CN104791234A - 制冷设备转子压缩机启动工况下载荷激励测试分析方法 - Google Patents

制冷设备转子压缩机启动工况下载荷激励测试分析方法 Download PDF

Info

Publication number
CN104791234A
CN104791234A CN201510221163.7A CN201510221163A CN104791234A CN 104791234 A CN104791234 A CN 104791234A CN 201510221163 A CN201510221163 A CN 201510221163A CN 104791234 A CN104791234 A CN 104791234A
Authority
CN
China
Prior art keywords
load
measuring point
rotor compressor
amplitude
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510221163.7A
Other languages
English (en)
Other versions
CN104791234B (zh
Inventor
卢剑伟
胡洁义
李晓阳
祖玉建
张炎
刘向农
高才
吴祚云
吴唯唯
吴尘琛
王馨梓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201510221163.7A priority Critical patent/CN104791234B/zh
Publication of CN104791234A publication Critical patent/CN104791234A/zh
Application granted granted Critical
Publication of CN104791234B publication Critical patent/CN104791234B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

本发明公开了一种制冷设备转子压缩机启动工况下载荷激励测试分析方法,其特征是通过对制冷设备转子压缩机启动工况下的振动测试,获得制冷设备转子压缩机中各测点上的振幅响应曲线,构成位移矩阵;利用有限元分析的方法构建转子压缩机虚拟样机模型,分析虚拟样机模型在脉冲激励载荷作用下各测点的振幅响应,根据加载和引起的振幅响应峰值时间差恒定的特点,由转子压缩机启动工况下各测点的振动测试结果反算获得峰值载荷时间及大小。本发明方法有效提高了启动工况下配管可靠性评估准确度,减少配管失效的发生率。

Description

制冷设备转子压缩机启动工况下载荷激励测试分析方法
技术领域
本发明涉及一种制冷设备转子压缩机启动工况下载荷激励测试分析方法,用于该工况下配管结构的可靠性评估。
背景技术
对于使用转子压缩机的制冷设备,在专利号为CN102562568B的发明专利公开文献中记载了一种“制冷设备用转子压缩机载荷测试分析方法”,该方法是针对稳定工况下的转子压缩机载荷激励测试分析;实际上,对于使用转子压缩机的制冷设备来说,其在启动过程中,会施加给与之相连接的配管等部件较强的瞬间冲击载荷,使所述配管等部件产生微裂纹甚至直接失效,迄今还没有一种针对制冷设备在转子压缩机启动工况下的载荷测试分析方法的公开报导。
发明内容
本发明是为避免上述现有技术所存在的不足之处,提供一种制冷设备用转子压缩机启动工况下载荷测试分析方法,针对启动工况下转子压缩机载荷激励特点,对启动工况下配管可靠性进行更为准确的分析评估。
本发明为解决技术问题采用如下技术方案:
本发明制冷设备转子压缩机启动工况下载荷激励测试分析方法的特点是按如下步骤进行:
步骤1、针对采用转子压缩机的制冷设备,以所述制冷设备中的控制器、蒸发器、冷凝器以及所述转子压缩机采用软管相连接共同组成转子压缩机的瞬态性能测试系统,所述转子压缩机包括有压缩机本体和储液桶,排气口位于压缩机本体的顶部,回气口位于储液桶的顶部;
步骤2、通过所述控制器调整转子压缩机在启动工况下的冷凝器和蒸发器的温度和压力,使得所述排气口和回气口的压力与制冷设备整机运行负载等效工况下的排气口和回气口的压力相一致;
步骤3、分别取所述排气口为测点A、取所述回气口为测点B,并以测点A为坐标原点O,以过原点O的竖直方向为Z轴方向,以垂直于Z轴的平面为XOY平面,测点A和测点B的连线在XOY平面上的投影为X轴,Y轴垂直于XOZ平面,确立坐标系OXYZ;
步骤4、分别测定瞬态性能测试系统中转子压缩机启动工况下测点A和测点B在X、Y及Z方向上的振幅响应曲线,比较所有振幅响应曲线上的峰值,记录最大峰值对应的时刻T,并记录T时刻测点A的X、Y和Z方向的振幅分别为ax1、ay1和az1,测点B的X、Y和Z方向的振幅分别为ax2、ay2和az2,构建位移矩阵W为:
W=[ax1 ay1 az1 ax2 ay2 az2]T    (1)
所述启动工况是指转子压缩机自启动时刻起达到转子压缩机进入稳定运行的工况;
步骤5、利用有限元分析的方法构建转子压缩机虚拟样机模型,按如下方法分析所述虚拟样机模型在脉冲激励载荷作用下的排气口和回气口的最大振幅响应:
第一,在转子压缩机加载点施加绕Z轴的力矩为1N·m和沿径向的力为1N的载荷;以单位毫秒为计算时间子步长,脉冲激励载荷的峰值对应的时刻为t,获得测点A和测点B在X、Y及Z方向的振幅响应曲线,比较所有振幅响应曲线的振幅峰值,记录最大振幅峰值出现的时刻,与脉冲激励载荷峰值对应的时刻t作差,得到时间差Δt;对于转子压缩机加载点上施加的不同大小的脉冲激励载荷,所述时间差Δt为恒定值;
所述加载点是指转子压缩机的载荷作用点,取所述加载点为压缩机本体1/3高度处圆截面与压缩机轴线的交叉点;
第二,在转子压缩机加载点施加绕Z轴的力矩为1N·m的载荷,以单位毫秒为计算时间子步长,脉冲激励载荷的峰值时刻为(T-Δt),获得测点A和测点B在X、Y及Z方向的振幅响应曲线,记录测点A的X、Y和Z方向的振幅峰值分别为bx1、by1及bz1,测点B的X、Y和Z方向的振幅峰值分别为bx2、by2及bz2
第三,在转子压缩机加载点施加沿径向的力为1N的载荷,以单位毫秒为计算时间子步长,脉冲激励载荷对应的峰值时刻为(T-Δt),获得测点A和测点B在X、Y及Z方向的振幅响应曲线,记录测点A的X、Y和Z方向的振幅峰值分别为cx1、cy1及cz1,测点B的X、Y和Z方向的振幅峰值为cx2、cy2及cz2
第四,构建传递矩阵G为: G = b x 1 b y 1 b z 1 b x 2 b y 2 b z 2 c x 1 c y 1 c z 1 c x 2 c y 2 c z 2 T - - - ( 2 )
步骤6、利用式(3)计算获得启动工况下转子压缩机的转子施加给压缩机本体的的力矩M和力F,
[M F]T=G-1×W    (3)。
与已有技术相比,本发明有益效果体现在:
1、本发明方法通过对制冷设备转子压缩机启动工况下的振动测试,获得制冷设备转子压缩机中各测点上的振幅响应曲线,构成位移矩阵;利用有限元分析的方法构建转子压缩机虚拟样机模型,分析虚拟样机模型在脉冲激励载荷作用下各测点的振幅响应,根据加载和引起的振幅响应峰值时间差恒定的特点,由转子压缩机启动工况下各测点的振动测试结果反算获得峰值载荷时间及大小,对启动工况下压缩机载荷激励进行预测,有效提高了启动工况下配管可靠性评估准确度,减少配管失效的发生率。
2、本发明在瞬态性能测试系统中采用软管进行连接,有效减弱了配管等部件对转子压缩机的束缚作用,提高转子压缩机单体载荷测试准确度。
附图说明
图1为转子压缩机性能测试系统构成图;
图2为转子压缩机结构示意图;
具体实施方式
本实施例中制冷设备转子压缩机启动工况下载荷激励测试分析方法是按如下步骤进行:
步骤1、针对采用转子压缩机的制冷设备,以所述制冷设备中的控制器、蒸发器、冷凝器以及所述转子压缩机采用软管相连接共同组成转子压缩机的瞬态性能测试系统,如图1所示,采用软管是为了减弱配管等部件对转子压缩机的束缚作用,提高转子压缩机单体载荷测试准确度。本实施例中转子压缩机包括有压缩机本体1和储液桶2,排气口3位于压缩机本体1的顶部,回气口4位于储液桶2的顶部,如图2所示。
步骤2、通过控制器调整转子压缩机在启动工况下的冷凝器和蒸发器的温度和压力,使得所述排气口3和回气口4的压力与制冷设备整机运行负载等效工况下的排气口3和回气口4的压力相一致,制冷设备整机,是指采用实际的配管等部件装配的制冷设备;运行负载是指空调器的调节负荷;等效工况是指通过调整冷凝器和蒸发器的温度和压力,使该瞬态性能测试系统转子压缩机启动工况等效于制冷设备整机运行。
步骤3、分别取排气口3为测点A、取回气口4为测点B,并以测点A为坐标原点O,以过原点O的竖直方向为Z轴方向,以垂直于Z轴的平面为XOY平面,测点A和测点B的连线在XOY平面上的投影为X轴,Y轴垂直于XOZ平面,确立坐标系OXYZ。
步骤4、分别测定瞬态性能测试系统中转子压缩机启动工况下测点A和测点B在X、Y及Z方向上的位移时间历程曲线,比较所有振幅响应曲线上的峰值,所有振幅响应曲线一共有六条曲线,分别计算该六条曲线的峰值,然后将得到的六个峰值共同比较获得六个峰值中的最大峰值,记录最大峰值对应的时刻T,并记录T时刻测点A的X、Y和Z方向的振幅分别为ax1、ay1和az1,测点B的X、Y和Z方向的振幅分别为ax2、ay2和az2,构建位移矩阵W为:
W=[ax1 ay1 az1 ax2 ay2 az2]T    (1)
所述启动工况是指转子压缩机自启动时刻起达到转子压缩机进入稳定运行的工况;
步骤5、利用有限元分析的方法构建转子压缩机虚拟样机模型,按如下方法分析所述虚拟样机模型在脉冲激励载荷作用下的排气口3和回气口4的最大振幅响应:
第一,在转子压缩机加载点施加绕Z轴的力矩为1N·m和沿径向的力为1N的载荷;以单位毫秒为计算时间子步长,之所以采用毫秒是为了使所取时间子步长足够小,脉冲激励载荷的峰值对应的时刻为t,获得测点A和测点B在X、Y及Z方向的振幅响应曲线,比较所有振幅响应曲线的振幅峰值,所有位移时间历程曲线一共有六条曲线,分别计算该六条曲线的峰值,然后将得到的六个峰值共同进行比较获得最大振幅峰值,记录最大振幅峰值出现的时刻,与脉冲激励载荷峰值对应的时刻t作差,得到时间差Δt;对于转子压缩机加载点上施加的不同大小的脉冲激励载荷,所述时间差Δt为恒定值;
所述加载点是指转子压缩机的载荷作用点,取所述加载点为压缩机本体1/3高度处圆截面与压缩机轴线的交叉点;
第二,在转子压缩机加载点施加绕Z轴的力矩为1N·m的载荷,以单位毫秒为计算时间子步长,脉冲激励载荷的峰值时刻为(T-Δt),获得测点A和测点B在X、Y及Z方向的振幅响应曲线,记录测点A的X、Y和Z方向的振幅峰值分别为bx1、by1及bz1,测点B的X、Y和Z方向的振幅峰值分别为bx2、by2及bz2
第三,在转子压缩机加载点施加沿径向的力为1N的载荷,以单位毫秒为计算时间子步长,脉冲激励载荷对应的峰值时刻为(T-Δt),获得测点A和测点B在X、Y及Z方向的振幅响应曲线,记录测点A的X、Y和Z方向的振幅峰值分别为cx1、cy1及cz1,测点B的X、Y和Z方向的振幅峰值为cx2、cy2及cz2
第四,构建传递矩阵G为: G = b x 1 b y 1 b z 1 b x 2 b y 2 b z 2 c x 1 c y 1 c z 1 c x 2 c y 2 c z 2 T - - - ( 2 )
步骤6、利用式(3)计算获得启动工况下转子压缩机的转子施加给压缩机本体的的力矩M和力F,
[M F]T=G-1×W    (3)
本发明方法通过对启动工况下转子压缩机单体的振动测试分析,可以较为方便地确定配管在启动工况下转子压缩机激励载荷,有效预测配管在转子压缩机启动过程中的振动响应,为管路系统优化提供依据。

Claims (1)

1.一种制冷设备转子压缩机启动工况下载荷激励测试分析方法,其特征是按如下步骤进行:
步骤1、针对采用转子压缩机的制冷设备,以所述制冷设备中的控制器、蒸发器、冷凝器以及所述转子压缩机采用软管相连接共同组成转子压缩机的瞬态性能测试系统,所述转子压缩机包括有压缩机本体(1)和储液桶(2),排气口(3)位于压缩机本体(1)的顶部,回气口(4)位于储液桶(2)的顶部;
步骤2、通过所述控制器调整转子压缩机在启动工况下的冷凝器和蒸发器的温度和压力,使得所述排气口(3)和回气口(4)的压力与制冷设备整机运行负载等效工况下的排气口(3)和回气口(4)的压力相一致;
步骤3、分别取所述排气口(3)为测点A、取所述回气口(4)为测点B,并以测点A为坐标原点O,以过原点O的竖直方向为Z轴方向,以垂直于Z轴的平面为XOY平面,测点A和测点B的连线在XOY平面上的投影为X轴,Y轴垂直于XOZ平面,确立坐标系OXYZ;
步骤4、分别测定瞬态性能测试系统中转子压缩机启动工况下测点A和测点B在X、Y及Z方向上的振幅响应曲线,比较所有振幅响应曲线上的峰值,记录最大峰值对应的时刻T,并记录T时刻测点A的X、Y和Z方向的振幅分别为ax1、ay1和az1,测点B的X、Y和Z方向的振幅分别为ax2、ay2和az2,构建位移矩阵W为:
W=[ax1 ay1 az1 ax2 ay2 az2]T   (1)
所述启动工况是指转子压缩机自启动时刻起达到转子压缩机进入稳定运行的工况;
步骤5、利用有限元分析的方法构建转子压缩机虚拟样机模型,按如下方法分析所述虚拟样机模型在脉冲激励载荷作用下的排气口(3)和回气口(4)的最大振幅响应:
第一,在转子压缩机加载点施加绕Z轴的力矩为1N·m和沿径向的力为1N的载荷;以单位毫秒为计算时间子步长,脉冲激励载荷的峰值对应的时刻为t,获得测点A和测点B在X、Y及Z方向的振幅响应曲线,比较所有振幅响应曲线的振幅峰值,记录最大振幅峰值出现的时刻,与脉冲激励载荷峰值对应的时刻t作差,得到时间差Δt;对于转子压缩机加载点上施加的不同大小的脉冲激励载荷,所述时间差Δt为恒定值;
所述加载点是指转子压缩机的载荷作用点,取所述加载点为压缩机本体1/3高度处圆截面与压缩机轴线的交叉点;
第二,在转子压缩机加载点施加绕Z轴的力矩为1N·m的载荷,以单位毫秒为计算时间子步长,脉冲激励载荷的峰值时刻为(T-Δt),获得测点A和测点B在X、Y及Z方向的振幅响应曲线,记录测点A的X、Y和Z方向的振幅峰值分别为bx1、by1及bz1,测点B的X、Y和Z方向的振幅峰值分别为bx2、by2及bz2
第三,在转子压缩机加载点施加沿径向的力为1N的载荷,以单位毫秒为计算时间子步长,脉冲激励载荷对应的峰值时刻为(T-Δt),获得测点A和测点B在X、Y及Z方向的振幅响应曲线,记录测点A的X、Y和Z方向的振幅峰值分别为cx1、cy1及cz1,测点B的X、Y和Z方向的振幅峰值为cx2、cy2及cz2
第四,构建传递矩阵G为: G = b x 1 b y 1 b z 1 b x 2 b y 2 b z 2 c x 1 c y 1 c z 1 c x 2 c y 2 c z 2 T - - - ( 2 )
步骤6、利用式(3)计算获得启动工况下转子压缩机的转子施加给压缩机本体的的力矩M和力F,
[M F]T=G-1×W   (3)。
CN201510221163.7A 2015-05-04 2015-05-04 制冷设备转子压缩机启动工况下载荷激励测试分析方法 Active CN104791234B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510221163.7A CN104791234B (zh) 2015-05-04 2015-05-04 制冷设备转子压缩机启动工况下载荷激励测试分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510221163.7A CN104791234B (zh) 2015-05-04 2015-05-04 制冷设备转子压缩机启动工况下载荷激励测试分析方法

Publications (2)

Publication Number Publication Date
CN104791234A true CN104791234A (zh) 2015-07-22
CN104791234B CN104791234B (zh) 2016-10-26

Family

ID=53556312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510221163.7A Active CN104791234B (zh) 2015-05-04 2015-05-04 制冷设备转子压缩机启动工况下载荷激励测试分析方法

Country Status (1)

Country Link
CN (1) CN104791234B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106815446A (zh) * 2017-01-24 2017-06-09 合肥工业大学 时变工况下制冷设备转子压缩机载荷激励辨识方法
CN107402042A (zh) * 2016-05-20 2017-11-28 中国科学院理化技术研究所 压缩机参数测试方法及装置
CN108700060A (zh) * 2016-03-02 2018-10-23 贝斯特森斯有限公司 齿轮泵和用于监控齿轮泵的方法
CN108896258A (zh) * 2018-03-30 2018-11-27 四川长虹空调有限公司 一种变频压缩机振动载荷计算方法
CN109063246A (zh) * 2018-06-25 2018-12-21 四川长虹空调有限公司 变频压缩机配管振动评价方法
CN110245425A (zh) * 2019-06-17 2019-09-17 珠海格力电器股份有限公司 空调压缩机激励辨识方法以及计算机装置
CN112084693A (zh) * 2020-09-14 2020-12-15 合肥工业大学 一种循环对称结构中裂纹损伤的定量识别方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700060A (zh) * 2016-03-02 2018-10-23 贝斯特森斯有限公司 齿轮泵和用于监控齿轮泵的方法
CN107402042A (zh) * 2016-05-20 2017-11-28 中国科学院理化技术研究所 压缩机参数测试方法及装置
CN107402042B (zh) * 2016-05-20 2019-12-17 中国科学院理化技术研究所 压缩机参数测试方法及装置
CN106815446A (zh) * 2017-01-24 2017-06-09 合肥工业大学 时变工况下制冷设备转子压缩机载荷激励辨识方法
CN106815446B (zh) * 2017-01-24 2019-12-27 合肥工业大学 时变工况下制冷设备转子压缩机载荷激励辨识方法
CN108896258A (zh) * 2018-03-30 2018-11-27 四川长虹空调有限公司 一种变频压缩机振动载荷计算方法
CN109063246A (zh) * 2018-06-25 2018-12-21 四川长虹空调有限公司 变频压缩机配管振动评价方法
CN110245425A (zh) * 2019-06-17 2019-09-17 珠海格力电器股份有限公司 空调压缩机激励辨识方法以及计算机装置
CN110245425B (zh) * 2019-06-17 2020-10-23 珠海格力电器股份有限公司 空调压缩机激励辨识方法以及计算机装置
CN112084693A (zh) * 2020-09-14 2020-12-15 合肥工业大学 一种循环对称结构中裂纹损伤的定量识别方法
CN112084693B (zh) * 2020-09-14 2024-02-06 合肥工业大学 一种循环对称结构中裂纹损伤的定量识别方法

Also Published As

Publication number Publication date
CN104791234B (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN104791234A (zh) 制冷设备转子压缩机启动工况下载荷激励测试分析方法
WO2016197552A1 (zh) 基于模型识别与等效简化的高速平台运动参数自整定方法
CN103049670B (zh) 管道激励源识别及其振动响应预测方法
CN103712790B (zh) 一种研究钻柱动力学特性的实验设备
CN103712787B (zh) 压力循环寿命试验系统及方法
CN103558079A (zh) 基于并联机构驱动力闭环的多自由度加载方法
CN109766609B (zh) 一种卡箍-管路系统动力学建模的方法
JP2011002435A (ja) 風洞天秤較正装置
CN105115690B (zh) 一种隔振器多向阻抗矩阵及刚度测试试验装置和试验方法
CN102562568B (zh) 制冷设备用转子压缩机载荷测试分析方法
CN102759573B (zh) 基于频率变化的结构损伤定位与损伤程度的评估方法
CN103149002A (zh) 一种结合面法向动态特性参数测试装置及方法
CN104462862A (zh) 一种基于三次b样条尺度函数的机械结构动载荷识别方法
CN107064315A (zh) 基于小波分析的叶片裂纹位置及深度识别方法
CN204389102U (zh) 双力源叠加式多维力传感器校准装置
CN106769560B (zh) 一种基于振动的工字梁力学参数无损检测方法
CN102252792A (zh) 一种杆件绝对轴力测试方法
CN205404143U (zh) 一种包含环境场的液压系统元器件可靠性试验装置
CN107655691A (zh) 一种飞行器进气道喘振锤击波试验装置及方法
KR100997810B1 (ko) 진동파워를 이용한 구조물의 손상탐지방법
CN105369846A (zh) 一种装载机工作装置载荷测试系统
CN110287631B (zh) 一种l型管路卡箍系统建模的方法
CN103528777A (zh) 一种动力特性快速测定的随机激励方法
CN108896258B (zh) 一种变频压缩机振动载荷计算方法
CN105784396A (zh) 一种包含环境场的液压系统元器件可靠性试验装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant