CN104791200A - 一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法 - Google Patents

一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法 Download PDF

Info

Publication number
CN104791200A
CN104791200A CN201510138208.4A CN201510138208A CN104791200A CN 104791200 A CN104791200 A CN 104791200A CN 201510138208 A CN201510138208 A CN 201510138208A CN 104791200 A CN104791200 A CN 104791200A
Authority
CN
China
Prior art keywords
blade
braiding structure
fiber
stereo
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510138208.4A
Other languages
English (en)
Other versions
CN104791200B (zh
Inventor
朱波
王宝刚
曹伟伟
于宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Guangyuan new material technology Co.,Ltd.
Original Assignee
BEIJING QINDA YUANZHI NEW MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING QINDA YUANZHI NEW MATERIAL TECHNOLOGY Co Ltd filed Critical BEIJING QINDA YUANZHI NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201510138208.4A priority Critical patent/CN104791200B/zh
Publication of CN104791200A publication Critical patent/CN104791200A/zh
Application granted granted Critical
Publication of CN104791200B publication Critical patent/CN104791200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法,根据风电场工况设计风电叶片的主体模具;根据力学要求选择所需高性能纤维制备混杂纱线,利用混杂纤维纱线进行风电叶片纤维预制体的多部位组合立体编织,得到三维立体编织结构;在三维立体编织结构中嵌入光纤模块;对上述风电叶片三维立体编织结构进行混杂纤维厚度方向二次缝合强化处理,提高整体结构的强度;以热固性树脂胶液为基体,采用真空导入与热固化结合的工艺完成树脂的浸渍以及固化成型工序。多种三维立体编织结构、二次缝合技术以及光纤模块的嵌入,使风电叶片的强度得到加强,并且实现了智能化监控的目的。

Description

一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法
技术领域
本发明涉及一种风力发电用复合材料叶片及其制备方法,具体涉及一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法。
背景技术
随着世界性能源危机的日益加剧以及公众对于改善生态环境的呼声不断高涨,风力发电作为一种清洁的可再生能源在全球范围内迅猛发展。世界各国都在不断对风力发电机组的研发展开系统工作,不断推出新材料和技术。随着风力发电机装机容量的增加和叶片长度的增大,对叶片的制造技术和材料提出了更高的要求。不断发展的技术和市场开发使得风力发电从复合材料的边缘应用变成全球复合材料最广泛的应用之一。风力发电叶片是风力发电的核心技术,由于对叶片的外型、精度、表面粗糙度、强度和刚度的要求很高,因此复合材料叶片的制造技术成为制约风力发电快速发展的瓶颈。随着高级纤维三维立体编织技术的不断革新以及复合材料智能化和实时监控化的发展新方向的出现,这两项技术也开始在复合材料风电叶片的制备中开始应用。这两项技术在提高风电叶片强度、刚度等力学性能以及叶片自我实时监控性方面具有重要价值。
国内外有关复合材料风电叶片的应用方面有许多典型实例。首先是在大型化风电叶片方面的发展,Enercon公司的6MW、7MW风电机组已在德国和比利时的风电场成功运行,GE公司的7MW机组正在研发过程中,Vestas的6MW、10MW机组也在研制过程中,中国的5MW风电机组也正在研发设计中。我国风电企业在大型化风电组方面正在努力追赶全球步伐,风电叶片需要紧跟市场形势,大型化的风电叶片是未来发展的必然趋势。然后是智能化技术在复合材料叶片制造技术中的开拓应用。由于目前复合材料风电叶片机组的尺寸日益增大,在风电机组运行过程中,一旦出现叶片所承受外界载荷(温度、风俗、风载荷等)超过设计载荷、叶片主体产生裂纹、外界雷击等可能对叶片造成损伤的情况时,监控系统就会发出预警信号,以便对叶片进行及时的调整、维护和保养。其中Kirkldand公司和TPI Composites公司合作,大力发展碳纤维复合材料风电叶片,并将纤维混编设计和智能化技术应用于叶片生产中,证明其可行性。
鉴于目前大型化和智能化复合材料风电叶片的发展,以及对于风电叶片力学特性要求的不断提升,关注于目前我国国内大型风电叶片生产工艺仅停留在纤维缠绕层面上,基于国外进口的连续化大型三维立体编织设备,本发明采用混杂纤维三维立体编织技术制备大型复合材料风电叶片,在制备过程中创造性的运用多种三维结构组合编织技术,并在关键 部位的三维结构中嵌入光纤模块,使叶片具备智能自监控功能,并且达到嵌入模块与三维立体结构的无缝结合。
发明内容
本发明的目的是提供一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法,通过混杂纤维的多种三维结构组合编织技术和智能化光纤模块的无缝嵌入,以达到复合材料风电叶片的大型化、可灵活设计性以及智能化的功能。
为了解决以上技术问题,本发明的技术方案为:
一种智能化三维编织混杂纤维复合材料风电叶片,包括叶片主体、叶片加强部分以及光纤模块组件,其中,所述叶片加强部分设置于叶片主体的边缘处,所述光纤模块组件嵌合在叶片本体的内部;所述叶片主体包括三维立体编织结构、沿三维立体编织结构厚度方向的二次缝合结构以及浸渍固化在三维立体编织结构和二次缝合结构上的树脂层。
一种智能化三维编织混杂纤维复合材料风电叶片的制备方法,包括如下步骤:
(1)根据风电场工况设计风电叶片的主体模具,并根据力学特性要求确定光纤模块嵌入部位的具体排布方案;
(2)根据力学要求选择所需高性能纤维制备混杂纱线,利用混杂纤维纱线进行风电叶片纤维预制体的多部位组合立体编织,得到三维立体编织结构;在力学要求较高的特定部位采用针对性的纤维多向编织结构;
(3)在三维立体编织结构中嵌入光纤模块;光纤模块与三维立体编织结构之间采用纱线锁定牢固,做到无缝结合状态;所述的光纤模块在预制体结构中的嵌入,以实现叶片智能化监控要求。
(4)对上述风电叶片三维立体编织结构进行混杂纤维厚度方向二次缝合强化处理,提高整体结构的强度;
(5)以热固性树脂胶液为基体,采用真空导入与热固化结合的工艺完成树脂与三维立体编织结构和二次缝合结构的浸渍以及固化成型工序。
优选的,所述风电叶片的主体模具长度为1-15m,宽度为0.3-3m。
优选的,所述混杂纱线由碳纤维、芳纶纤维、超高分子量聚乙烯纤维、玄武岩纤维中的一种或几种制成。
优选的,所述三维立体编织结构的主体部分采用三维四向或三维五向编织结构,所述三维立体编织结构的边缘加强部分采用三维五向或三维六向编织结构,所述三维立体编织结构中嵌入光纤模块的部位采用三维六向或三维七向编织结构。
优选的,所述三维立体编织结构的主体部分混杂纱线由碳纤维和芳纶纤维制成,边缘 加强部分混杂纤维由碳纤维、玄武岩纤维与芳纶纤维三种制成,所述三维立体编织结构中嵌入光纤模块的部位混杂纱线由聚乙烯纤维与芳纶纤维两种制成。
优选的,所述三维立体编织结构的主体部分混杂纱线由碳纤维与超高分子量聚乙烯纤维制成,边缘加强部分混杂纤维由碳纤维与芳纶纤维两种制成,所述三维立体编织结构中嵌入光纤模块的部位混杂纱线由碳纤维与玄武岩纤维两种制成。
优选的,所述三维立体编织结构的主体部分混杂纱线由芳纶纤维、玄武岩纤维与碳纤维制成,所述三维立体编织结构的边缘加强部分混杂纤维由玄武岩纤维与芳纶纤维两种制成,所述三维立体编织结构中嵌入光纤模块的部位混杂纱线由碳纤维与芳纶纤维两种制成。
优选的,所述厚度方向二次缝合过程中所用的混杂纤维由碳纤维、芳纶纤维、超高分子量聚乙烯纤维以及玄武岩纤维中的一种或多种组合而成。
优选的,所述厚度方向整体缝合所用混杂纤维的重量为三维立体编织结构重量的5-40%。
优选的,所述步骤(5)中,真空导入的真空度为0.06-0.1MPa,所述热固化的温度为80-120℃,热固化时间为3-6小时。
优选的,浸渍树脂后的风电叶片的含胶量为30-60%。
优选的,所述真空度为0.08MPa,浸渍树脂后的风电叶片于80℃固化3小时后成型,含胶量为36%。
优选的,浸渍树脂后的风电叶片于80℃固化4小时后成型,含胶量为40%。
优选的,所述真空度为0.06MPa。浸渍树脂后的叶片于80℃固化5小时后成型,含胶量为35%。
本发明与现有复合材料风电叶片制备技术相比具有以下主要优点:
(1)摒弃传统的纤维缠绕工艺,采用三维立体编织技术制备大型风电叶片,所用的编织纤维为多种高性能纤维的组合,发挥各种纤维的综合特性,并且在编织过程中在不同部位采用多种三维立体编织结构组合,有效提高特定部位力学刚度和强度。
(2)在三维立体编织叶片预制体的过程中,在特定部位嵌入智能化光纤模块,并且做到三维立体结构与光纤模块的无缝结合,不存在界面力学性能差的问题,类似均质材料。实现复合材料三维立体编织风电叶片的智能化自我监控功能。
(3)采用混杂纤维二次缝合技术,对三维立体编织复合材料叶片预制体实现厚度方向的力学性能强化,通过混杂纤维的二次缝合消除层间强度薄弱的问题,进一步提高叶片结构完整性和光纤模块嵌入的稳定性。
附图说明
图1为本发明风电叶片的主体模具的结构示意图;
图2为本发明的三维立体编织结构示意图;
图3为本发明二次缝合结构示意图。
其中,1、叶片主体,2、叶片加强部分,3、光纤模块,4、三维立体编织结构的主体部分,5、三维立体编织结构的边缘加强部分,6、三维立体编织结构的嵌入光纤模块部位,7、二次缝合结构。
具体实施方式
下面结合附图对本发明实施例进行进一步说明。
实施例一
如图1所示,一种智能化三维编织混杂纤维复合材料风电叶片,包括叶片主体1、叶片加强部分2以及光纤模块3组件,其中,所述叶片加强部分2设置于叶片主体1的边缘处,所述光纤模块3组件嵌合在叶片本体1的内部。
如图2和图3所示,所述叶片主体1包括三维立体编织结构、沿三维立体编织结构厚度方向的二次缝合结构7以及浸渍固化在三维立体编织结构4和二次缝合结构7上的树脂层。三维立体编织结构包括三维立体编织结构的主体部分4,三维立体编织结构的边缘加强部分5,三维立体编织结构4中嵌合光纤模块部位为三维立体编织结构的嵌入光纤模块部位6。
基于图1中的芯模进行三维立体编织,其中叶片内部主体的编织方案为:三维立体编织结构4采用三维四向编织处理,纱线由碳纤维和芳纶纤维两种制成;三维立体编织结构的边缘加强部分5采用三维五向编织处理,叶片边缘编织纱线选用碳纤维、玄武岩纤维与芳纶纤维三种组合;三维立体编织结构的嵌入光纤模块部位6的位置嵌入光纤模块3,该部位采用三维六向编织结构,纱线选用超高分子量聚乙烯纤维与芳纶纤维两种混杂组合。整体三维编织后的风电叶片长度为10m,宽度为0.7m。将编织成型的预制体继续进行厚度方向的二次缝合处理,选用碳纤维与玄武岩纤维混杂作为增强纱线,缝合纤维比重占整体预制体纤维比重的20%,缝合结构示意图如图3所示。
三维立体编织结构预制体采用环氧树脂胶液为基体原材料,采用真空导入工艺使胶液充分浸渍以上叶片预制体,整个浸渍复合过程的真空度保持在0.08MPa。浸渍树脂后的叶片于80℃固化3小时后成型,含胶量保持在36%。
实施例二
基于图1中的芯模进行三维立体编织,其中叶片内部主体的编织方案为:三维立体编织结构的主体部分4采用三维五向编织处理,纱线选用碳纤维与超高分子量聚乙烯纤维两 种组合而成;三维立体编织结构的边缘加强部分5采用三维六向编织处理,叶片边缘编织纱线选用碳纤维与芳纶纤维两种组合;在叶片编织过程中三维立体编织结构的嵌入光纤模块部位6的位置嵌入光纤模块3,该部位采用三维六向编织结构,纱线选用碳纤维与芳纶纤维两种混杂组合。整体三维编织后的螺旋桨叶片长度为12m,宽度为0.8m。将编织成型的预制体继续进行厚度方向的二次缝合处理,选用碳纤维与玄武岩纤维混杂作为增强纱线,缝合纤维比重占整体预制体纤维比重的25%,缝合结构如图3所示。
三维编织后的混杂纤维叶片预制体采用环氧树脂胶液为基体原材料,采用真空导入工艺使胶液充分浸渍以上叶片预制体,整个浸渍复合过程的真空度保持在0.08MPa。浸渍树脂后的叶片于80℃固化4小时后成型,含胶量保持在40%。
实施例三
基于图1中的芯模进行三维立体编织,其中叶片内部主体的编织方案为:三维立体编织结构的主体部分4采用三维四向编织处理,纱线选用芳纶纤维、玄武岩纤维与碳纤维三种组合而成;三维立体编织结构的边缘加强部分5采用三维六向编织处理,叶片边缘编织纱线选用玄武岩纤维与芳纶纤维两种组合;在叶片编织过程中三维立体编织结构的嵌入光纤模块部位6的位置嵌入光纤模块3,该部位采用三维七向编织结构,纱线选用碳纤维与芳纶纤维两种混杂组合。整体三维编织后的螺旋桨叶片长度为8m,宽度为0.5m。将编织成型的预制体继续进行厚度方向的二次缝合处理,选用碳纤维与芳纶纤维混杂作为增强纱线,缝合纤维比重占整体预制体纤维比重的30%,缝合结构示意图如图3所示。
三维编织后的混杂纤维叶片预制体采用环氧树脂胶液为基体原材料,采用真空导入工艺使胶液充分浸渍以上叶片预制体,整个浸渍复合过程的真空度保持在0.06MPa。浸渍树脂后的叶片于80℃固化5小时后成型,含胶量保持在35%。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围内。

Claims (10)

1.一种智能化三维编织混杂纤维复合材料风电叶片,其特征在于:包括叶片主体、叶片加强部分以及光纤模块组件,其中,所述叶片加强部分设置于叶片主体的边缘处,所述光纤模块组件嵌合在叶片本体的内部;所述叶片主体包括三维立体编织结构、沿三维立体编织结构厚度方向的二次缝合结构以及浸渍固化在三维立体编织结构和二次缝合结构上的树脂层。
2.一种智能化三维编织混杂纤维复合材料风电叶片的制备方法,包括如下步骤:
(1)根据风电场工况设计风电叶片的主体模具,并根据力学特性要求确定光纤模块嵌入部位的具体排布方案;
(2)根据力学要求选择所需高性能纤维制备混杂纱线,利用混杂纤维纱线进行风电叶片纤维预制体的多部位组合立体编织,得到三维立体编织结构;
(3)在三维立体编织结构中嵌入光纤模块;光纤模块与三维立体编织结构之间采用纱线锁定牢固,做到无缝结合状态;
(4)对上述风电叶片三维立体编织结构进行混杂纤维厚度方向二次缝合强化处理,提高整体结构的强度;
(5)以热固性树脂胶液为基体,采用真空导入与热固化结合的工艺完成树脂与三维立体编织结构和二次缝合结构的浸渍以及固化成型工序。
3.根据权利要求2所述的制备方法,其特征在于:所述步骤(1)中,风电叶片的主体模具长度为1-15m,宽度为0.3-3m。
4.根据权利要求2所述的制备方法,其特征在于:所述步骤(2)中,混杂纱线由碳纤维、芳纶纤维、超高分子量聚乙烯纤维以及玄武岩纤维中的一种或几种制成。
5.根据权利要求2所述的制备方法,其特征在于:所述步骤(2)中,所述三维立体编织结构的主体部分采用三维四向或三维五向编织结构,所述三维立体编织结构的边缘加强部分采用三维五向或三维六向编织结构,所述三维立体编织结构中嵌入光纤模块的部位采用三维六向或三维七向编织结构。
6.根据权利要求2所述的制备方法,其特征在于:所述步骤(4)中,厚度方向二次缝合过程中所用的混杂纤维由碳纤维、芳纶纤维、超高分子量聚乙烯纤维以及玄武岩纤维中的一种或多种组合而成。
7.根据权利要求6所述的制备方法,其特征在于:所述步骤(4)中,厚度方向二次缝合所用混杂纤维的重量为三维立体编织结构重量的5-40%。
8.根据权利要求7所述的制备方法,其特征在于:所述步骤(5)中,真空导入的真空度为0.06-0.1MPa,所述热固化的温度为80-120℃,热固化时间为3-6小时。
9.根据权利要求8所述的制备方法,其特征在于:浸渍树脂后的风电叶片的含胶量为30-60%。
10.根据权利要求9所述的制备方法,其特征在于:所述真空度为0.08MPa,浸渍树脂后的风电叶片于80℃固化3小时后成型,含胶量为36%。
CN201510138208.4A 2015-03-26 2015-03-26 一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法 Active CN104791200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510138208.4A CN104791200B (zh) 2015-03-26 2015-03-26 一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510138208.4A CN104791200B (zh) 2015-03-26 2015-03-26 一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法

Publications (2)

Publication Number Publication Date
CN104791200A true CN104791200A (zh) 2015-07-22
CN104791200B CN104791200B (zh) 2018-05-25

Family

ID=53556283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510138208.4A Active CN104791200B (zh) 2015-03-26 2015-03-26 一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法

Country Status (1)

Country Link
CN (1) CN104791200B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134849A (zh) * 2015-08-13 2015-12-09 北京勤达远致新材料科技股份有限公司 一种三维编织复合材料汽车板簧及其制备方法
CN106523430A (zh) * 2015-09-11 2017-03-22 中航商用航空发动机有限责任公司 风扇叶片及其制备方法
CN106903948A (zh) * 2017-01-10 2017-06-30 山东大学 一种应变监控二维缠绕复合材料水下航行器壳体及其制备方法
CN107448453A (zh) * 2017-07-20 2017-12-08 山东大学 一种碳纤维复合材料支架
CN109870256A (zh) * 2019-03-08 2019-06-11 东莞理工学院 一种自监测dofs-frp布及其监测方法
CN112223777A (zh) * 2020-09-16 2021-01-15 江南大学 一种填充式轻质风电叶片的制备方法
CN112428596A (zh) * 2020-11-10 2021-03-02 西安工程大学 一种在旋转法三维编织平台上编织异型制品的加工方法
CN113119492A (zh) * 2021-04-13 2021-07-16 山东医学高等专科学校 一种船用螺旋桨叶纤维增强复合材料的制备方法
CN113799418A (zh) * 2021-08-23 2021-12-17 厦门大学 智能复合材料螺栓的制备方法、复合材料螺栓及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084377A1 (en) * 2003-10-20 2005-04-21 Snecma Moteurs Turbomachine blade, in particular a fan blade, and its method of manufacture
US20070078902A1 (en) * 2005-09-30 2007-04-05 Giovanni Buschi Method and system for the management of files and mail attachments
CN101334004A (zh) * 2007-06-25 2008-12-31 通用电气公司 使用局部化感测和控制降低紊流风场中的功率损耗
CN101387263A (zh) * 2008-10-24 2009-03-18 常州伯龙三维复合材料有限公司 采用间隔结构机织工艺制备的风力机叶片及其方法
WO2011035541A1 (en) * 2009-09-23 2011-03-31 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind turbine blade and its producing method
CN102797646A (zh) * 2012-09-11 2012-11-28 迪皮埃复材构件(太仓)有限公司 一种风力发电机叶片及其制造方法
CN204532712U (zh) * 2015-03-26 2015-08-05 北京勤达远致新材料科技股份有限公司 一种智能化三维编织混杂纤维复合材料风电叶片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084377A1 (en) * 2003-10-20 2005-04-21 Snecma Moteurs Turbomachine blade, in particular a fan blade, and its method of manufacture
US20070078902A1 (en) * 2005-09-30 2007-04-05 Giovanni Buschi Method and system for the management of files and mail attachments
CN101334004A (zh) * 2007-06-25 2008-12-31 通用电气公司 使用局部化感测和控制降低紊流风场中的功率损耗
CN101387263A (zh) * 2008-10-24 2009-03-18 常州伯龙三维复合材料有限公司 采用间隔结构机织工艺制备的风力机叶片及其方法
WO2011035541A1 (en) * 2009-09-23 2011-03-31 Suzhou Red Maple Wind Blade Mould Co., Ltd. Wind turbine blade and its producing method
CN102797646A (zh) * 2012-09-11 2012-11-28 迪皮埃复材构件(太仓)有限公司 一种风力发电机叶片及其制造方法
CN204532712U (zh) * 2015-03-26 2015-08-05 北京勤达远致新材料科技股份有限公司 一种智能化三维编织混杂纤维复合材料风电叶片

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134849A (zh) * 2015-08-13 2015-12-09 北京勤达远致新材料科技股份有限公司 一种三维编织复合材料汽车板簧及其制备方法
CN105134849B (zh) * 2015-08-13 2018-03-13 北京勤达远致新材料科技股份有限公司 一种三维编织复合材料汽车板簧及其制备方法
CN106523430A (zh) * 2015-09-11 2017-03-22 中航商用航空发动机有限责任公司 风扇叶片及其制备方法
CN106523430B (zh) * 2015-09-11 2019-07-09 中国航发商用航空发动机有限责任公司 风扇叶片及其制备方法
CN106903948A (zh) * 2017-01-10 2017-06-30 山东大学 一种应变监控二维缠绕复合材料水下航行器壳体及其制备方法
CN106903948B (zh) * 2017-01-10 2019-08-13 山东大学 一种应变监控二维缠绕复合材料水下航行器壳体及其制备方法
CN107448453A (zh) * 2017-07-20 2017-12-08 山东大学 一种碳纤维复合材料支架
CN109870256A (zh) * 2019-03-08 2019-06-11 东莞理工学院 一种自监测dofs-frp布及其监测方法
CN112223777A (zh) * 2020-09-16 2021-01-15 江南大学 一种填充式轻质风电叶片的制备方法
CN112428596A (zh) * 2020-11-10 2021-03-02 西安工程大学 一种在旋转法三维编织平台上编织异型制品的加工方法
CN113119492A (zh) * 2021-04-13 2021-07-16 山东医学高等专科学校 一种船用螺旋桨叶纤维增强复合材料的制备方法
CN113799418A (zh) * 2021-08-23 2021-12-17 厦门大学 智能复合材料螺栓的制备方法、复合材料螺栓及使用方法

Also Published As

Publication number Publication date
CN104791200B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
CN104791200A (zh) 一种智能化三维编织混杂纤维复合材料风电叶片及其制备方法
US7351040B2 (en) Methods of making wind turbine rotor blades
CN101293970B (zh) 风力发电机叶片用预浸料
AU2010201480B2 (en) Vertical manufacturing of composite wind turbine tower
CN105088510B (zh) 一种多轴向混编编织物的生产方法
CN103264510B (zh) 一种风机叶片根部预埋螺栓套成型方法
CN102797646A (zh) 一种风力发电机叶片及其制造方法
CN204527613U (zh) 一种飞机用三维编织复合材料螺旋桨叶片
CN204532712U (zh) 一种智能化三维编织混杂纤维复合材料风电叶片
CN108016055A (zh) 一种使用拉挤预制件制造叶片根部的方法
CN105464898B (zh) 一种风力涡轮的转子叶片结构及其制备方法
CN204644592U (zh) 一种混编双轴向编织布
CN204644591U (zh) 一种混编单轴向编织布
CN204728038U (zh) 一种混编三轴向编织布
CN108928010B (zh) 一种轻量化、具有减噪性的风力偏航制动器的制造工艺
CN110452496A (zh) 一种改性玻璃纤维增强树脂层合板及其制备方法
CN103909662B (zh) 一种采用拉挤工艺制造的风机叶片根部预埋螺栓套的方法
CN204753039U (zh) 一种混编多轴向编织布
CN102182648A (zh) 风力发电机及其叶片
CN201626074U (zh) 一种风电叶片用阳模及风电叶片用阴模
CN102689447A (zh) 导流罩整体制造方法
CN210974494U (zh) 一种改性玻璃纤维增强树脂层合板
CN103013055A (zh) 风机叶片材料
US20120219424A1 (en) Method for manufacture of an infused spar cap using a low viscosity matrix material
CN202091128U (zh) 风力发电机及其叶片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220322

Address after: 251100 Room 305, 3 / F, block a, Zhongguancun Science and Technology City, Qilu high tech Development Zone, Qihe County, Dezhou City, Shandong Province

Patentee after: Shandong Guangyuan new material technology Co.,Ltd.

Address before: 102200 No. 2222, building 2, No. 7, Chuangxin Road, science and Technology Park, Changping District, Beijing

Patentee before: BEIJING QINDA YUANZHI NEW MATERIAL TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right