CN104782900B - 低氮排放的后备奶牛日粮 - Google Patents

低氮排放的后备奶牛日粮 Download PDF

Info

Publication number
CN104782900B
CN104782900B CN201510178831.2A CN201510178831A CN104782900B CN 104782900 B CN104782900 B CN 104782900B CN 201510178831 A CN201510178831 A CN 201510178831A CN 104782900 B CN104782900 B CN 104782900B
Authority
CN
China
Prior art keywords
parts
standby
dairy cow
phosphorus
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510178831.2A
Other languages
English (en)
Other versions
CN104782900A (zh
Inventor
刘红云
张彬
王翀
刘建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510178831.2A priority Critical patent/CN104782900B/zh
Publication of CN104782900A publication Critical patent/CN104782900A/zh
Application granted granted Critical
Publication of CN104782900B publication Critical patent/CN104782900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及奶牛饲料领域,特别是一种低氮排放的后备奶牛日粮,该后备奶牛日粮由以下重量份(干物质)的组分组成:青贮玉米27~28份,羊草40~41份,玉米12~13份,大麦2~3份,豆粕6~7份,菜籽粕3~4份,DDGS:4~5份,无磷预混料2~3份。该后备奶牛日粮,既能够保证荷斯坦后备奶牛健康生长,又能减少日粮蛋白使用,从而降低后备奶牛粪、尿氮排放。

Description

低氮排放的后备奶牛日粮
技术领域
本发明涉及奶牛饲料领域,特别是一种低氮排放的后备奶牛日粮,具体地说是通过减少日粮蛋白浓度来降低后备奶牛粪、尿氮排放的日粮。
背景技术
随着我国奶业的快速发展,特别是随着奶牛集约化生产程度的提高,日粮蛋白含量往往过高,导致氮元素对环境的污染越来越严重。奶牛向环境中排泄的氮主要是尿氮和粪氮,排出体外的粪氮和尿氮通过不同的方式对环境产生影响。目前,国内关于奶牛蛋白质摄入量对氮排泄影响的研究主要集中在泌乳奶牛,而有关后备奶牛的研究相对较少。
华东地区六个规模化奶牛场(分别位于上海、扬州、杭州、嘉兴、金华、丽水)的调研结果显示,该地区后备奶牛日粮蛋白平均值为14.8%,日粮磷平均值为0.51%(以上均为干物质基础),均超出了NRC(2001)的推荐值。
发明内容
本发明要解决的技术问题是提供一种能够保证荷斯坦后备奶牛健康生长且能减少日粮蛋白使用、降低氮排放的日粮----低氮排放的后备奶牛日粮。
为解决上述技术问题,本发明提供一种低氮排放的后备奶牛日粮,该后备奶牛日粮由以下重量份(干物质)的组分组成:青贮玉米27~28份,羊草40~41份,玉米12~13份,大麦2~3份,豆粕6~7份,菜籽粕3~4份,DDGS(玉米酒精糟):4~5份,无磷预混料2~3份。
作为本发明的低氮排放的后备奶牛日粮的改进:每kg无磷预混料中含有维生素A216000~264000IU,维生素D 54000~66000IU,维生素E 1080~1320IU,锌2520~3360mg,硒18~24mg,碘32~43mg,钴6~10mg,锰540~720mg,铜540~720mg,烟酰胺360~440mg;其余为作为载体的沸石粉。
备注说明:以上所述均为单质含量,锌选用硫酸锌,硒选用亚硒酸钠,碘选用碘化钾,钴选用氯化钴,锰选用硫酸锰,铜选用硫酸铜。
作为本发明的低氮排放的后备奶牛日粮的进一步改进:该后备奶牛日粮由以下重量份(干物质)的组分组成:青贮玉米27.2份,羊草40.7份,玉米12.8份,大麦2.6份,豆粕6.4份,菜籽粕3.3份,DDGS:4.7份,无磷预混料2.3份。
作为本发明的低氮排放的后备奶牛日粮的进一步改进:每kg无磷预混料中含有维生素A240000IU,维生素D 60000IU,维生素E 1200IU,锌2940mg,硒21mg,碘38mg,钴8mg,锰630mg,铜630mg,烟酰胺400mg,其余为作为载体的沸石粉。
以上所述均为单质含量,所述无磷预混料过80目筛。所述锌选用硫酸锌,硒选用亚硒酸钠,碘选用碘化钾,钴选用氯化钴,锰选用硫酸锰,铜选用硫酸铜。
作为本发明的低氮排放的后备奶牛日粮的进一步改进:所述后备奶牛是指8至10月龄大小的荷斯坦奶牛。
在本发明中,除无磷预混料需自行配制外,其余组分均为市售产品。其制备方法为:将除无磷预混料以外的其余成分先打碎(过10目筛)后再均匀混合;再加入无磷预混料均匀混合。
经实验室检测,本发明的后备奶牛日粮的配方营养成分分析如下:粗蛋白11.9%(干物质),中性洗涤纤维58.6%,酸性洗涤纤维29.1%,钙含量0.8%,磷含量0.22%。
本发明具有如下优点和积极效果:
1、本发明的日粮,除了粗蛋白及磷含量之外,其余营养指标与常规荷斯坦奶牛日粮几乎相等,其中各项营养指标包括中性洗涤纤维、酸性洗涤纤维等均达到《中华人民共和国农业行业标准奶牛饲养标准》。
2、与饲喂蛋白浓度大于11.9%的日粮相比,使用本发明的日粮能够使8-10月龄的后备牛日增重超过800克/天,且不影响后备奶牛体尺指标,瘤胃发酵指标及血液生化指标,但可显著减少日粮蛋白使用量,降低氮的排放。
备注说明:日增重超过800克/天是为了满足奶牛在24月龄时体重能达到570kg,这是奶牛第一次分娩时的体重要求。
3、而饲喂蛋白浓度小于11.9%的日粮,则不能完全满足日增重达800克/天的要求。
具体实施方式
以下是本发明的具体实施例:这个实施例可以对本发明作进一步的补充和说明,但本发明并不限于这些实施例。
实施例1、一种低蛋白浓度日粮,其组分和重量列于表1。
表1饲料组分及其重量(单位:%干物质)
预混料(无磷):每千克无磷预混料中含有维生素A 240000IU,维生素D 60000IU,维生素E 1200IU,锌2940mg,硒21mg,碘38mg,钴8mg,锰630mg,铜630mg,烟酰胺400mg,其余为载体沸石粉。以上所述均为单质含量,所述预混料过80目筛。所述锌选用硫酸锌,硒选用亚硒酸钠,碘选用碘化钾,钴选用氯化钴,锰选用硫酸锰,铜选用硫酸铜。
经检测,该低蛋白浓度日粮中:粗蛋白11.9%,中性洗涤纤维58.6%,酸性洗涤纤维29.1%,钙含量0.8%,磷含量0.22%。
动物试验:试验动物为健康的8至10月龄荷斯坦后备奶牛12头,饲喂实施例1的日粮,试验牛采用栓系式饲养,自由饮水,每日饲喂3次,分别在06:30,14:00,20:30。试验期为9周(预饲期一周,正试期八周)。日粮干物质饲喂量按体重的2.45%每周调整一次。每周测定一次干物质采食量并采集饲料样;正试期第1、4、8周,全群尾静脉采血收集血清;第7周收集全粪全尿;第8周采集瘤胃液,以上样品经处理后保存于负20摄氏度冰箱中,留待实验室分析。饲料、粪尿成分检测方法依据《饲料分析及饲料质量检测技术》(张丽英编,中国农业大学出版社),血液生化指标使用日立7020型全自动生化仪进行分析,试剂盒由宁波美康生物科技有限公司提供。使用SPSS20.0对数据进行统计分析。结果如表3~表7所述。
在发明过程中,发明人还使用过如对比例1~对比例3所述的后备奶牛日粮,各对比例的营养组分和重量列于表2。
表2饲料组分及其重量(单位:%干物质)
经分析,对比例1的粗蛋白含量为8.3%(干物质)、对比例2的粗蛋白含量为10.2%(干物质)、的粗蛋白含量为13.5%(干物质)。
对比实验:将上述所有对比例所得的样品按照上述实验所述方法进行检测,所得试验结果如下表3~表7所示。
表3初始日龄、日增重及干物质采食量
实施例1 对比例1 对比例2 对比例3 SEM P值
初始日龄,d 272.9 272.9 273.1 273.2 6.15 1.00
初始计算体重,kg 227.5 243.7 240.7 239.4 8.72 0.57
日增重,g/d 867ab 629c 750bc 970a 58.6 <0.01
干物质采食量,kg/d 6.31b 6.28b 6.31b 6.39a 0.28 <0.01
注:P值小于0.05表示差异显著,含不同字母肩标间表示差异显著,下同。
表4体尺指标
实施例1 对比例1 对比例2 对比例3 SEM P值
体长,cm
初始 110.2 113.0 114.2 113.2 1.84 0.18
结束 115.4 117.0 118.2 118.7 1.81 0.28
变化量 5.17 4.02 4.04 5.50 0.71 0.09
体高,cm
初始 129.4 130.2 126.2 128 2.65 0.45
结束 138.5 136.4 134.9 138.8 2.47 0.35
变化量 9.08ab 6.17b 8.75ab 10.8a 1.61 0.05
胸围,cm
初始 143.2 145.7 145.4 146 2.51 0.68
结束 151.2 150.9 151.9 153.8 2.54 0.68
变化量 7.92 5.17 6.50 7.75 1.10 0.06
前乳头长,cm
初始 2.01b 2.28ab 2.52a 2.07b 0.17 0.02
结束 2.47ab 2.25b 2.84a 2.51ab 0.16 0.01
变化量 0.46a 0b 0.32ab 0.45a 0.14 <0.01
后乳头长,cm
初始 1.65b 1.93ab 2.09a 1.68b 0.15 0.01
结束 2.05 1.95 2.33 2.24 0.15 0.07
变化量 0.41a 0.02b 0.25ab 0.56a 0.12 <0.01
表5血液生化指标
表6瘤胃发酵指标
实施例1 对比例1 对比例2 对比例3 SEM P值
pH 6.60 6.60 6.63 6.61 0.93 0.98
铵态氮,mg/dL 2.3ac 0.6b 1.2bc 3.4a 0.47 <0.01
微生物蛋白,mg/ml 3.15a 0.72b 3.10a 2.66a 0.57 <0.01
挥发性脂肪酸
乙酸,mmol/L 62.3 64.0 60.8 63.0 4.02 0.88
丙酸,mmol/L 12.4 15.3 15.0 13.4 2.77 0.70
丁酸,mmol/L 8.6 10.1 9.3 8.7 0.58 0.08
乙丙比 5.01 4.59 4.25 4.72 0.52 0.54
表7氮的摄入与排放
实施例1 对比例1 对比例2 对比例3 SEM P值
氮摄入,g/d 127.2b 90.0d 111.3c 150.8a 2.23 <0.01
粪氮,g/d 42.4b 45.7a 40.7b 42.9ab 1.07 0.02
尿总氮,g/d 45.1a 16.8c 30.8b 50.0a 3.24 <0.01
尿尿素氮,g/d 15.1ab 3.6c 11.0b 19.1a 1.97 <0.01
由表3可知,实施例和3个对比例之间日龄、体重等均无显著差异,对比例3的采食量虽然在统计上和其他组有显著差异,但数值上较为接近;而日增重超过800克/天的只有实施例1和对比例3,但对比例3的日增重接近1000克/天,按照报道,日增重超过1000g/d会导致牛脂肪沉积过多,对后期泌乳性能产生不利影响。从表4的体尺指标分析中可以看出,对比例1的日粮会明显影响后备牛生长,尤其是乳腺的发育;而实施例1在统计上和对比例3无显著差异,且在数值上接近对比例3。而从表5中可以看出,各试验组血磷浓度均无显著差异,且都在NRC(2001)推荐的标准范围内;而血尿素氮浓度随日粮蛋白浓度的增加而升高。由表6可知,各试验组的pH及挥发性脂肪酸值均无显著差异,但铵态氮浓度随日粮蛋白浓度的增加而递增,而微生物蛋白浓度以实施例1为最高。三个处理组之间粪氮排放量数值上相近,但尿总氮及尿尿素氮排放量差异较大,说明日粮中不能被机体利用的蛋白主要通过尿氮排放。因此,本发明的日粮蛋白浓度为11.9%时,即可满足后备牛日增重大于800克/天的要求,蛋白含量过高则可能会导致牛过于肥胖,且消耗大量蛋白类饲料资源,导致更多未被利用的氮排放到环境中;而蛋白浓度过低,则会导致日增重不能达到800克/天,严重的会直接影响牛正常的生长发育。综上所述,本发明的后备奶牛日粮的日粮蛋白浓度为11.9%时,即可使8~10月龄后备牛日增重超过800克/天且此时氮的排放量最少。
最后,需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (3)

1.低氮排放的后备奶牛日粮,其特征是:该后备奶牛日粮由以下重量份(干物质)的组分组成:青贮玉米27~28份,羊草40~41份,玉米12~13份,大麦2~3份,豆粕6~7份,菜籽粕3~4份,DDGS:4~5份,无磷预混料2~3份;
每kg无磷预混料中含有维生素A 216000~264000IU,维生素D 54000~66000IU,维生素E 1080~1320IU,锌2520~3360mg,硒18~24mg,碘32~43mg,钴6~10mg,锰540~720mg,铜540~720mg,烟酰胺360~440mg;其余为作为载体的沸石粉;
所述后备奶牛是指8至10月龄大小的荷斯坦奶牛。
2.根据权利要求1所述的低氮排放的后备奶牛日粮,其特征是:所述后备奶牛日粮由以下重量份(干物质)的组分组成:青贮玉米27.2份,羊草40.7份,玉米12.8份,大麦2.6份,豆粕6.4份,菜籽粕3.3份,DDGS:4.7份,无磷预混料2.3份。
3.根据权利要求2所述的低氮排放的后备奶牛日粮,其特征是:
每kg无磷预混料中含有维生素A 240000IU,维生素D 60000IU,维生素E 1200IU,锌2940mg,硒21mg,碘38mg,钴8mg,锰630mg,铜630mg,烟酰胺400mg,其余为作为载体的沸石粉。
CN201510178831.2A 2015-04-15 2015-04-15 低氮排放的后备奶牛日粮 Active CN104782900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510178831.2A CN104782900B (zh) 2015-04-15 2015-04-15 低氮排放的后备奶牛日粮

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510178831.2A CN104782900B (zh) 2015-04-15 2015-04-15 低氮排放的后备奶牛日粮

Publications (2)

Publication Number Publication Date
CN104782900A CN104782900A (zh) 2015-07-22
CN104782900B true CN104782900B (zh) 2017-12-15

Family

ID=53548453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510178831.2A Active CN104782900B (zh) 2015-04-15 2015-04-15 低氮排放的后备奶牛日粮

Country Status (1)

Country Link
CN (1) CN104782900B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109619295A (zh) * 2019-01-28 2019-04-16 天津市畜牧兽医研究所 一种荷斯坦种公牛专用颗粒精料及应用
CN109619296A (zh) * 2019-01-28 2019-04-16 天津市畜牧兽医研究所 专用颗粒精料在促进荷斯坦种公犊生长发育方面的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283967A (zh) * 2013-06-01 2013-09-11 西北农林科技大学 一种新型反刍动物饲料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4262399A (en) * 1998-05-14 1999-11-29 Dsm N.V. Use of protein cross-linking enzymes in ruminant feed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283967A (zh) * 2013-06-01 2013-09-11 西北农林科技大学 一种新型反刍动物饲料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日粮蛋白能量比对8-10月龄后备奶牛生长性能和养分消化的影响;张卫兵等;《中国农业科学》;20100630;第43卷(第12期);摘要、第1.2小节、表1、第3.3小节、表5、第4节 *
降低奶牛氮排放的营养调控措施;付春丽等;《家畜生态学报》;20120731;第33卷(第4期);第96-101页 *

Also Published As

Publication number Publication date
CN104782900A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
Wachirapakorn et al. Effect of ground corn cobs as a fiber source in total mixed ration on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows
Wanapat et al. Effects of alternative protein sources on rumen microbes and productivity of dairy cows
Chanjula et al. Effect of feeding rubber seed kernel and palm kernel cake in combination on nutrient utilization, rumen fermentation characteristics, and microbial populations in goats fed on Briachiaria humidicola hay-based diets
Samanta et al. Effect of complete feed block on nutrient utilisation and rumen fermentation in Barbari goats
Li et al. Effects of replacing alfalfa hay with Moringa oleifera leaves and peduncles on intake, digestibility, and rumen fermentation in dairy cows
Seo et al. Effects of synchronization of carbohydrate and protein supply on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers
Wang et al. Effects of methionine hydroxy copper supplementation on lactation performance, nutrient digestibility, and blood biochemical parameters in lactating cows
Jelali et al. Daily and alternate day supplementation of Moringa oleifera leaf meal or soyabean meal to lambs receiving oat hay
Piao et al. Effects of synchronization of carbohydrate and protein supply in total mixed ration with Korean rice wine residue on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers
Zou et al. Substituting oat hay or maize silage for portion of alfalfa hay affects growth performance, ruminal fermentation, and nutrient digestibility of weaned calves
Mohamed et al. Feed intake, digestibility, rumen fermentation and growth performance of camels fed diets supplemented with a yeast culture or zinc bacitracin
Wahyuni et al. Effects of enzyme levels in total mixed ration containing oil palm frond silage on intake, rumen fermentation, and growth performance of male goat.
Ghizzi et al. Partial replacement of corn silage with soybean silage on nutrient digestibility, ruminal fermentation, and milk fatty acid profile of dairy cows
CN104782900B (zh) 低氮排放的后备奶牛日粮
Ravari et al. Cactus-alfalfa blend silage as an alternative feedstuff for Saanen dairy goats: Effect on feed intake, milk yield and components, blood and rumen parameters
Da Silva et al. Stylosanthes silage as an alternative to reduce the protein concentrate in diets for finishing beef cattle
Chhay et al. Effect of Taro (Colocasia esculenta) leaf+ stem silage and mulberry leaf silage on digestibility and N retention of growing pigs fed a basal diet of rice bran
de Vasconcelos et al. Replacement of corn by cassava dregs in lambs’ diet
Kazemi et al. Effects of sodium and calcium bentonite on growth performance and rumen ammonia in Holstein bulls
Ondiek et al. Performance of growing Small East African Goats offered Rhodes grass hay and supplemented with a 1: 1 mixture of Maerua angolensis: Zizyphus mucronata leaf browses
CN104642793B (zh) 低磷排放的后备奶牛饲料
Abo Bakr et al. Utilization of Trimming Waste of Mandarin Trees as Feed for Small Ruminants: 3. Evaluation of Growth Performance and Carcass Traits for Barki Lambs
Shaani et al. Effect of wheat hay particle size and replacement of wheat hay with wheat silage on rumen pH, rumination and digestibility in ruminally cannulated non-lactating cows
Hang et al. Ileal and total tract digestibility in growing pigs fed ensiled taro leaves as partial replacement of fish meal, maize and rice bran
Li et al. Effects of replacing alfalfa hay with malt sprouts and corn stover on milk production and nitrogen partitioning in dairy cows

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant