • OMM controller 310 operates to: (i) process the telemetry information received from different ISMs 240 k ; and (ii) based on said processing, generate further control messages directed through an electrical port 302 to a system controller (not explicitly shown in FIG. 2 ) and/or the relevant ones of OLTs 110 1 - 110 K .
  • OMM 210 can be implemented as a line card housed in the same equipment cabinet as at least some of OLTs 110 1 - 110 K .
  • FIG. 4 shows a block diagram of an ISM 240 k that can be used in system 200 ( FIG. 2 ) according to an embodiment. Also shown in FIG. 4 are the corresponding feeder optical fiber 238 and distribution optical fibers 244 .
  • Fiber 238 optically connects ISM 240 k to OXC 230 (also see FIG. 2 ).
  • Fibers 244 optically connect ISM 240 k to ONUs 160 k,1 , . . . , 160 k,Nk (also see FIG. 2 ).
  • ISM 240 k comprises a passive optical router 430 , e.g., a conventional passive optical router or splitter, connected between feeder optical fiber 238 and distribution optical fibers 244 as indicated in FIG. 4 .
  • router 430 acts as a 1 ⁇ N k optical splitter that causes the optical power of the downlink signal received through feeder optical fiber 238 from the corresponding OLT 110 (also see FIG. 2 ) to be distributed between the N k distribution optical fibers 244 , e.g., distributed with approximately equal or unequal power.
  • router 430 For an uplink signal received through a given one of the distribution optical fibers 244 , router 430 operates to: (i) direct a small portion (e.g., ⁇ 5% or ⁇ 10%) of that signal, through a respective optical tap, to a respective photodetector (PD) of a PD array 440 ; and (ii) direct the remaining portion (minus the coupling loss) of that signal to feeder optical fiber 238 .
  • PD array 440 converts the received light (if any) into a respective electrical signal, which is then directed, through a respective electrical line of bus 444 , to a controller 450 , e.g., a microcontroller ( ⁇ C).
  • passive optical router 430 and/or PD array 440 can be implemented as parts of a corresponding planar lightguide circuit (PLC), e.g., PLC 428 .
  • PLC planar lightguide circuit
  • ISM 240 k further comprises an optical transmitter 470 and an optical receiver (Rx) 460 .
  • Optical transmitter (Tx) 470 is configured to generate optical signal 344 (also see FIG. 3 ) carrying messages generated by microcontroller 450 , e.g., based on the light measurements performed by PD array 440 .
  • optical signal 344 has the carrier wavelength ⁇ 2 .
  • a conventional add-wavelength multiplexer 402 operates to couple optical signal 344 generated by transmitter 470 into feeder optical fiber 238 , as indicated in FIG. 4 , for transmission to OMM 210 (also see FIGS. 2, 3 ).
  • a conventional drop-wavelength demultiplexer 404 operates to drop optical signal 332 from feeder optical fiber 238 , as indicated in FIG. 4 , and direct the dropped optical signal toward optical receiver 460 .
  • optical signal 332 is generated by OMM 210 and has the carrier wavelength ⁇ 1 (also see FIGS. 2, 3 ).
  • An optical power splitter 406 then operates to split the dropped optical signal 332 into two portions, with the first portion being applied to optical receiver 460 , and the second portion being applied to a photovoltaic cell 410 .
  • splitter 406 can be a 10 : 90 power splitter. In other embodiments, other suitable splitting ratios can alternatively be used as well.
  • the optical output power generated by laser 320 FIG.
  • optical receiver 460 In response to the received portion of optical signal 332 , optical receiver 460 generates a corresponding electrical signal that delivers to microcontroller 450 the corresponding control messages from OMM 210 .
  • Photovoltaic cell 410 In response to the other portion of optical signal 332 , photovoltaic cell 410 generates electrical current that charges a capacitor 414 , e.g., a battery or a supercapacitor (SCap). Controller 450 operates to manage electrical-power distribution from capacitor or battery 414 to various active components of ISM 240 k .
  • said active components include a biasing network for the PD array 440 , optical receiver 460 , optical transmitter 470 . Controller 450 itself is also powered by capacitor or battery 414 .
  • ISM 240 k can benefit from the use of some features described in (i) the above-cited U.S. Patent Application Publication No. 2012/0288273 and (ii) “Remotely Powered Intelligent Splitter Monitor for Fiber Access Networks,” J. Hehmann, M. Straub, L. Jentsch, M. Earnshaw, P. Anthapadmanabhan, and Th. Pfeiffer, in Proc. ECOC, Tu. 1.5.4., Valencia, 2015, which is incorporated herein by reference in its entirety.
  • FIG. 5 shows a block diagram of an OMM 210 that can be used in system 200 ( FIG. 2 ) according to an alternative embodiment.
  • OMM 210 has I/O port 214 and output ports 216 and 218 .
  • a remote-powering laser 520 1 is configured to generate CW light 522 1 at wavelength ⁇ 3 and apply said light to output port 216 (also see FIG. 2 ).
  • a remote-powering laser 520 2 is configured to generate CW light 522 2 at wavelength ⁇ 4 and apply said light to output port 218 (also see FIG. 2 ).
  • wavelengths ⁇ 3 and ⁇ 4 are out-of-band wavelengths that are different from the carrier wavelength(s) used by the OLTs 110 1 - 110 K for transmissions to and from the various ONUs 160 .
  • OMM controller 310 may be modified to additionally generate optional control signals 514 1 and 514 2 that can be used to set and/or change some operating parameters of lasers 520 1 and 520 2 , respectively.
  • lasers 520 1 and 520 2 are, e.g., relatively powerful lasers whose optical output power is sufficient for remotely charging the capacitors and/or batteries 414 of different ISMs 240 k (also see FIG. 6 ).
  • output-power requirements to laser 320 can be significantly relaxed compared to those applied in the embodiment of FIG. 3 because, in the embodiment of FIG. 5 , laser 320 is no longer used as a remote-powering laser.
  • one of lasers 520 1 and 520 2 may be absent.
  • OMM 210 may be configured to apply non-data-bearing modulation to CW light 522 1 and/or 522 2 to reduce and/or avoid certain detrimental nonlinear effects in system 200 .
  • FIG. 6 shows a block diagram of an ISM 240 k that can be used in system 200 ( FIG. 2 ) according to an alternative embodiment.
  • This particular embodiment of ISM 240 k is compatible with the embodiment of OMM 210 shown in FIG. 5 .
  • optical splitter 406 is absent (also see FIG. 4 ). Instead, a drop-wavelength demultiplexer 606 is connected to feeder optical fiber 238 , as indicated in FIG. 6 . In operation, drop-wavelength demultiplexer 606 can drop either of optical signals 522 1 and 522 2 from feeder optical fiber 238 and direct the dropped optical signal to photovoltaic cell 410 . In response to the received optical signal 522 , photovoltaic cell 410 generates electrical current that charges battery 414 .
  • drop-wavelength demultiplexers 404 and 606 and add-wavelength multiplexer 402 can be replaced by any suitable optical add-drop multiplexer or other wavelength-selective router capable of the same wavelength routing as that indicated in FIG. 6 .
  • FIG. 7 shows a block diagram of OXC 230 ( FIG. 2 ) according to an embodiment.
  • OXC 230 is a (K+1) ⁇ K OXC that comprises a 1 ⁇ K optical switch 710 and K wavelength multiplexers 720 1 - 720 K .
  • optical switch 710 can be a colorless switch that can connect optical port 224 to any one of optical ports 1, . . . , K thereof.
  • a wavelength multiplexer 720 k has optical ports 716 k , 718 k , and 234 k .
  • Optical port 716 k is directly connected to optical port 222 k .
  • Optical port 718 k is connected, e.g., to the k-th port of the set of optical ports 1, . . . , K of optical switch 710 .
  • wavelength multiplexer 720 k can be configured to perform the following wavelength routing. Any in-band wavelength used in system 200 is routed between optical ports 716 k and 234 k . Any out-of-band wavelength used in system 200 is routed between optical ports 718 k and 234 k .
  • the term “in-band” refers to the wavelengths used for communications between the pertinent OLTs 110 and ONUs 160 of system 200 (see FIG. 2 ).
  • the term “out-of-band” refers to the wavelengths used for: (i) communications between OMM 210 and ISMs 240 ; and/or (ii) remote optical powering of ISMs 240 .
  • the above-mentioned wavelengths ⁇ 1 - ⁇ 4 are out-of-band wavelengths.
  • FIGS. 8A-8B illustrate alternative embodiments of optical switch 710 of FIG. 7 .
  • optical switch 710 is a 2 ⁇ K optical switch.
  • said optical switch 710 can be a colorless switch that can connect optical port 224 to any one of optical ports 1, . . . , K thereof, and can also connect optical port 226 to any one of the optical ports 1, . . . , K that is different from the optical port to which optical port 224 is connected.
  • optical switch 710 is a 3 ⁇ K optical switch.
  • said optical switch 710 can be a colorless switch that can connect optical port 224 to any one of optical ports 1, . . . , K thereof; can also connect optical port 226 to any one of the optical ports 1, . . . , K that is different from the optical port to which optical port 224 is connected; and can also connect optical port 228 to any one of the optical ports 1, . . . , K that is different from the optical ports to which optical ports 224 and 226 are connected.
  • optical switch 710 of FIG. 8A or 8B can be a wavelength-selective switch.
  • any of optical ports 1, . . . , K can be connected to more than one of optical ports 224 , 226 , and 228 (if present).
  • FIG. 9 shows a block diagram of OXC 230 ( FIG. 2 ) according to another embodiment.
  • OXC 230 comprises an automated fiber main distribution frame (FMDF) 910 and K wavelength multiplexers 720 1 - 720 K (also see FIG. 7 ).
  • FMDF automated fiber main distribution frame
  • K wavelength multiplexers 720 1 - 720 K also see FIG. 7 .
  • An FMDF can alternatively be referred to as a lightguide cross-connect (LGX).
  • a conventional FMDF (or LGX) is a manual cross-connect switch present in many telecom and datacom COs, from which optical fibers connect to the outside plant.
  • These patch-panel switches allow plant workers in an office to provision services by connecting inside plant fibers associated with a piece of network gear in the office (such as an OLT port) to outside plant fibers terminated on the outward facing ports of the FMDF.
  • This “switching” task is accomplished by manually connecting a short length of fiber cable from the inside-plant port to the outside-plant port of the FMDF.
  • the long-term roadmaps for many network operators include automation of these patch-panel switches by replacing them with suitable automated optical cross-connects (OXC).
  • OXC automated optical cross-connects
  • the embodiment shown in FIG. 9 uses such an automated FMDF (i.e., FMDF 910 ) in OXC 230 .
  • FMDF 910 is shown in FIG. 9 as being a (K+3) ⁇ 2K automated cross-connect.
  • FMDF 910 can be a (K+1) ⁇ 2K cross-connect or a (K+2) ⁇ 2K cross-connect.
  • Such an alternative embodiment can be constructed, e.g., by removing or disabling either optical port 228 or both optical ports 226 and 228 of the shown FMDF 910 .
  • the size of FMDF 910 can be increased by adding more ports at the uplink side thereof, thereby converting FMDF 910 into a (K+M) ⁇ 2K OXC, where M is a positive integer greater than three.
  • Such an alternative embodiment can be used, e.g., for connecting an embodiment of OMM 210 having M lasers 520 , e.g., lasers 520 1 - 520 M (also see FIG. 5 ). Some of these lasers 520 1 - 520 M may be configured to output nominally identical wavelengths, e.g., ⁇ 3 and/or ⁇ 4 . In such cases, more than one optical port 234 can be connected to transmit, for example, the wavelength ⁇ 3 . In this manner, the number of ISMs 240 k of FIG. 6 that can be connected for charging at the same time may advantageously be increased, e.g., up to the total number of M.
  • FMDF 910 has: (i) uplink ports 222 1 - 222 K 224 , 226 , and 228 ; and (ii) downlink ports 1, 2, . . . , 2K.
  • Each of downlink ports 1, 2, . . . , K is externally connected, as indicated in FIG. 9 , to a respective one of optical ports 716 1 - 716 K of wavelength multiplexers 720 1 - 720 K .
  • Each of downlink ports K+1, K+2, . . . , 2K is externally connected, as indicated in FIG. 9 , to a respective one of optical ports 718 1 - 718 K of wavelength multiplexers 720 1 - 720 K .
  • FMDF 910 is configured to provide the following internal connections between the uplink and downlink optical ports thereof.
  • Each of uplink ports 222 1 - 222 K is internally connected to a single respective one of downlink ports 1, . . . , K.
  • Any one-to-one mapping between said uplink and downlink ports can be implemented in various configurations of FMDF 910 , as long as the selected port mapping is compatible with the intended optical topology of system 200 .
  • the corresponding configuration of this part of FMDF 910 typically remains fixed (static) during data transmission between OLTs 110 1 - 110 K and various ONUs 160 of system 200 .
  • Each of uplink ports 224 , 226 , and 228 can be connected to any one of downlink ports K+1, K+2, . . . , 2K, such that any two of the ports 224 , 226 , and 228 are not connected to the same one of the ports K+1, K+2, . . . , 2K at the same time.
  • These connections are typically dynamic and can be changed during data transmission between OLTs 110 1 - 110 K and various ONUs 160 of system 200 .
  • FIG. 9 shows one possible configuration of this part of FMDF 910 .
  • port 224 is connected to port K+J
  • port 226 is connected to port 2K
  • port 228 is connected to port K+1.
  • the integer J is constrained to the range 1 ⁇ J ⁇ K.
  • a person of ordinary skill in the art will understand that the shown connections of ports 224 , 226 , and 228 can be changed in a desired manner to support the above-explained shared access of ISMs 240 1 - 240 K to OMM 210 in system 200 ( FIG. 2 ).
  • FMDF 910 can be implemented using: (i) a conventional K ⁇ K OXC switch, for uplink ports 222 1 - 222 K and downlink ports 1, . . . , K; and (ii) a 3 ⁇ K WSS, for uplink ports 224 , 226 , and 228 and downlink ports K+1, . . . , 2K. Then, in some configurations, the WSS can be configured to combine two or more of the input wavelengths ⁇ 1 , ⁇ 3 and ⁇ 4 and apply the resulting combined light beam to a single downlink port thereof, thereby directing said combined light beam to a single PON via the corresponding one of the multiplexers 720 .
  • This concept can also be applied to the above-mentioned alternative embodiments in which FMDF 910 is implemented as a (K+M) ⁇ 2K OXC.
  • an apparatus comprising: a plurality of first optical data transceivers (e.g., 110 1 - 110 K , FIG. 2 ), each of the first optical data transceivers being connected to transmit and receive data-modulated light; an optical monitor (e.g., 210 , FIG. 2 ); and an optical cross-connect (e.g., 230 , FIG. 2 ) configured to connect each of the first optical data transceivers to a corresponding optical fiber (e.g., 238 , FIG.
  • a plurality of first optical data transceivers e.g., 110 1 - 110 K , FIG. 2
  • an optical monitor e.g., 210 , FIG. 2
  • an optical cross-connect e.g., 230 , FIG. 2
  • optical monitor is optically connected to the optical cross-connect, and the optical cross-connect is switchable to optically connect the optical monitor to selected individual ones of the optical fibers such that the optical monitor can transmit light to and receive light from the selected individual ones of the optical fibers.
  • the optical monitor is configured to: transmit, through the optical cross-connect, data-modulated light having a first wavelength (e.g., ⁇ 1 , FIG. 3 ); and receive, through the optical cross-connect, data-modulated light having a second wavelength (e.g., ⁇ 2 , FIG. 3 ) that is different from the first wavelength.
  • a first wavelength e.g., ⁇ 1 , FIG. 3
  • a second wavelength e.g., ⁇ 2 , FIG. 3
  • the first optical data transceivers are configured to transmit and receive the data-modulated light using a plurality of wavelength channels; and wherein the first and second wavelengths are out-of-band with respect to the wavelength channels associated with the first optical data transceivers (e.g., 110 1 - 110 K , FIG. 2 ).
  • the optical monitor is further configured to transmit, through the optical cross-connect, continuous-wave light having a third wavelength (e.g., ⁇ 3 FIG. 3 ) different from the first and second wavelengths.
  • a third wavelength e.g., ⁇ 3 FIG. 3
  • the apparatus further comprises a plurality of passive optical networks (e.g., 110 k / 240 k / 260 k , FIG. 2 ), each one of the passive optical networks including a respective intelligent optical splitter configured to monitor at least some of the data-modulated light in said one of the passive optical networks directed to a corresponding one of the optical fibers (e.g., 240 1 - 240 K , FIG. 2 ).
  • a plurality of passive optical networks e.g., 110 k / 240 k / 260 k , FIG. 2
  • each one of the passive optical networks including a respective intelligent optical splitter configured to monitor at least some of the data-modulated light in said one of the passive optical networks directed to a corresponding one of the optical fibers (e.g., 240 1 - 240 K , FIG. 2 ).
  • the respective intelligent optical splitter is configured to optically communicate with the optical monitor.
  • the respective intelligent optical splitter is configured to be powered using the light transmitted by the optical monitor.
  • the apparatus is configured to use wavelengths of light to communicate data over said one of the passive optical networks; and wherein the optical monitor is configured to power the respective intelligent optical splitter using one or more additional wavelengths that are different from said wavelengths of light.
  • the optical monitor is configured to communicate with the respective intelligent optical splitters of two or more of the passive optical networks.
  • each of the plurality of passive optical networks further includes a respective plurality (e.g., 260 k , FIG. 2 ) of optical network units (e.g., 160 k,n , FIG. 2 ) connected to communicate with a respective one of the first optical transceivers by way of the respective intelligent optical splitter.
  • a respective plurality e.g., 260 k , FIG. 2
  • optical network units e.g., 160 k,n , FIG. 2
  • the respective intelligent optical splitter comprises a respective second data transceiver (e.g., 460 / 470 , FIG. 4 ) configured to communicate with the optical monitor.
  • a respective second data transceiver e.g., 460 / 470 , FIG. 4
  • the optical cross-connect comprises: a plurality of first optical ports (e.g., 234 1 - 234 K , FIGS. 2, 7, 9 ), each of the first optical ports being externally connected to the corresponding optical fiber (e.g., 238 , FIG. 2 ); and a second optical port (e.g., 224 , FIGS. 7, 8A, 8B, 9 ) and a plurality of third optical ports (e.g., 1, . . . , K, FIG. 7 ; K+1, . . . , 2K, FIG.
  • first optical ports e.g., 234 1 - 234 K , FIGS. 2, 7, 9
  • second optical port e.g., 224 , FIGS. 7, 8A, 8B, 9
  • third optical ports e.g., 1, . . . , K, FIG. 7 ; K+1, . . . , 2K, FIG.
  • the optical monitor is optically connected to transmit and receive modulated optical signals through the second optical port, the optical cross-connect being switchable to selectively connect the second optical port to any one of the third optical ports; wherein each of the third optical ports is connected to a respective one of the first optical ports by way of a respective wavelength multiplexer (e.g., one of 720 1 - 720 K , FIGS. 7, 9 ); and wherein each of the respective wavelength multiplexers is further connected between a respective one of the first optical data transceivers and the respective first optical port to transmit the data-modulated light therebetween.
  • a respective wavelength multiplexer e.g., one of 720 1 - 720 K , FIGS. 7, 9
  • the optical monitor is configured to transmit and receive light having wavelengths of a continuous spectral band; and wherein the data-modulated light transmitted and received by each of the first optical data transceivers has wavelengths outside said spectral band.
  • each of the respective wavelength multiplexers includes the respective first optical port (e.g., 234 k , FIGS. 7, 9 ), a respective fourth optical port (e.g., 716 k , FIGS. 7, 9 ), and a respective fifth optical port (e.g., 718 k , FIGS. 7, 9 ) and is configured to: route the wavelengths of said spectral band between the respective first optical port and the respective fifth optical port; and route the wavelengths outside said spectral band between the respective first optical port and the respective fourth optical port.
  • the respective first optical port e.g., 234 k , FIGS. 7, 9
  • a respective fourth optical port e.g., 716 k , FIGS. 7, 9
  • a respective fifth optical port e.g., 718 k , FIGS. 7, 9
  • the optical cross-connect comprises a wavelength-selective switch.
  • an apparatus comprising: a plurality of first optical data transceivers (e.g., 110 1 - 110 K , FIG. 2 ), each of the first optical data transceivers being connected to transmit and receive modulated light through a respective first optical port (e.g., one of 234 1 - 234 K , FIGS. 2, 7, 9 ), each of the first optical ports being externally connected to a different respective optical fiber (e.g., 238 , FIG. 2 ); a second optical data transceiver (e.g., 210 , FIGS.
  • an optical switch e.g., 710 , FIGS. 7, 8A, 8B ; 910 , FIG. 9
  • an optical switch having a second optical port (e.g., 224 , FIGS. 7, 8A, 8B, 9 ) and a plurality of third optical ports (e.g., 1, . . . , K, FIG. 7 ; K+1, . . . , 2K, FIG.
  • the second optical data transceiver being connected to transmit and receive modulated light through the second optical port, the optical switch being switchable to selectively connect the second optical port to any one of the third optical ports; wherein each of the third optical ports is connected to a respective one of the first optical ports by way of a respective wavelength multiplexer (e.g., one of 720 1 - 720 K , FIGS. 7, 9 ); and wherein each of the respective wavelength multiplexers is further connected between a respective one of the first optical data transceivers and the respective first optical port to transmit modulated light therebetween.
  • a respective wavelength multiplexer e.g., one of 720 1 - 720 K , FIGS. 7, 9
  • the second optical data transceiver is configured to: transmit modulated light having a first carrier wavelength (e.g., ⁇ 1 , FIG. 3 ); and receive modulated light having a second carrier wavelength (e.g., ⁇ 2 , FIG. 3 ) that is different from the first carrier wavelength.
  • a first carrier wavelength e.g., ⁇ 1 , FIG. 3
  • a second carrier wavelength e.g., ⁇ 2 , FIG. 3
  • the apparatus further comprises a plurality of passive optical networks (e.g., 110 k / 240 k / 260 k , FIG. 2 ), each including a respective one of a plurality of intelligent splitter monitors (e.g., 240 1 - 240 K , FIG. 2 ), each of the intelligent splitter monitors being fiber-connected to a respective one of the first optical ports; and wherein each of the intelligent splitter monitors includes a respective third data transceiver (e.g., 460 / 470 , FIG. 4 ) configured to: transmit modulated light having the second carrier wavelength (e.g., k 2 , FIG. 4 ); and receive modulated light having the first carrier wavelength (e.g., ⁇ 1 , FIG. 4 ).
  • a plurality of passive optical networks e.g., 110 k / 240 k / 260 k , FIG. 2
  • each of the intelligent splitter monitors being fiber-connected to a respective one of the first optical
  • the apparatus further comprises a fiber distribution frame (e.g., 910 , FIG. 9 ) that includes the optical switch.
  • a fiber distribution frame e.g., 910 , FIG. 9
  • the apparatus further comprises a first laser (e.g., 520 1 , FIG. 5 ); and wherein the optical switch has an additional optical port (e.g., 226 , FIGS. 8A, 8B, 9 ), the first laser being connected to transmit light through the additional optical port, the optical switch being switchable to connect the additional optical port to any one of the third optical ports.
  • a first laser e.g., 520 1 , FIG. 5
  • the optical switch has an additional optical port (e.g., 226 , FIGS. 8A, 8B, 9 ), the first laser being connected to transmit light through the additional optical port, the optical switch being switchable to connect the additional optical port to any one of the third optical ports.
  • the second optical transceiver is configured to: transmit modulated light having a first carrier wavelength (e.g., ⁇ 1 , FIG. 5 ); and receive modulated light having a second carrier wavelength (e.g., k 2 , FIG. 5 ); wherein the first laser is configured to transmit unmodulated light having a third carrier wavelength (e.g., ⁇ 3 , FIG. 5 ); and wherein the first, second, and third carrier wavelengths are all different from one another.
  • the apparatus further comprises a second laser (e.g., 520 2 , FIG. 5 ); and wherein the optical switch has another additional optical port (e.g., 228 , FIGS. 8B, 9 ), the second laser being connected to transmit light through said another additional optical port, the optical switch being switchable to connect said another additional optical port to any one of the third optical ports.
  • a second laser e.g., 520 2 , FIG. 5
  • the optical switch has another additional optical port (e.g., 228 , FIGS. 8B, 9 ), the second laser being connected to transmit light through said another additional optical port, the optical switch being switchable to connect said another additional optical port to any one of the third optical ports.
  • the second optical transceiver is configured to: transmit modulated light having a first carrier wavelength (e.g., ⁇ 1 , FIG. 5 ); and receive modulated light having a second carrier wavelength (e.g., ⁇ 2 , FIG. 5 ); wherein the first laser is configured to transmit unmodulated light having a third carrier wavelength (e.g., ⁇ 3 FIG. 5 ); wherein the second laser is configured to transmit unmodulated light having a fourth carrier wavelength (e.g., ⁇ 4 , FIG. 5 ); and wherein the first, second, third, and fourth carrier wavelengths are all different from one another.
  • a first carrier wavelength e.g., ⁇ 1 , FIG. 5
  • a second carrier wavelength e.g., ⁇ 2 , FIG. 5
  • the first laser is configured to transmit unmodulated light having a third carrier wavelength (e.g., ⁇ 3 FIG. 5 )
  • the second laser is configured to transmit unmodulated light having a fourth carrier wavelength (e.g.,
  • the second optical transceiver is configured to communicate with a plurality of intelligent splitter monitors (e.g., 240 1 - 240 K , FIG. 2 ), each of the intelligent splitter monitors being fiber-connected to a respective one of the first optical ports.
  • a plurality of intelligent splitter monitors e.g., 240 1 - 240 K , FIG. 2
  • each of the intelligent splitter monitors being fiber-connected to a respective one of the first optical ports.
  • the apparatus further comprises a plurality of passive optical networks (e.g., 110 k / 240 k / 260 k , FIG. 2 ); and wherein each of the plurality of passive optical networks includes a respective one of the plurality of intelligent splitter monitors (e.g., 240 k , FIG. 2 ) and a respective one of the first optical data transceivers (e.g., 110 k , FIG. 2 ).
  • a plurality of passive optical networks e.g., 110 k / 240 k / 260 k , FIG. 2
  • each of the plurality of passive optical networks includes a respective one of the plurality of intelligent splitter monitors (e.g., 240 k , FIG. 2 ) and a respective one of the first optical data transceivers (e.g., 110 k , FIG. 2 ).
  • each of the plurality of passive optical networks further includes a respective plurality (e.g., 260 k , FIG. 2 ) of optical network units (e.g., 160 k,n , FIG. 2 ) connected to communicate with the respective one of the first optical transceivers by way of the respective one of the plurality of intelligent splitter monitors.
  • a respective plurality e.g., 260 k , FIG. 2
  • optical network units e.g., 160 k,n , FIG. 2
  • each of the intelligent splitter monitors includes a respective third data transceiver (e.g., 460 / 470 , FIG. 4 ) configured to communicate with the second optical transceiver.
  • a respective third data transceiver e.g., 460 / 470 , FIG. 4
  • the optical switch comprises a wavelength-selective switch.
  • the second optical transceiver is configured to transmit and receive modulated light having wavelengths of a continuous spectral band; and wherein each of the first optical data transceivers is configured to transmit and receive modulated light having wavelengths outside said spectral band.
  • each of the respective wavelength multiplexers includes the respective first optical port (e.g., 234 k , FIGS. 7, 9 ), a respective fourth optical port (e.g., 716 k , FIGS. 7, 9 ), and a respective fifth optical port (e.g., 718 k , FIGS. 7, 9 ) and is configured to: route the wavelengths of said spectral band between the respective first optical port and the respective fifth optical port; and route the wavelengths outside said spectral band between the respective first optical port and the respective fourth optical port.
  • the respective first optical port e.g., 234 k , FIGS. 7, 9
  • a respective fourth optical port e.g., 716 k , FIGS. 7, 9
  • a respective fifth optical port e.g., 718 k , FIGS. 7, 9
  • an apparatus comprising: a passive optical router (e.g., 430 , FIG. 6 ) connectable to route light between a first optical fiber (e.g., 238 , FIG. 6 ) and a plurality of second optical fibers (e.g., 244 , FIG. 6 ); an optical receiver (e.g., 460 , FIG. 6 ) configured to receive a first modulated optical signal (e.g., 332 , FIG.
  • said first modulated optical signal having a first wavelength (e.g., ⁇ 1 , FIG. 6 ); a photovoltaic cell (e.g., 410 , FIG. 6 ) configured to charge a capacitor (e.g., 414 , FIG. 6 ) in response to light (e.g., 522 , FIG. 6 ) applied to the apparatus by the first optical fiber, said applied light having a second wavelength (e.g., ⁇ 3 , FIG. 6 ) that is different from the first wavelength; and an electronic controller (e.g., 450 , FIG. 6 ) configured to control electrical-power distribution from the capacitor to power the optical receiver and the electronic controller.
  • a photovoltaic cell e.g., 410 , FIG. 6
  • a capacitor e.g., 414 , FIG. 6
  • second wavelength e.g., ⁇ 3 , FIG. 6
  • an electronic controller e.g., 450 , FIG. 6
  • the apparatus further comprises an array of photodetectors (e.g., 440 , FIG. 6 ), each individual one of the photodetectors being configured to detect data-modulated light applied to the passive optical router by a corresponding individual one of the second optical fibers; and wherein the electronic controller is further configured to control the electrical-power distribution from the capacitor to power the array.
  • an array of photodetectors e.g., 440 , FIG. 6
  • each individual one of the photodetectors being configured to detect data-modulated light applied to the passive optical router by a corresponding individual one of the second optical fibers
  • the electronic controller is further configured to control the electrical-power distribution from the capacitor to power the array.
  • the apparatus further comprises an optical transmitter (e.g., 470 , FIG. 6 ) configured to generate a second modulated optical signal (e.g., 344 , FIG. 6 ) in response to the data-modulated light detected by the individual ones of the photodetectors; and wherein the electronic controller is further configured to control the electrical-power distribution from the capacitor to power the optical transmitter.
  • an optical transmitter e.g., 470 , FIG. 6
  • a second modulated optical signal e.g., 344 , FIG. 6
  • the second modulated optical signal has a third wavelength (e.g., ⁇ 2 , FIG. 6 ) that is different from the first and second wavelengths.
  • the passive optical router is configured to route data-modulated light between an optical line terminal (e.g., 110 , FIG. 2 ) and a plurality of optical network units (e.g., 160 , FIG. 2 ) of a passive optical network.
  • an optical line terminal e.g., 110 , FIG. 2
  • a plurality of optical network units e.g., 160 , FIG. 2
  • figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.
  • the terms “couple,” “coupling,” “coupled,” “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed in which energy is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of such additional elements. The same type of distinction applies to the use of terms “attached” and “directly attached,” as applied to a description of a physical structure. For example, a relatively thin layer of adhesive or other suitable binder can be used to implement such “direct attachment” of the two corresponding components in such physical structure.
  • processors may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software.
  • the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared.
  • processor or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, network processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), and non volatile storage.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • ROM read only memory
  • RAM random access memory
  • non volatile storage Other hardware, conventional and/or custom, may also be included.
  • any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
  • circuitry may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry); (b) combinations of hardware circuits and software, such as (as applicable): (i) a combination of analog and/or digital hardware circuit(s) with software/firmware and (ii) any portions of hardware processor(s) with software (including digital signal processor(s)), software, and memory(ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions); and (c) hardware circuit(s) and or processor(s), such as a microprocessor(s) or a portion of a microprocessor(s), that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.”
  • This definition of circuitry applies to all uses of this term in this application, including in any claims.
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the disclosure.
  • any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Computing Systems (AREA)

Abstract

A PON system comprising multiple PONs, each having a respective intelligent splitter monitor (ISM). In addition to having a passive optical splitter therein, an ISM also has several remotely powered active components configured to monitor the presence of uplink light signals on the ports of the splitter and communicate with the central office using out-of-band optical signals. These ISM functionalities enable the network operator, e.g., to automatically map PON connectivity, pairing each port on the splitter with a distinct optical network unit. The PON system further comprises an optical module connected to the multiple PONs through an optical switch in a manner that supports shared access to said module by the corresponding multiple ISMs. In an example embodiment, the optical module comprises an optical transceiver capable of communicating with the ISM transceivers and one or more lasers configured to provide high-intensity light for remotely charging the ISM batteries.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application No. 62/682,277, filed 8 Jun. 2018, and entitled “MONITORING MULTIPLE PASSIVE OPTICAL NETWORKS,” which is incorporated herein by reference in its entirety.
  • This application is a divisional of U.S. patent application Ser. No. 16/424,678, filed 29 May 2019, and entitled “MONITORING MULTIPLE PASSIVE OPTICAL NETWORKS,” which is incorporated herein by reference in its entirety.
  • BACKGROUND Field
  • Various example embodiments relate to optical communication equipment and, more specifically but not exclusively, to passive optical networks.
  • Description of the Related Art
  • This section introduces aspects that may help facilitate a better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
  • A passive optical network (PON) typically has a point-to-multipoint architecture in which passive optical splitters are used to enable a single optical transmitter to broadcast data transmissions to multiple optical receivers. An example PON includes an optical line terminal (OLT) at the service provider's central office (CO) and a plurality of optical network units (ONUs) near or at the individual end users, such as residences, businesses, radio towers, etc. The ONUs are typically connected to the OLT by way of one or more passive optical splitters. Downlink signals are usually broadcast to all ONUs or at least a group of ONUs. Uplink signals are routed using a multiple access protocol, e.g., usually time division multiple access (TDMA). A PON is capable of advantageously reducing the amount of fiber, CO equipment, and active traffic-management equipment, e.g., compared to that required for point-to-point architectures.
  • SUMMARY OF SOME SPECIFIC EMBODIMENTS
  • Disclosed herein are various embodiments of a PON system comprising multiple PONs, each having a respective intelligent splitter monitor (ISM). In addition to having a passive optical splitter therein, an ISM may have several remotely powered active components configured to monitor the presence of uplink light signals on the ports of the splitter and communicate with the central office using out-of-band optical signals. These ISM functionalities can be used to enable the network operator, e.g., to automatically map PON connectivity, pairing individual ports on the splitter with distinct ONUs. The PON system may further comprise an optical module connected to the multiple PONs through an optical switch in a manner that supports shared access to said module by the corresponding multiple ISMs. In an example embodiment, the optical module comprises an optical transceiver capable of communicating with the ISM transceivers and one or more lasers configured to provide light for remotely charging the ISM batteries.
  • In at least some embodiments, the capability for shared access, by the multiple ISMs, to said optical module, e.g., located at the service provider's central office, can advantageously be used, e.g., to reduce the cost and/or complexity of the ISM-enabled multi-PON system.
  • According to an example embodiment, provided is an apparatus comprising: a plurality of first optical data transceivers, each of the first optical data transceivers being connected to transmit and receive data-modulated light; an optical monitor; and an optical cross-connect configured to connect each of the first optical data transceivers to a corresponding optical fiber; and wherein the optical monitor is optically connected to the optical cross-connect, and the optical cross-connect is switchable to optically connect the optical monitor to selected individual ones of the optical fibers such that the optical monitor can transmit light to and receive light from the selected individual ones of the optical fibers.
  • According to another example embodiment, provided is an apparatus comprising: a passive optical router connectable to route light between a first optical fiber and a plurality of second optical fibers; an optical receiver configured to receive a first modulated optical signal applied to the apparatus by the first optical fiber, said first modulated optical signal having a first wavelength; a photovoltaic cell configured to charge a capacitor in response to light applied to the apparatus by the first optical fiber, said applied light having a second wavelength that is different from the first wavelength; and an electronic controller configured to control electrical-power distribution from the capacitor to power the optical receiver and the electronic controller.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other aspects, features, and benefits of various disclosed embodiments will become more fully apparent, by way of example, from the following detailed description and the accompanying drawings, in which:
  • FIG. 1 shows a block diagram of a conventional PON system;
  • FIG. 2 shows a block diagram of a PON system according to an embodiment;
  • FIG. 3 shows a block diagram of an optical monitoring module that can be used in the PON system of FIG. 2 according to an embodiment;
  • FIG. 4 shows a block diagram of an intelligent splitter monitor that can be used in the PON system of FIG. 2 according to an embodiment;
  • FIG. 5 shows a block diagram of an optical monitoring module that can be used in the PON system of FIG. 2 according to an alternative embodiment;
  • FIG. 6 shows a block diagram of an intelligent splitter monitor that can be used in the PON system of FIG. 2 according to an alternative embodiment;
  • FIG. 7 shows a block diagram of an optical cross-connect that can be used in the PON system of FIG. 2 according to an embodiment;
  • FIGS. 8A-8B illustrate alternative embodiments of an optical switch that can be used in the optical cross-connect of FIG. 7; and
  • FIG. 9 shows a block diagram of an optical cross-connect that can be used in the PON system of FIG. 2 according to another embodiment.
  • DETAILED DESCRIPTION
  • Some embodiments may benefit from the use of at least some features disclosed in U.S. Pat. No. 9,634,761 and U.S. Patent Application Publication No. 2012/0288273, both of which are incorporated herein by reference in their entirety.
  • In a wavelength-division-multiplexing PON (WDM-PON), multiple carrier wavelengths are used for traffic in the same direction, e.g., downlink or uplink, over the same fiber network. An example WDM-PON architecture is disclosed, e.g., in U.S. Pat. No. 8,923,672, which is incorporated herein by reference in its entirety.
  • The following acronyms/abbreviations are used in the description of various embodiments and/or in the accompanying drawings:
  • CO Central Office;
  • FMDF Fiber Main Distribution Frame;
  • ISM Intelligent Splitter Monitor;
  • LGX Light Guide Cross-connect;
  • μC MicroController;
  • ODN Optical Distribution Network;
  • OLT Optical Line Terminal;
  • OMM ODN Monitoring Module;
  • ONT Optical Network Termination (can be synonymous with ONU);
  • ONU Optical Network Unit (can be synonymous with ONT);
  • OXC Optical Cross-Connect;
  • PD Photo Detector;
  • PLC Planar Lightguide Circuit;
  • PON Passive Optical Network;
  • Rx Receiver;
  • SCap Capacitor and/or Battery;
  • TDM Time-Division Multiplexing;
  • TDMA Time-Division Multiple Access;
  • Tx Transmitter;
  • WDM Wavelength Division Multiplexing; and
  • WSS Wavelength Selective Switch.
  • FIG. 1 shows a block diagram of a conventional PON system 100. System 100 has an OLT 110 configured to communicate with ONUs 160 1-160 N. The number N can be, e.g., in the range from 2 to 256. In some cases, ONUs 160 1-160 N can be configured to use (nominally) the same carrier wavelength for uplink transmissions. In some other cases, ONUs 160 1-160 N can be configured to use different respective carrier wavelengths for uplink transmissions.
  • OLT 110 comprises an optical transmitter 112 and an optical receiver 114, both coupled, by way of an optical circulator 120 or other suitable directional optical coupler (e.g., an optical diplexer or triplexer based on thin-film technologies), to an optical fiber 124. Operation, functions, and configurations of transmitter 112 and receiver 114 can be managed and controlled using control signals 111 and 113 generated by an electronic controller 118. A processor 102 that is coupled to transmitter 112, receiver 114, and controller 118 can be used for signal and data processing and, optionally, for supporting some functions of the controller. In an example embodiment, optical fiber 124 can have a length between about 1 km and about 40 km.
  • Transmitter 112 is configured to broadcast downlink signals to ONUs 160 1-160 N using one or more downlink carrier wavelengths, with a suitable time-division multiplexing (TDM) protocol being used to transmit signals intended for different ONUs. Receiver 114 is configured to receive uplink signals from ONUs 160 1-160 N transmitted using one or more uplink carrier wavelengths. A suitable TDMA protocol executed using controller 118 is typically used to prevent collisions, at receiver 114, between the uplink signals generated by different ONUs 160.
  • Optical fiber 124 connects OLT 110 to a passive router 130. Depending on the embodiment, router 130 can be implemented using: (i) a (1×N) passive optical splitter/combiner; (ii) a passive wavelength router (e.g., an arrayed waveguide grating, AWG); or (iii) any suitable combination of wavelength-insensitive and/or wavelength-sensitive passive optical elements. A typical router 130 has (N+1) optical ports, including a single port 128 at its first or uplink side and a set of N ports 132 1-132 N at its second or downlink side. Herein, the term “side” is used in an abstract sense to indicate “uplink” or “downlink” directions rather than in a physical-orientation sense. Port 128 is internally optically connected to each of ports 132 1-132 N. Port 128 is externally optically connected to optical fiber 124 as indicated in FIG. 1. Ports 132 1-132 N are externally optically connected to ONUs 160 1-160 N, respectively, e.g., via optical fibers, as further indicated in FIG. 1, or via more complex, passive optical-fiber networks. Example devices that can be used to implement router 130 are disclosed, e.g., in the above-cited U.S. Pat. No. 8,923,672.
  • Typically, each of ONUs 160 1-160 N includes a respective optical circulator 162 or other suitable directional optical coupler, a respective optical transmitter 164, and a respective optical receiver 166. Optical circulator 162 is configured to (i) direct downlink signals received from router 130 to optical receiver 166 and (ii) direct uplink signals from optical transmitter 164 to router 130.
  • In an example commercial application, system 100 can be configured to operate such that all downlink signals are spectrally located in a spectral band near 1.55 m, and all uplink signals are spectrally located in a spectral band near 1.3 m, or vice versa. In such cases, all or some of optical circulators 120 and 162 may be replaced by respective optical band-pass or dichroic optical filters.
  • While FIG. 1 illustrates a PON with a single passive optical router 130, more-complex PON architectures are also possible, such as PON architectures having multiple passive optical routers and tree-and-branch sub-topologies.
  • FIG. 2 shows a block diagram of a PON system 200 according to an embodiment. System 200 comprises K OLTs 110, which are labeled in FIG. 2 using the reference numerals 110 1-110 K, where K is a positive integer greater than one. In an example embodiment, the number K can be between 2 and about 300. System 200 further comprises ONU sets 260 1-260 K, each ONU set 260 k having Nk ONUs 160, where k=1, . . . , K. In the embodiment shown in FIG. 2, the ONU set 260 1 has N1 ONUs 160, which are labeled 160 1,1, 160 1,N1, respectively. The ONU set 260 K has NK ONUs 160, which are labeled 160 K,1, . . . 160 K,NK, respectively.
  • In an example embodiment, each of the numbers Nk can be in the same range as the number N described above in reference to FIG. 1. Depending on the specific embodiment, any two numbers Nk corresponding to different values of the index k may be the same or different. For example, in some embodiments, the numbers N1 and NK may be the same. In some other embodiments, the numbers N1 and NK may be different.
  • All ONUs 160 from an ONU set 260 k are connected by respective distribution optical fibers 244 to downlink ports of a same intelligent splitter monitor (ISM) 240 k. For example, ONUs 160 1,1, . . . , 160 1,N1 of the ONU set 260 1 are all connected to ISM 240 1. Similarly, ONUs 160 K,1, . . . , 160 K,NK of the ONU set 260 K are all connected to ISM 240 K. Uplink ports of ISMs 240 1-240 K are connected by respective feeder optical fibers 238 to optical ports 234 1-234 K, respectively, of an optical cross-connect (OXC) 230.
  • An ISM 240 k is substantially a passive optical splitter, but with some additional, remotely powered active components that enable: (i) monitoring of the presence of uplink light signals; and (ii) communication with a central office (CO) 202 using out-of-band optical signals. This functionality, e.g., allows network operators to automatically map PON connectivity, pairing each downlink port of ISM 240 k with a distinct ONU 160 of the ONU set 260 k. Example embodiments of an ISM 240 are described in more detail below in reference to FIGS. 4 and 6. As indicated in FIG. 2, CO 202 includes OLTs 110 1-110 K and an ODN monitoring module (OMM) 210, where ODN stands for optical distribution network.
  • In an example embodiment, OMM 210 has a single optical input/output (I/O) port 214 that is connected to an optical port 224 of OXC 230. In an alternative embodiment, in addition to port 214, OMM 210 also has an optional optical output port 216 that is connected to an optical port 226 of OXC 230. In another alternative embodiment, in addition to ports 214 and 216, OMM 210 has another optical output port (labeled 218) that is connected to an optional optical port 228 of OXC 230.
  • OLTs 110 1-110 K are connected to optical ports 222 1-222 K, respectively, of OXC 230.
  • OXC 230 is configured to provide the following connectivity.
  • Each of ports 222 1-222 K is connected to a respective one of ports 234 1-234 K. The indices (subscripts) of the two connected ports 222 and 234 do not need to be the same, although they can be in some configurations of OXC 230. For example, port 222 1 may be connected to port 234 K. Port 222 K may be connected to some other port 234 k (not explicitly shown in FIG. 2), etc. The pairings of different ports 222 and 234 are usually established at the initial-setup or system-deployment stage and typically remain fixed (static) during regular operation, e.g., until system 200 needs to be reconfigured. These fixed connections between ports 222 and 234, in effect, create K different PONs, each resembling PON 100 of FIG. 1.
  • Port 224 can be connected to any one of ports 234 1-234 K. This connection is typically dynamic and can be changed during regular operation to support shared access of ISMs 240 1-240 K to OMM 210. For example, the connection of port 224 can be switched based on any suitable TDMA schedule or protocol.
  • If present, port 226 can be connected to any one of ports 234 1-234 K, as long as the connected port is not the same port 234 to which port 224 is connected at that time. This connection is also typically dynamic and can be changed during regular operation.
  • If present, port 228 can be connected to any one of ports 234 1-234 K, as long as the connected port is not the same port 234 to which either of ports 224 and 226 is connected. This connection is also typically dynamic and can be changed during regular operation.
  • Depending on the embodiment, OXC 230 can be a (K+1)×K cross-connect, a (K+2)×K cross-connect, or a (K+3)×K cross-connect. In one possible embodiment, OXC 230 can be implemented using a wavelength-selective switch (WSS) of a suitable size. Other example embodiments of OXC 230 are described below in reference to FIGS. 7-9.
  • FIG. 3 shows a block diagram of an OMM 210 that can be used in system 200 (FIG. 2) according to an embodiment. In this particular embodiment of OMM 210, output ports 216 and 218 are absent.
  • As shown in FIG. 3, OMM 210 comprises a diplexer 310 connected to optical I/O port 214 and configured to: (i) route downlink signals from an optical transmitter 318 to optical I/O port 214; and (ii) route uplink signals from optical I/O port 214 to an optical receiver 350. Optical transmitter 318 is configured to generate uplink signals of carrier wavelength λ1. Optical receiver 350 is configured to receive downlink signals of carrier wavelength λ2. Both of carrier wavelengths λ1 and k2 are different from the carrier wavelength(s) used by the OLTs 110 1-110 K for transmissions to and from the various ONUs 160 (see FIG. 2). For example, wavelengths λ1 and λ2 can be 1430 nm and 1450 nm, respectively, whereas the uplink and downlink carrier wavelengths used by the OLTs 110 1-110 K can be about 1310 nm and about 1490 nm, respectively.
  • In an example embodiment, optical transmitter 318 comprises a laser 320 and an optical modulator 330. Laser 320 is a relatively powerful laser that generates continuous wave (CW) light 322 at wavelength λ1. Optical modulator 330 then modulates light 322, in response to an electrical signal 312 received from an OMM controller 310. A resulting modulated optical signal 332 is applied by diplexer 340 to optical I/O port 214 for transmission to port 224 of OXC 230. In an example embodiment, modulated optical signal 332 serves a dual purpose of: (i) carrying control messages to the corresponding connected ISM 240 k, and (ii) providing a power source for the active components of that same ISM 240 k, e.g., as explained in reference to FIG. 4. In some embodiments, OMM controller 310 may also generate an optional control signal 314 that can be used to set and/or change some operating parameters of laser 320, such as the optical power and/or wavelength of light 322.
  • In some other embodiments (not explicitly shown), optical transmitter 318 may directly modulate laser 320 rather than having the external modulator 330 to produce the data-modulated optical signal to transmit to diplexer 340. In such embodiments, modulator 330 may be absent.
  • Optical receiver 350 operates to process a modulated optical signal 344 having carrier wavelength λ2 and received from I/O port 214 by way of diplexer 340. In an example embodiment, optical signal 344 carries messages generated by the corresponding connected ISM 240 k, e.g., to transmit relevant telemetry information regarding the corresponding ONUs. An electrical signal 352 generated by optical receiver 350 in response to optical signal 344 is applied to OMM controller 310 to convey said messages thereto.
  • In an example embodiment, OMM controller 310 operates to: (i) process the telemetry information received from different ISMs 240 k; and (ii) based on said processing, generate further control messages directed through an electrical port 302 to a system controller (not explicitly shown in FIG. 2) and/or the relevant ones of OLTs 110 1-110 K.
  • In some embodiments, OMM 210 can be implemented as a line card housed in the same equipment cabinet as at least some of OLTs 110 1-110 K.
  • FIG. 4 shows a block diagram of an ISM 240 k that can be used in system 200 (FIG. 2) according to an embodiment. Also shown in FIG. 4 are the corresponding feeder optical fiber 238 and distribution optical fibers 244. Fiber 238 optically connects ISM 240 k to OXC 230 (also see FIG. 2). Fibers 244 optically connect ISM 240 k to ONUs 160 k,1, . . . , 160 k,Nk (also see FIG. 2).
  • ISM 240 k comprises a passive optical router 430, e.g., a conventional passive optical router or splitter, connected between feeder optical fiber 238 and distribution optical fibers 244 as indicated in FIG. 4. For downlink signals, router 430 acts as a 1×Nk optical splitter that causes the optical power of the downlink signal received through feeder optical fiber 238 from the corresponding OLT 110 (also see FIG. 2) to be distributed between the Nk distribution optical fibers 244, e.g., distributed with approximately equal or unequal power. For an uplink signal received through a given one of the distribution optical fibers 244, router 430 operates to: (i) direct a small portion (e.g., <5% or ≤10%) of that signal, through a respective optical tap, to a respective photodetector (PD) of a PD array 440; and (ii) direct the remaining portion (minus the coupling loss) of that signal to feeder optical fiber 238. Each photodetector of PD array 440 converts the received light (if any) into a respective electrical signal, which is then directed, through a respective electrical line of bus 444, to a controller 450, e.g., a microcontroller (μC).
  • In some embodiments, passive optical router 430 and/or PD array 440 can be implemented as parts of a corresponding planar lightguide circuit (PLC), e.g., PLC 428.
  • ISM 240 k further comprises an optical transmitter 470 and an optical receiver (Rx) 460. Optical transmitter (Tx) 470 is configured to generate optical signal 344 (also see FIG. 3) carrying messages generated by microcontroller 450, e.g., based on the light measurements performed by PD array 440. As already indicated above, optical signal 344 has the carrier wavelength λ2. A conventional add-wavelength multiplexer 402 operates to couple optical signal 344 generated by transmitter 470 into feeder optical fiber 238, as indicated in FIG. 4, for transmission to OMM 210 (also see FIGS. 2, 3).
  • A conventional drop-wavelength demultiplexer 404 operates to drop optical signal 332 from feeder optical fiber 238, as indicated in FIG. 4, and direct the dropped optical signal toward optical receiver 460. As already indicated above, optical signal 332 is generated by OMM 210 and has the carrier wavelength λ1 (also see FIGS. 2, 3). An optical power splitter 406 then operates to split the dropped optical signal 332 into two portions, with the first portion being applied to optical receiver 460, and the second portion being applied to a photovoltaic cell 410. In an example embodiment, splitter 406 can be a 10:90 power splitter. In other embodiments, other suitable splitting ratios can alternatively be used as well. As already indicated above, the optical output power generated by laser 320 (FIG. 3) is sufficiently high to enable optical receiver 460 to receive enough light for its proper operation, despite the relatively high light attenuation imposed by splitter 406. In response to the received portion of optical signal 332, optical receiver 460 generates a corresponding electrical signal that delivers to microcontroller 450 the corresponding control messages from OMM 210.
  • In response to the other portion of optical signal 332, photovoltaic cell 410 generates electrical current that charges a capacitor 414, e.g., a battery or a supercapacitor (SCap). Controller 450 operates to manage electrical-power distribution from capacitor or battery 414 to various active components of ISM 240 k. In an example embodiment, said active components include a biasing network for the PD array 440, optical receiver 460, optical transmitter 470. Controller 450 itself is also powered by capacitor or battery 414.
  • At least some embodiments of ISM 240 k can benefit from the use of some features described in (i) the above-cited U.S. Patent Application Publication No. 2012/0288273 and (ii) “Remotely Powered Intelligent Splitter Monitor for Fiber Access Networks,” J. Hehmann, M. Straub, L. Jentsch, M. Earnshaw, P. Anthapadmanabhan, and Th. Pfeiffer, in Proc. ECOC, Tu. 1.5.4., Valencia, 2015, which is incorporated herein by reference in its entirety.
  • FIG. 5 shows a block diagram of an OMM 210 that can be used in system 200 (FIG. 2) according to an alternative embodiment. In this particular embodiment, OMM 210 has I/O port 214 and output ports 216 and 218.
  • In the embodiment of FIG. 5, two dedicated remote-powering lasers are incorporated into OMM 210 of FIG. 3. A remote-powering laser 520 1 is configured to generate CW light 522 1 at wavelength λ3 and apply said light to output port 216 (also see FIG. 2). A remote-powering laser 520 2 is configured to generate CW light 522 2 at wavelength λ4 and apply said light to output port 218 (also see FIG. 2). Similar to wavelengths λ1 and k2, wavelengths λ3 and λ4 are out-of-band wavelengths that are different from the carrier wavelength(s) used by the OLTs 110 1-110 K for transmissions to and from the various ONUs 160. OMM controller 310 may be modified to additionally generate optional control signals 514 1 and 514 2 that can be used to set and/or change some operating parameters of lasers 520 1 and 520 2, respectively. In an example embodiment, lasers 520 1 and 520 2 are, e.g., relatively powerful lasers whose optical output power is sufficient for remotely charging the capacitors and/or batteries 414 of different ISMs 240 k (also see FIG. 6).
  • On the other hand, output-power requirements to laser 320 can be significantly relaxed compared to those applied in the embodiment of FIG. 3 because, in the embodiment of FIG. 5, laser 320 is no longer used as a remote-powering laser.
  • In some embodiments, one of lasers 520 1 and 520 2 may be absent.
  • In some embodiments, OMM 210 may be configured to apply non-data-bearing modulation to CW light 522 1 and/or 522 2 to reduce and/or avoid certain detrimental nonlinear effects in system 200.
  • FIG. 6 shows a block diagram of an ISM 240 k that can be used in system 200 (FIG. 2) according to an alternative embodiment. This particular embodiment of ISM 240 k is compatible with the embodiment of OMM 210 shown in FIG. 5.
  • In the embodiment of FIG. 6, optical splitter 406 is absent (also see FIG. 4). Instead, a drop-wavelength demultiplexer 606 is connected to feeder optical fiber 238, as indicated in FIG. 6. In operation, drop-wavelength demultiplexer 606 can drop either of optical signals 522 1 and 522 2 from feeder optical fiber 238 and direct the dropped optical signal to photovoltaic cell 410. In response to the received optical signal 522, photovoltaic cell 410 generates electrical current that charges battery 414.
  • In some other alternative embodiments, drop- wavelength demultiplexers 404 and 606 and add-wavelength multiplexer 402 can be replaced by any suitable optical add-drop multiplexer or other wavelength-selective router capable of the same wavelength routing as that indicated in FIG. 6.
  • FIG. 7 shows a block diagram of OXC 230 (FIG. 2) according to an embodiment. In the shown embodiment, OXC 230 is a (K+1)×K OXC that comprises a 1×K optical switch 710 and K wavelength multiplexers 720 1-720 K.
  • In an example embodiment, optical switch 710 can be a colorless switch that can connect optical port 224 to any one of optical ports 1, . . . , K thereof. A wavelength multiplexer 720 k has optical ports 716 k, 718 k, and 234 k. Optical port 716 k is directly connected to optical port 222 k. Optical port 718 k is connected, e.g., to the k-th port of the set of optical ports 1, . . . , K of optical switch 710.
  • In an example embodiment, wavelength multiplexer 720 k can be configured to perform the following wavelength routing. Any in-band wavelength used in system 200 is routed between optical ports 716 k and 234 k. Any out-of-band wavelength used in system 200 is routed between optical ports 718 k and 234 k.
  • As used herein, the term “in-band” refers to the wavelengths used for communications between the pertinent OLTs 110 and ONUs 160 of system 200 (see FIG. 2). The term “out-of-band” refers to the wavelengths used for: (i) communications between OMM 210 and ISMs 240; and/or (ii) remote optical powering of ISMs 240. For example, the above-mentioned wavelengths λ14 (also see FIGS. 3-6) are out-of-band wavelengths.
  • FIGS. 8A-8B illustrate alternative embodiments of optical switch 710 of FIG. 7.
  • In the embodiment of FIG. 8A, optical switch 710 is a 2×K optical switch. In an example embodiment, said optical switch 710 can be a colorless switch that can connect optical port 224 to any one of optical ports 1, . . . , K thereof, and can also connect optical port 226 to any one of the optical ports 1, . . . , K that is different from the optical port to which optical port 224 is connected.
  • In the embodiment of FIG. 8B, optical switch 710 is a 3×K optical switch. In an example embodiment, said optical switch 710 can be a colorless switch that can connect optical port 224 to any one of optical ports 1, . . . , K thereof; can also connect optical port 226 to any one of the optical ports 1, . . . , K that is different from the optical port to which optical port 224 is connected; and can also connect optical port 228 to any one of the optical ports 1, . . . , K that is different from the optical ports to which optical ports 224 and 226 are connected.
  • In some embodiments, optical switch 710 of FIG. 8A or 8B can be a wavelength-selective switch. In such embodiments, any of optical ports 1, . . . , K can be connected to more than one of optical ports 224, 226, and 228 (if present).
  • FIG. 9 shows a block diagram of OXC 230 (FIG. 2) according to another embodiment. In the shown embodiment, OXC 230 comprises an automated fiber main distribution frame (FMDF) 910 and K wavelength multiplexers 720 1-720 K (also see FIG. 7). An FMDF can alternatively be referred to as a lightguide cross-connect (LGX).
  • A conventional FMDF (or LGX) is a manual cross-connect switch present in many telecom and datacom COs, from which optical fibers connect to the outside plant. These patch-panel switches allow plant workers in an office to provision services by connecting inside plant fibers associated with a piece of network gear in the office (such as an OLT port) to outside plant fibers terminated on the outward facing ports of the FMDF. This “switching” task is accomplished by manually connecting a short length of fiber cable from the inside-plant port to the outside-plant port of the FMDF.
  • The long-term roadmaps for many network operators include automation of these patch-panel switches by replacing them with suitable automated optical cross-connects (OXC). The embodiment shown in FIG. 9 uses such an automated FMDF (i.e., FMDF 910) in OXC 230.
  • For illustration purposes, FMDF 910 is shown in FIG. 9 as being a (K+3)×2K automated cross-connect. In an alternative embodiment, FMDF 910 can be a (K+1)×2K cross-connect or a (K+2)×2K cross-connect. Such an alternative embodiment can be constructed, e.g., by removing or disabling either optical port 228 or both optical ports 226 and 228 of the shown FMDF 910.
  • In yet another alternative embodiment, the size of FMDF 910 can be increased by adding more ports at the uplink side thereof, thereby converting FMDF 910 into a (K+M)×2K OXC, where M is a positive integer greater than three. Such an alternative embodiment can be used, e.g., for connecting an embodiment of OMM 210 having M lasers 520, e.g., lasers 520 1-520 M (also see FIG. 5). Some of these lasers 520 1-520 M may be configured to output nominally identical wavelengths, e.g., λ3 and/or λ4. In such cases, more than one optical port 234 can be connected to transmit, for example, the wavelength λ3. In this manner, the number of ISMs 240 k of FIG. 6 that can be connected for charging at the same time may advantageously be increased, e.g., up to the total number of M.
  • As shown in FIG. 9, FMDF 910 has: (i) uplink ports 222 1-222 K 224, 226, and 228; and (ii) downlink ports 1, 2, . . . , 2K. Each of downlink ports 1, 2, . . . , K is externally connected, as indicated in FIG. 9, to a respective one of optical ports 716 1-716 K of wavelength multiplexers 720 1-720 K. Each of downlink ports K+1, K+2, . . . , 2K is externally connected, as indicated in FIG. 9, to a respective one of optical ports 718 1-718 K of wavelength multiplexers 720 1-720 K.
  • In operation, FMDF 910 is configured to provide the following internal connections between the uplink and downlink optical ports thereof.
  • Each of uplink ports 222 1-222 K is internally connected to a single respective one of downlink ports 1, . . . , K. Any one-to-one mapping between said uplink and downlink ports can be implemented in various configurations of FMDF 910, as long as the selected port mapping is compatible with the intended optical topology of system 200. The corresponding configuration of this part of FMDF 910 typically remains fixed (static) during data transmission between OLTs 110 1-110 K and various ONUs 160 of system 200.
  • Each of uplink ports 224, 226, and 228 can be connected to any one of downlink ports K+1, K+2, . . . , 2K, such that any two of the ports 224, 226, and 228 are not connected to the same one of the ports K+1, K+2, . . . , 2K at the same time. These connections are typically dynamic and can be changed during data transmission between OLTs 110 1-110 K and various ONUs 160 of system 200. As an example, FIG. 9 shows one possible configuration of this part of FMDF 910. In this example, port 224 is connected to port K+J; port 226 is connected to port 2K; and port 228 is connected to port K+1. Herein, the integer J is constrained to the range 1<J<K. A person of ordinary skill in the art will understand that the shown connections of ports 224, 226, and 228 can be changed in a desired manner to support the above-explained shared access of ISMs 240 1-240 K to OMM 210 in system 200 (FIG. 2).
  • In some embodiments, FMDF 910 can be implemented using: (i) a conventional K×K OXC switch, for uplink ports 222 1-222 K and downlink ports 1, . . . , K; and (ii) a 3×K WSS, for uplink ports 224, 226, and 228 and downlink ports K+1, . . . , 2K. Then, in some configurations, the WSS can be configured to combine two or more of the input wavelengths λ1, λ3 and λ4 and apply the resulting combined light beam to a single downlink port thereof, thereby directing said combined light beam to a single PON via the corresponding one of the multiplexers 720. This concept can also be applied to the above-mentioned alternative embodiments in which FMDF 910 is implemented as a (K+M)×2K OXC.
  • According to an example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of FIGS. 1-9, provided is an apparatus comprising: a plurality of first optical data transceivers (e.g., 110 1-110 K, FIG. 2), each of the first optical data transceivers being connected to transmit and receive data-modulated light; an optical monitor (e.g., 210, FIG. 2); and an optical cross-connect (e.g., 230, FIG. 2) configured to connect each of the first optical data transceivers to a corresponding optical fiber (e.g., 238, FIG. 2); and wherein the optical monitor is optically connected to the optical cross-connect, and the optical cross-connect is switchable to optically connect the optical monitor to selected individual ones of the optical fibers such that the optical monitor can transmit light to and receive light from the selected individual ones of the optical fibers.
  • In some embodiments of the above apparatus, the optical monitor is configured to: transmit, through the optical cross-connect, data-modulated light having a first wavelength (e.g., λ1, FIG. 3); and receive, through the optical cross-connect, data-modulated light having a second wavelength (e.g., λ2, FIG. 3) that is different from the first wavelength.
  • In some embodiments of any of the above apparatus, the first optical data transceivers are configured to transmit and receive the data-modulated light using a plurality of wavelength channels; and wherein the first and second wavelengths are out-of-band with respect to the wavelength channels associated with the first optical data transceivers (e.g., 110 1-110 K, FIG. 2).
  • In some embodiments of any of the above apparatus, the optical monitor is further configured to transmit, through the optical cross-connect, continuous-wave light having a third wavelength (e.g., λ3 FIG. 3) different from the first and second wavelengths.
  • In some embodiments of any of the above apparatus, the apparatus further comprises a plurality of passive optical networks (e.g., 110 k/240 k/260 k, FIG. 2), each one of the passive optical networks including a respective intelligent optical splitter configured to monitor at least some of the data-modulated light in said one of the passive optical networks directed to a corresponding one of the optical fibers (e.g., 240 1-240 K, FIG. 2).
  • In some embodiments of any of the above apparatus, the respective intelligent optical splitter is configured to optically communicate with the optical monitor.
  • In some embodiments of any of the above apparatus, the respective intelligent optical splitter is configured to be powered using the light transmitted by the optical monitor.
  • In some embodiments of any of the above apparatus, the apparatus is configured to use wavelengths of light to communicate data over said one of the passive optical networks; and wherein the optical monitor is configured to power the respective intelligent optical splitter using one or more additional wavelengths that are different from said wavelengths of light.
  • In some embodiments of any of the above apparatus, the optical monitor is configured to communicate with the respective intelligent optical splitters of two or more of the passive optical networks.
  • In some embodiments of any of the above apparatus, each of the plurality of passive optical networks further includes a respective plurality (e.g., 260 k, FIG. 2) of optical network units (e.g., 160 k,n, FIG. 2) connected to communicate with a respective one of the first optical transceivers by way of the respective intelligent optical splitter.
  • In some embodiments of any of the above apparatus, the respective intelligent optical splitter comprises a respective second data transceiver (e.g., 460/470, FIG. 4) configured to communicate with the optical monitor.
  • In some embodiments of any of the above apparatus, the optical cross-connect comprises: a plurality of first optical ports (e.g., 234 1-234 K, FIGS. 2, 7, 9), each of the first optical ports being externally connected to the corresponding optical fiber (e.g., 238, FIG. 2); and a second optical port (e.g., 224, FIGS. 7, 8A, 8B, 9) and a plurality of third optical ports (e.g., 1, . . . , K, FIG. 7; K+1, . . . , 2K, FIG. 9); wherein the optical monitor is optically connected to transmit and receive modulated optical signals through the second optical port, the optical cross-connect being switchable to selectively connect the second optical port to any one of the third optical ports; wherein each of the third optical ports is connected to a respective one of the first optical ports by way of a respective wavelength multiplexer (e.g., one of 720 1-720 K, FIGS. 7, 9); and wherein each of the respective wavelength multiplexers is further connected between a respective one of the first optical data transceivers and the respective first optical port to transmit the data-modulated light therebetween.
  • In some embodiments of any of the above apparatus, the optical monitor is configured to transmit and receive light having wavelengths of a continuous spectral band; and wherein the data-modulated light transmitted and received by each of the first optical data transceivers has wavelengths outside said spectral band.
  • In some embodiments of any of the above apparatus, each of the respective wavelength multiplexers includes the respective first optical port (e.g., 234 k, FIGS. 7, 9), a respective fourth optical port (e.g., 716 k, FIGS. 7, 9), and a respective fifth optical port (e.g., 718 k, FIGS. 7, 9) and is configured to: route the wavelengths of said spectral band between the respective first optical port and the respective fifth optical port; and route the wavelengths outside said spectral band between the respective first optical port and the respective fourth optical port.
  • In some embodiments of any of the above apparatus, the optical cross-connect comprises a wavelength-selective switch.
  • According to another example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of FIGS. 1-9, provided is an apparatus comprising: a plurality of first optical data transceivers (e.g., 110 1-110 K, FIG. 2), each of the first optical data transceivers being connected to transmit and receive modulated light through a respective first optical port (e.g., one of 234 1-234 K, FIGS. 2, 7, 9), each of the first optical ports being externally connected to a different respective optical fiber (e.g., 238, FIG. 2); a second optical data transceiver (e.g., 210, FIGS. 2, 3, 5); and an optical switch (e.g., 710, FIGS. 7, 8A, 8B; 910, FIG. 9) having a second optical port (e.g., 224, FIGS. 7, 8A, 8B, 9) and a plurality of third optical ports (e.g., 1, . . . , K, FIG. 7; K+1, . . . , 2K, FIG. 9), the second optical data transceiver being connected to transmit and receive modulated light through the second optical port, the optical switch being switchable to selectively connect the second optical port to any one of the third optical ports; wherein each of the third optical ports is connected to a respective one of the first optical ports by way of a respective wavelength multiplexer (e.g., one of 720 1-720 K, FIGS. 7, 9); and wherein each of the respective wavelength multiplexers is further connected between a respective one of the first optical data transceivers and the respective first optical port to transmit modulated light therebetween.
  • In some embodiments of the above apparatus, the second optical data transceiver is configured to: transmit modulated light having a first carrier wavelength (e.g., λ1, FIG. 3); and receive modulated light having a second carrier wavelength (e.g., λ2, FIG. 3) that is different from the first carrier wavelength.
  • In some embodiments of any of the above apparatus, the apparatus further comprises a plurality of passive optical networks (e.g., 110 k/240 k/260 k, FIG. 2), each including a respective one of a plurality of intelligent splitter monitors (e.g., 240 1-240 K, FIG. 2), each of the intelligent splitter monitors being fiber-connected to a respective one of the first optical ports; and wherein each of the intelligent splitter monitors includes a respective third data transceiver (e.g., 460/470, FIG. 4) configured to: transmit modulated light having the second carrier wavelength (e.g., k2, FIG. 4); and receive modulated light having the first carrier wavelength (e.g., λ1, FIG. 4).
  • In some embodiments of any of the above apparatus, the apparatus further comprises a fiber distribution frame (e.g., 910, FIG. 9) that includes the optical switch.
  • In some embodiments of any of the above apparatus, the apparatus further comprises a first laser (e.g., 520 1, FIG. 5); and wherein the optical switch has an additional optical port (e.g., 226, FIGS. 8A, 8B, 9), the first laser being connected to transmit light through the additional optical port, the optical switch being switchable to connect the additional optical port to any one of the third optical ports.
  • In some embodiments of any of the above apparatus, the second optical transceiver is configured to: transmit modulated light having a first carrier wavelength (e.g., λ1, FIG. 5); and receive modulated light having a second carrier wavelength (e.g., k2, FIG. 5); wherein the first laser is configured to transmit unmodulated light having a third carrier wavelength (e.g., λ3, FIG. 5); and wherein the first, second, and third carrier wavelengths are all different from one another.
  • In some embodiments of any of the above apparatus, the apparatus further comprises a second laser (e.g., 520 2, FIG. 5); and wherein the optical switch has another additional optical port (e.g., 228, FIGS. 8B, 9), the second laser being connected to transmit light through said another additional optical port, the optical switch being switchable to connect said another additional optical port to any one of the third optical ports.
  • In some embodiments of any of the above apparatus, the second optical transceiver is configured to: transmit modulated light having a first carrier wavelength (e.g., λ1, FIG. 5); and receive modulated light having a second carrier wavelength (e.g., λ2, FIG. 5); wherein the first laser is configured to transmit unmodulated light having a third carrier wavelength (e.g., λ3 FIG. 5); wherein the second laser is configured to transmit unmodulated light having a fourth carrier wavelength (e.g., λ4, FIG. 5); and wherein the first, second, third, and fourth carrier wavelengths are all different from one another.
  • In some embodiments of any of the above apparatus, the second optical transceiver is configured to communicate with a plurality of intelligent splitter monitors (e.g., 240 1-240 K, FIG. 2), each of the intelligent splitter monitors being fiber-connected to a respective one of the first optical ports.
  • In some embodiments of any of the above apparatus, the apparatus further comprises a plurality of passive optical networks (e.g., 110 k/240 k/260 k, FIG. 2); and wherein each of the plurality of passive optical networks includes a respective one of the plurality of intelligent splitter monitors (e.g., 240 k, FIG. 2) and a respective one of the first optical data transceivers (e.g., 110 k, FIG. 2).
  • In some embodiments of any of the above apparatus, each of the plurality of passive optical networks further includes a respective plurality (e.g., 260 k, FIG. 2) of optical network units (e.g., 160 k,n, FIG. 2) connected to communicate with the respective one of the first optical transceivers by way of the respective one of the plurality of intelligent splitter monitors.
  • In some embodiments of any of the above apparatus, each of the intelligent splitter monitors includes a respective third data transceiver (e.g., 460/470, FIG. 4) configured to communicate with the second optical transceiver.
  • In some embodiments of any of the above apparatus, the optical switch comprises a wavelength-selective switch.
  • In some embodiments of any of the above apparatus, the second optical transceiver is configured to transmit and receive modulated light having wavelengths of a continuous spectral band; and wherein each of the first optical data transceivers is configured to transmit and receive modulated light having wavelengths outside said spectral band.
  • In some embodiments of any of the above apparatus, each of the respective wavelength multiplexers includes the respective first optical port (e.g., 234 k, FIGS. 7, 9), a respective fourth optical port (e.g., 716 k, FIGS. 7, 9), and a respective fifth optical port (e.g., 718 k, FIGS. 7, 9) and is configured to: route the wavelengths of said spectral band between the respective first optical port and the respective fifth optical port; and route the wavelengths outside said spectral band between the respective first optical port and the respective fourth optical port.
  • According to yet another example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of FIGS. 1-9, provided is an apparatus comprising: a passive optical router (e.g., 430, FIG. 6) connectable to route light between a first optical fiber (e.g., 238, FIG. 6) and a plurality of second optical fibers (e.g., 244, FIG. 6); an optical receiver (e.g., 460, FIG. 6) configured to receive a first modulated optical signal (e.g., 332, FIG. 6) applied to the apparatus by the first optical fiber, said first modulated optical signal having a first wavelength (e.g., λ1, FIG. 6); a photovoltaic cell (e.g., 410, FIG. 6) configured to charge a capacitor (e.g., 414, FIG. 6) in response to light (e.g., 522, FIG. 6) applied to the apparatus by the first optical fiber, said applied light having a second wavelength (e.g., λ3, FIG. 6) that is different from the first wavelength; and an electronic controller (e.g., 450, FIG. 6) configured to control electrical-power distribution from the capacitor to power the optical receiver and the electronic controller.
  • In some embodiments of the above apparatus, the apparatus further comprises an array of photodetectors (e.g., 440, FIG. 6), each individual one of the photodetectors being configured to detect data-modulated light applied to the passive optical router by a corresponding individual one of the second optical fibers; and wherein the electronic controller is further configured to control the electrical-power distribution from the capacitor to power the array.
  • In some embodiments of any of the above apparatus, the apparatus further comprises an optical transmitter (e.g., 470, FIG. 6) configured to generate a second modulated optical signal (e.g., 344, FIG. 6) in response to the data-modulated light detected by the individual ones of the photodetectors; and wherein the electronic controller is further configured to control the electrical-power distribution from the capacitor to power the optical transmitter.
  • In some embodiments of any of the above apparatus, the second modulated optical signal has a third wavelength (e.g., λ2, FIG. 6) that is different from the first and second wavelengths.
  • In some embodiments of any of the above apparatus, the passive optical router is configured to route data-modulated light between an optical line terminal (e.g., 110, FIG. 2) and a plurality of optical network units (e.g., 160, FIG. 2) of a passive optical network.
  • While this disclosure includes references to illustrative embodiments, this specification is not intended to be construed in a limiting sense. Various modifications of the described embodiments, as well as other embodiments within the scope of the disclosure, which are apparent to persons skilled in the art to which the disclosure pertains are deemed to lie within the principle and scope of the disclosure, e.g., as expressed in the following claims.
  • Unless explicitly stated otherwise, each numerical value and range should be interpreted as being approximate as if the word “about” or “approximately” preceded the value or range.
  • It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this disclosure may be made by those skilled in the art without departing from the scope of the disclosure, e.g., as expressed in the following claims.
  • The use of figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.
  • Although the elements in the following method claims, if any, are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.
  • Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation.”
  • Unless otherwise specified herein, the use of the ordinal adjectives “first,” “second,” “third,” etc., to refer to an object of a plurality of like objects merely indicates that different instances of such like objects are being referred to, and is not intended to imply that the like objects so referred-to have to be in a corresponding order or sequence, either temporally, spatially, in ranking, or in any other manner.
  • Also for purposes of this description, the terms “couple,” “coupling,” “coupled,” “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed in which energy is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of such additional elements. The same type of distinction applies to the use of terms “attached” and “directly attached,” as applied to a description of a physical structure. For example, a relatively thin layer of adhesive or other suitable binder can be used to implement such “direct attachment” of the two corresponding components in such physical structure.
  • The described embodiments are to be considered in all respects as only illustrative and not restrictive. In particular, the scope of the disclosure is indicated by the appended claims rather than by the description and figures herein. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
  • The functions of the various elements shown in the figures, including any functional blocks labeled as “processors” and/or “controllers,” may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, network processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), and non volatile storage. Other hardware, conventional and/or custom, may also be included. Similarly, any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
  • As used in this application, the term “circuitry” may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry); (b) combinations of hardware circuits and software, such as (as applicable): (i) a combination of analog and/or digital hardware circuit(s) with software/firmware and (ii) any portions of hardware processor(s) with software (including digital signal processor(s)), software, and memory(ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions); and (c) hardware circuit(s) and or processor(s), such as a microprocessor(s) or a portion of a microprocessor(s), that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.” This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • It should be appreciated by those of ordinary skill in the art that any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the disclosure. Similarly, it will be appreciated that any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.

Claims (6)

1-15. (canceled)
16. An apparatus comprising:
a passive optical router connectable to route light between a first optical fiber and a plurality of second optical fibers;
an optical receiver configured to receive a first modulated optical signal applied to the apparatus by the first optical fiber, said first modulated optical signal having a first wavelength;
a photovoltaic cell configured to charge a capacitor in response to light applied to the apparatus by the first optical fiber, said applied light having a second wavelength that is different from the first wavelength; and
an electronic controller configured to control electrical-power distribution from the capacitor to power the optical receiver and the electronic controller.
17. The apparatus of claim 16, further comprising an array of photodetectors, each individual one of the photodetectors being configured to detect data-modulated light applied to the passive optical router by a corresponding individual one of the second optical fibers; and
wherein the electronic controller is further configured to control the electrical-power distribution from the capacitor to power the array.
18. The apparatus of claim 17, further comprising an optical transmitter configured to generate a second modulated optical signal in response to the data-modulated light detected by the individual ones of the photodetectors; and
wherein the electronic controller is further configured to control the electrical-power distribution from the capacitor to power the optical transmitter.
19. The apparatus of claim 18, wherein the second modulated optical signal has a third wavelength that is different from the first and second wavelengths.
20. The apparatus of claim 16, wherein the passive optical router is configured to route data-modulated light between an optical line terminal and a plurality of optical network units of a passive optical network.
US17/499,453 2018-06-08 2021-10-12 Monitoring multiple passive optical networks Abandoned US20220045750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/499,453 US20220045750A1 (en) 2018-06-08 2021-10-12 Monitoring multiple passive optical networks

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862682277P 2018-06-08 2018-06-08
US16/424,678 US11178472B2 (en) 2018-06-08 2019-05-29 Monitoring multiple passive optical networks
US17/499,453 US20220045750A1 (en) 2018-06-08 2021-10-12 Monitoring multiple passive optical networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/424,678 Division US11178472B2 (en) 2018-06-08 2019-05-29 Monitoring multiple passive optical networks

Publications (1)

Publication Number Publication Date
US20220045750A1 true US20220045750A1 (en) 2022-02-10

Family

ID=68764417

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/424,678 Active US11178472B2 (en) 2018-06-08 2019-05-29 Monitoring multiple passive optical networks
US17/499,453 Abandoned US20220045750A1 (en) 2018-06-08 2021-10-12 Monitoring multiple passive optical networks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/424,678 Active US11178472B2 (en) 2018-06-08 2019-05-29 Monitoring multiple passive optical networks

Country Status (1)

Country Link
US (2) US11178472B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020043318A1 (en) * 2018-08-31 2020-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Time and wavelength division multiplexing
US12040841B2 (en) * 2019-09-18 2024-07-16 Nippon Telegraph And Telephone Corporation Communication apparatus and power use method
JP7084441B2 (en) * 2020-03-16 2022-06-14 京セラ株式会社 Fiber optic power supply system power supply and fiber optic power supply system
US11621795B2 (en) 2020-06-01 2023-04-04 Nubis Communications, Inc. Polarization-diversity optical power supply
US20230327757A1 (en) * 2020-09-11 2023-10-12 Nippon Telegraph And Telephone Corporation Optical communication monitoring device
WO2022054218A1 (en) 2020-09-11 2022-03-17 日本電信電話株式会社 Communication monitoring apparatus and communication monitoring system
JP7509213B2 (en) * 2020-09-11 2024-07-02 日本電信電話株式会社 Optical communication monitoring device
WO2022054229A1 (en) * 2020-09-11 2022-03-17 日本電信電話株式会社 Optical communication monitoring device
US12101129B2 (en) 2021-02-03 2024-09-24 Nubis Communications, Inc. Communication systems having optical power supplies
US12066653B2 (en) 2021-04-22 2024-08-20 Nubis Communications, Inc. Communication systems having optical power supplies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292314A1 (en) * 2007-05-21 2008-11-27 Inventec Multimedia & Telecom Corporation Optical link monitoring system and method for passive optical network
US20120288273A1 (en) * 2011-05-12 2012-11-15 Alcatel-Lucent Usa, Inc. Intelligent splitter monitor
US20150295641A1 (en) * 2014-04-11 2015-10-15 Alcatel-Lucent Usa Inc. Apparatus and Method for Optical-Network Monitoring

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301402B1 (en) * 2000-03-02 2001-10-09 Lucent Technologies, Inc. Control arrangement for optical mechanical switches
JP4696759B2 (en) * 2005-07-29 2011-06-08 Kddi株式会社 Optical termination system
KR100698766B1 (en) * 2005-09-07 2007-03-23 한국과학기술원 Apparatus for Monitoring Failure Positions in Wavelength Division Multiplexing-Passive Optical Networks and Wavelength Division Multiplexing-Passive Optical Network Systems Having the Apparatus
US7711267B2 (en) * 2005-09-30 2010-05-04 Verizon Business Global Llc Remote management of central office operations
US20070154215A1 (en) * 2006-01-05 2007-07-05 Tellabs Bedford, Inc. Method and apparatus for detecting optical reflections in an optical network
US8369706B2 (en) * 2006-07-18 2013-02-05 Novera Optics, Inc. Open access service model using WDM-PON
KR100889751B1 (en) * 2006-12-05 2009-03-24 한국전자통신연구원 Fault localization apparatus for optical line in optical networks using a SCM monitoring signal and thereof
JP4388556B2 (en) * 2007-01-09 2009-12-24 株式会社日立コミュニケーションテクノロジー Passive optical network system and wavelength allocation method
EP1965517A1 (en) * 2007-02-28 2008-09-03 British Telecommunications Public Limited Company Testing an optical network
KR100971676B1 (en) * 2008-10-09 2010-07-22 한국과학기술원 A Fault Localization Method and A Fault Localization Apparatus in A Passive Optical Network and A Passive Optical Network Having the Same
US8532487B2 (en) * 2008-10-21 2013-09-10 Broadcom Corporation Managed PON repeater and cross connect
CN101964924B (en) * 2009-07-24 2013-11-06 华为技术有限公司 Method, device and system for transmitting information in passive optical network
US8483562B2 (en) * 2009-11-11 2013-07-09 Verizon Patent And Licensing Inc. Method and apparatus for integrating automated switching in a passive optical network
JP5482128B2 (en) * 2009-11-16 2014-04-23 富士通株式会社 Optical communication network and supervisory control device
ES2397024B1 (en) * 2011-03-18 2014-07-23 Telefónica, S.A. METHOD AND SYSTEM FOR MONITORING PHYSICAL LAYER IN PASSIVE OPTICAL NETWORKS
US9031408B2 (en) * 2011-06-09 2015-05-12 Telefonaktiebolaget L M Ericsson (Publ) Method for fast wavelength division multiplexing (WDM) passive optical network (PON) initialization in heterogeneous networks
US9231696B2 (en) * 2011-08-24 2016-01-05 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for supervision of optical networks
US8923672B2 (en) 2011-11-10 2014-12-30 Alcatel Lucent Wavelength router for a passive optical network
TWI502906B (en) * 2012-11-01 2015-10-01 Univ Nat Taiwan Science Tech Active network monitoring system and controlling method thereof
CN104009795A (en) * 2013-02-25 2014-08-27 中兴通讯股份有限公司 OTDR optical path detection device and method thereof
US9641276B2 (en) 2013-05-16 2017-05-02 Futurewei Technologies, Inc. Statistical optical design enabled via TWDM-PON
EP3005594A1 (en) * 2013-06-04 2016-04-13 Telefonaktiebolaget LM Ericsson (publ) Transceiver for use in fibre network
CN104365063B (en) 2013-06-09 2018-03-13 华为技术有限公司 Virtualize the method, apparatus and EPON virtualization system of EPON
EP2913947B1 (en) 2014-02-27 2019-11-27 ADVA Optical Networking SE Passive optical network and optical line terminal
KR101872566B1 (en) 2014-04-23 2018-06-28 한국전자통신연구원 Tunable Optical Network Unit for multiple wavelengths Passive Optical Network and its operation method
US9473836B2 (en) 2014-09-04 2016-10-18 Verizon Patent And Licensing Inc. Maintaining channel-invariant optical network unit (ONU) equalization delay in a passive optical network
US20160134953A1 (en) 2014-11-12 2016-05-12 Broadcom Corporation Shared protection in optical networks
KR102165074B1 (en) * 2015-05-14 2020-10-13 주식회사 쏠리드 Optical signal monitoring device of wavelenth divisiono multiplexed passive optical network
EP3357179A1 (en) * 2015-09-30 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) A network architecture, an optical communication network and use of an md-wss
JP2017103504A (en) * 2015-11-30 2017-06-08 富士通株式会社 Optical transmission device and optical transmission system
US9877091B2 (en) * 2015-12-04 2018-01-23 Verizon Patent And Licensing Inc. Optical network with small-form-factor optical fiber cross-connect module
US10250351B2 (en) * 2016-10-11 2019-04-02 Futurewei Technologies, Inc. Efficient network utilization using optically switched superchannels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292314A1 (en) * 2007-05-21 2008-11-27 Inventec Multimedia & Telecom Corporation Optical link monitoring system and method for passive optical network
US20120288273A1 (en) * 2011-05-12 2012-11-15 Alcatel-Lucent Usa, Inc. Intelligent splitter monitor
US20150295641A1 (en) * 2014-04-11 2015-10-15 Alcatel-Lucent Usa Inc. Apparatus and Method for Optical-Network Monitoring

Also Published As

Publication number Publication date
US20190379952A1 (en) 2019-12-12
US11178472B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
US11178472B2 (en) Monitoring multiple passive optical networks
CN101114885B (en) Wavelength-division and time division multiplex mixing passive optical network system, terminal and signal transmission method
Grobe et al. PON in adolescence: from TDMA to WDM-PON
US10038946B2 (en) Optical network and method for processing data in an optical network
US7706688B2 (en) Wavelength reconfigurable optical network
EP2819325B1 (en) Distributed base-station signal transmission system and communication system
EP1887724A1 (en) A wavelength division multiplexing passive optical network and its implement method
WO2015180508A1 (en) Wavelength division pon system based open network architecture and signal transmission method
CN102695101B (en) EPON on a kind of wavelength division multiplexing
KR20110053973A (en) Wdm pon rf/video braodcast overlay
CN104125517B (en) A kind of optical transmission system, mode coupler and optical transmission method
US9065589B2 (en) Apparatus and method for operating a wavelength division multiplexing access network
JP2013529001A (en) Long distance box and processing method for uplink / downlink light of long distance box
CN103747371A (en) Time division wavelength division hybrid multiplexing passive optical network system
CN202004922U (en) Passive optical network system on wavelength division multiplexing
US20120163818A1 (en) Passive optical network apparatus for transmitting optical signal
Prat et al. Demonstration and field trial of a scalable resilient hybrid ngPON
CA2593891C (en) Wavelength reconfigurable optical network
CN111999801A (en) PLC chip, TOSA, BOSA, optical module and optical network equipment
EP2068469B1 (en) Method for circulating optical signals in a passive optical distribution network
Yang et al. Smile OAN: A long reach hybrid WDM/TDM passive optical network for next generation optical access
Schrenk et al. Energy self-sufficient node with integrated lightpath monitoring for spectrum-aware PON
Payne et al. End-to-end network design and experimentation in the DISCUS project
Singh Comparative Analysis of DWDM System Using OADM (Optical Add/Drop Multiplexer) At Different Data Rate, Distance and Channel Spacing
Li et al. Simultaneous all-optical WDM multicast and unicast scheme for WDM optical access network based on SOA and AWG

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOKIA SOLUTIONS AND NETWORKS OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IANNONE, PATRICK;PFEIFFER, THOMAS;HEHMANN, JOERG;AND OTHERS;SIGNING DATES FROM 20190213 TO 20190324;REEL/FRAME:057776/0962

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION