CN104778349A - 一种用于水稻表土氮肥施用等级评定方法 - Google Patents

一种用于水稻表土氮肥施用等级评定方法 Download PDF

Info

Publication number
CN104778349A
CN104778349A CN201510135919.6A CN201510135919A CN104778349A CN 104778349 A CN104778349 A CN 104778349A CN 201510135919 A CN201510135919 A CN 201510135919A CN 104778349 A CN104778349 A CN 104778349A
Authority
CN
China
Prior art keywords
soil
paddy rice
sample
rice table
nitrogen application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510135919.6A
Other languages
English (en)
Other versions
CN104778349B (zh
Inventor
李硕
史舟
王乾龙
周银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510135919.6A priority Critical patent/CN104778349B/zh
Publication of CN104778349A publication Critical patent/CN104778349A/zh
Application granted granted Critical
Publication of CN104778349B publication Critical patent/CN104778349B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种用于水稻表土氮肥施用等级评定方法。采用光纤式高光谱仪测定多个水稻表土可见-近红外漫反射光谱数据,同时采集多个表土进行土壤全氮含量的化学测试;根据每个水稻表土土样的全氮含量计算该样本的氮肥施用等级;确定支持向量机的核函数与训练方式,将每个土样的光谱数据及对应的氮肥施用等级数据作为输入数据,输入支持向量机模型中;再采集多个待测水稻表土土样可见-近红外漫反射光谱数据,输入已经训练好的支持向量机模型判别类比,通过支持向量机模型判定后,计算并输出每个待测样本的氮肥施用等级。本发明指导水稻田合理施用氮肥,不仅体现在氮肥的合理施用,还对水稻田生态环境以及整体自然环境生态体系的有效保护。

Description

一种用于水稻表土氮肥施用等级评定方法
技术领域
本发明涉及土壤属性高光谱预测方法,具体涉及一种用于水稻表土氮肥施用等级评定方法。
背景技术
土壤氮肥是土壤肥力三要素的重要组成部分,是影响作物生长发育的重要营养元素,其浓度含量将影响农作物的产量和品质。在农田中科学管理氮肥施用能够使作物有效利用肥料,减少因过量施肥引起的环境污染、土壤质量下降等问题,其关键技术问题是在施肥前提前测定该农田土壤中已有氮肥含量,确定氮肥施用等级。
传统测土配方施肥技术测定表层土壤氮肥施用量存在费用高、耗时久等不足。利用可见-近红外光谱分析技术快速检测土壤属性信息已经成为一种可靠有效的技术手段,并且具有环保、不破坏、田间实地分析、多种属性同时检测等优点而被广泛应用。而目前光谱技术大都用于土壤氮的定量估计,尚未有研究进行过氮肥施用等级的判定。因此,十分有必要建立一种快速评定水稻表土氮肥施用等级的方法,弥补传统测土配方施肥技术的不足。
发明内容
针对上述背景技术的不足,本发明的目的在于提供一种用于水稻表土氮肥施用等级评定方法,利用已经训练好的支持向量模型机判别类比,将采集到的待检测水稻表土土样可见-近红外光谱数据输入,可以快速得出氮肥施用等级,指导水稻田合理施用氮肥。
本发明采用的技术方案的步骤如下:
步骤1)采用光纤式高光谱仪测定多个水稻表土可见-近红外漫反射光谱数据,同时采集多个水稻表土进行土壤全氮含量的化学测试;
步骤2)根据每个水稻表土土样的全氮含量计算该样本的氮肥施用等级;
步骤3)确定支持向量机的核函数与训练方式,将每个水稻表土土样的光谱数据及对应的氮肥施用等级数据作为输入数据,即训练数据,输入支持向量机模型中;
步骤4)根据步骤1)再采集多个待测水稻表土土样可见-近红外漫反射光谱数据并进行预处理,输入已经训练好的支持向量机模型判别类比,通过支持向量机模型判定后,计算并输出每个待测样本的氮肥施用等级。
所述步骤1)的具体过程为:
步骤(1.1)采集多个水稻表土土样的光谱数据;
步骤(1.2)用化学方法分析所采集多个水稻表土土样的全氮含量;
步骤(1.3)对所述光谱数据进行预处理。
所述步骤(1.2)中,所述用化学方法分析是用半微量开氏法测定。
步骤(1.3)中,所述光谱数据进行预处理的方法为基于最小二乘的Savitzky–Golay经典平滑滤波与一阶微分变换相结合的方法。
所述步骤3)的具体过程为:
步骤(3.1)设已知训练集T={(x1,y1),…,(xn,yn)}∈(X×Y)n,其中xi∈X=Rn,R为实数,n为参与模型训练的样本数,yi∈Y={1,2,3,4,5,6},i=1,…,n;X为可见-近红外光谱矩阵,xi为第i个土样的可见-近红外光谱数据,Y为步骤2)中计算得到的氮肥施用等级矩阵,yi为第i个土样的具体氮肥施用等级;
步骤(3.2)选择核函数K(xi,xj)和惩罚参数为常数C,a为系数参数,ai、aj分别为第i、j个土样的系数参数,构造并求解最优化问题
min a 1 2 Σ i = 1 n Σ j = 1 n y i y j a i a j K ( x i , x j ) - Σ j = 1 n a j
Σ i = 1 n y i a i = 0,0 ≤ a i ≤ C , i = 1,2 , · · · , n
得最优解 a * = ( a 1 * , · · · a n * ) T
步骤(3.3)选择a*的一个小于C的正分量并据此计算
b * = y i - Σ i = 1 n y i a j * K ( x i , x j )
核函数取径向基函数: K ( x i , x j ) = exp ( | x i - x j | 2 σ 2 ) .
所述步骤4)的具体过程为:
将采集到的多个待测水稻表土土样的可见-近红外光谱数据进行预处理,预处理方法如步骤(1.3),然后输入到决策函数中,决策函数计算得到待测水稻表土土样氮肥施用等级。
本发明具有的有益效果是:
本发明与传统化学分析水稻表土氮肥施用等级方法相比,具有快速,廉价高效,不污染环境等显著优点,无论在大规模水稻种植区,还是在农户小范围稻田中均可使用。本发明指导水稻田合理施用氮肥,其显著效益不仅体现在氮肥的合理施用,更体现在对水稻田生态环境以及整体自然环境生态体系的有效保护。本发明为精准农业中水稻表土氮肥施用等级信息快速检测设备的研制提供技术支持。
附图说明
图1是本发明的流程图。
具体实施方式
以下结合附图和实施例对本发明作进一步的说明。
如图1所示,本发明包括以下步骤:
步骤1)采用光纤式高光谱仪测定多个水稻表土可见-近红外漫反射光谱数据,同时采集多个水稻表土进行土壤全氮含量的化学测试;
步骤2)根据每个水稻表土土样的全氮含量计算该样本的氮肥施用等级;
步骤3)确定支持向量机的核函数与训练方式,将每个水稻表土土样的光谱数据及对应的氮肥施用等级数据作为输入数据,即训练数据,输入支持向量机模型中;
步骤4)根据步骤1)再采集多个待测水稻表土土样可见-近红外漫反射光谱数据并进行预处理,输入已经训练好的支持向量机模型判别类比,通过支持向量机模型判定后,计算并输出每个待测样本的氮肥施用等级。
步骤1)中,所述的采用光纤式高光谱仪测定多个水稻表土可见-近红外漫反射光谱数据,同时采集多个水稻表土进行土壤全氮含量的化学测试的具体步骤如下:
步骤(1.1)采集实验区多个水稻表土土样的光谱数据;
采集来自浙江、福建、黑龙江、吉林、江西、湖北、湖南、广西、四川、新疆10个省份的水稻表土土样2072个;随机选取其中518个土样作为多个待测水稻表土土样,剩余1554样本作为建模样本。所有水稻表土采集深度为水稻田表层土壤0–20cm,风干、研磨后过直径2mm筛。本实施方式采用美国ASD公司FieldSpec 4型光谱仪,配备一个50W卤素灯作光源,一根25°视场角的光纤探头。该仪器由3个传感器组成,分别为UV–VNIR(350–1100nm),SWIR1(1000–1800nm)和SWIR2(1700–2500nm)。其波长范围涵盖350-2500nm,采样间隔为1.4nm(350–1000nm)和2nm(1000–2500nm),重采样间隔至1nm,共2150个波段。光谱测量在一个能控制光照条件的暗室内进行。光源是功率为50w的卤素灯,卤素灯距水稻表土土样表面70cm,天顶角30°。待测水稻表土土样分别放置在直径10cm、深1.5cm的盛样器皿内,土样表面刮平。传感器探头位于水稻表土土样表面垂直上方15cm处。采用25°视场角探头,探头接受水稻表土光谱的区域为直径6.7cm的圆,远小于盛样器皿面积,保证探头接收的均为水稻表土的反射光谱。测试之前先进行白板校正。每个土样采集10条光谱曲线,将采集到每个土样10条光谱曲线进行算术平均计算后,得到该土样的实际反射光谱数据。
将采集到的可见-近红外光谱数据按照不同省份分类存储,每个土样的光谱曲线去除噪声较大的边缘波段350–399nm和2401–2500nm波段。
步骤(1.2)用化学方法分析所采集多个水稻表土土样的全氮含量;
本实施方式采用半微量开氏法测得实验区域各地2072个水稻表土土样的全氮含量,其中518个水稻表土土样作为待测样本,其化学方法测得的全氮含量作为模型精度评定的参照数据,测定结果如下表所示。
表1实验区域水稻表土土样全氮含量统计
步骤(1.3)对所述光谱数据进行预处理;
步骤(1.3.1)用基于最小二乘的Savitzky–Golay经典平滑滤波去除光谱噪声;
基于最小二乘的Savitzky–Golay经典平滑滤波方法使用简化的最小二乘拟合卷积方法。假设光谱曲线为t次多项式,其中t为自然数,其公式为:
Y=a0+a1i+a2i2+a3i3+...+atit
其中Y表示原始光谱数据值,a0、a1、a2、a3、ai为多项式系数,i表示光谱波长,t为自然数。
基于最小二乘的Savitzky–Golay经典平滑滤波方法的推导过程中,最后简化的一般最小二乘卷积方程为:
Y j = Σ i = - m m C i y i + j N
其中,Ci是窗口平滑时第i个光谱值系数,N是卷积中点值个数,y是原始光谱数据值,Y是平滑后的光谱数据值,N=2m+1为平滑窗口大小,对处于光谱两端的2m个(开始m个和最后m个)点,利用公式计算其平滑值。(i,j)为平滑窗口坐标值。
步骤(1.3.2)用一阶微分变换突出水稻表土全氮组分在可见-近红外光谱上的吸收特征;
一阶微分变换的方程式为:
ρ ′ ( λ i ) = dρ ( λ ) dλ = ρ ( λ i + 1 ) - ρ ( λ i - 1 ) 2 Δλ
式中,λi是波长值,ρ′(λi)是λi处的一阶微分光谱数据,ρ(λ)是λi处的原始光谱数据,λ是范围内的所有波长值,λi=(λi-1i+1)/2,Δλ=λi+1i-1
步骤2)中,所述的根据每个土样的全氮含量计算该样本的氮肥施用等级;
本实施方式采用公式
Nf=(Nc×Yg-Nm×Ms)/Ef
进行计算。其中Nf是每公顷氮肥所需施用量,单位为(kg/ha);Nc是水稻产出100kg所需氮肥施用量,单位为(kg/100kg);Yg是每公顷产出水稻量目标,单位为(kg/ha);Nm是单位面积水稻土中测得的全氮含量,单位为(mg/kg-1);Ms是每公顷表层水稻土含量,单位为(kg/ha);Ef是氮肥利用率。水稻表土氮肥施用等级计算结果如表2所示。
表2步骤(1.2)测得的全氮含量Nt(g/kg)统计描述及每公顷氮肥所需施用量(kg/ha)
步骤3)中,所述的确定支持向量机的核函数与训练方式,将每个样本的光谱及对应的氮肥施用等级数据作为输入数据,即训练数据,输入支持向量机中的具体步骤如下:
①「设已知训练集T={(x1,y1),…,(xn,yn)}∈(X×Y)n,其中xi∈X=Rn,R为实数,n为参与模型训练的样本数,yi∈Y={1,2,3,4,5,6},i=1,…,n;X为可见-近红外光谱矩阵,xi为第i个土样的可见-近红外光谱数据,Y为步骤2)中计算得到的氮肥施用等级矩阵,yi为第i个土样的具体氮肥施用等级;
②选择核函数K(xi,xj)和惩罚参数为常数C,a为系数参数,ai、aj分别为第i、j个土样的系数参数,构造并求解最优化问题
min a 1 2 Σ i = 1 n Σ j = 1 n y i y j a i a j K ( x i , x j ) - Σ j = 1 n a j
Σ i = 1 n y i a i = 0,0 ≤ a i ≤ C , i = 1,2 , · · · , n
得最优解 a * = ( a 1 * , · · · a n * ) T
步骤(3.3)选择a*的一个小于C的正分量并据此计算
b * = y i - Σ i = 1 n y i a j * K ( x i , x j )
核函数取径向基函数: K ( x i , x j ) = exp ( | x i - x j | 2 σ 2 ) .
步骤(3.4)求得决策函数 f ( x ) = sgn ( Σ i = 1 n y i a j * K ( x i , x ) + b * )
步骤4)中,所述的根据步骤1)再采集多个待测水稻表土土样可见-近红外漫反射光谱数据并进行预处理,输入已经训练好的支持向量机模型判别类比,通过支持向量机模型判定后,计算并输出每个待测样本的氮肥施用等级的具体步骤如下:
将采集到的待测水稻表土土样的可见-近红外光谱数据进行预处理,预处理方法如步骤(1.3),然后输入到决策函数中,计算得到待测土样氮肥施用等级。
同时将水稻表土光谱-全氮数据经预处理和一阶微分变换后,所有数据直接进行偏最小二乘回归建模,预测待检测样本水稻表土全氮含量,再带入步骤2)中氮肥施用等级公式计算其对应的氮肥施用等级,从而进行精度评定,与上述支持向量机判别类比模型进行对比。
精度评定方法选用混淆矩阵精度验证法,通过卡帕系数反映模型的氮肥施放等级评定精度,评定结果如下表所示。
表3混淆矩阵精度验证
本发明选用的支持向量机模型判别类比能够借助已知样本数据训练模型算得最优参数,快速直接计算出待测水稻表土土样的氮肥施用等级,简便易用。由表3的对比发现,该模型比偏最小二乘模型精度显著提高,无需全氮含量与氮肥施用等级间的进一步转换。
本实施方式基于基于支持向量机判别类比模型,利用已知水稻表土可见-近红外光谱全氮数据分析水稻表土氮肥施用等级,快速评定,成本低廉,特别适用于指导水稻田合理施用氮肥。与传统化学分析方法相比,本发明既能够满足大规模水稻田耕作,又适用于农户小范围种植施肥,并且完全满足自然生态环境保护的严格要求。本发明为精准农业中水稻表土氮肥施用等级信息快速检测设备的研制提供技术支持。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (6)

1.一种用于水稻表土氮肥施用等级评定方法,其特征在于,该方法的步骤如下:
步骤1)采用光纤式高光谱仪测定多个水稻表土可见-近红外漫反射光谱数据,同时采集多个水稻表土进行土壤全氮含量的化学测试;
步骤2)根据每个水稻表土土样的全氮含量计算该样本的氮肥施用等级;
步骤3)确定支持向量机的核函数与训练方式,将每个水稻表土土样的光谱数据及对应的氮肥施用等级数据作为输入数据,即训练数据,输入支持向量机模型中;
步骤4)根据步骤1)再采集多个待测水稻表土土样可见-近红外漫反射光谱数据并进行预处理,输入已经训练好的支持向量机模型判别类比,通过支持向量机模型判定后,计算并输出每个待测样本的氮肥施用等级。
2.根据权利要求1所述的一种用于水稻表土氮肥施用等级评定方法,其特征在于,所述步骤1)的具体过程为:
步骤(1.1)采集多个水稻表土土样的光谱数据;
步骤(1.2)用化学方法分析所采集多个水稻表土土样的全氮含量;
步骤(1.3)对所述光谱数据进行预处理。
3.根据权利要求2所述的一种用于水稻表土氮肥施用等级评定方法,其特征在于,所述步骤(1.2)中,所述用化学方法分析是用半微量开氏法测定。
4.根据权利要求2所述的一种用于水稻表土氮肥施用等级评定方法,其特征在于,步骤(1.3)中,所述光谱数据进行预处理的方法为基于最小二乘的SavitzkyGolay经典平滑滤波与一阶微分变换相结合的方法。
5.根据权利要求1所述的一种用于水稻表土氮肥施用等级评定方法,其特征在于,所述步骤3)确定支持向量机的核函数与训练方式的具体过程为:
步骤(3.1)设已知训练集T={(x1,y1),…,(xn,yn)}∈(X×Y)n,其中xi∈X=Rn,R为实数,n为参与模型训练的样本数;yi∈Y={1,2,3,4,5,6},i=1,…,n;X为可见-近红外光谱矩阵,xi为第i个土样的可见-近红外光谱数据,Y为步骤2)中计算得到的氮肥施用等级矩阵,yi为第i个土样的具体氮肥施用等级;
步骤(3.2)选择核函数K(xi,xj)和惩罚参数为常数C,a为系数参数,ai、aj分别为第i、j个土样的系数参数,构造并求解最优化问题
min a 1 2 Σ i = 1 n Σ j = 1 n y i y j a i a j K ( x i , x j ) - Σ j = 1 n a j
Σ i = 1 n y i a i = 0 0 ≤ a i ≤ C , i = 1,2 , . . . , n
得最优解 a * = ( a 1 * , . . . , a n * ) T
步骤(3.3)选择a*的一个小于C的正分量并据此计算
b * = y i - Σ i = 1 n y i a j * K ( x i , x j )
核函数取径向基函数: K ( x i , x j ) = exp ( - | x i - x j | 2 σ 2 ) .
6.根据权利要求1或4所述的一种用于水稻表土氮肥施用等级评定方法,其特征在于,所述步骤4)的具体过程为:
将采集到的多个待测水稻表土土样的可见-近红外光谱数据进行预处理,预处理方法如步骤(1.3),然后输入到决策函数中,决策函数计算得到待测土样氮肥施用等级。
CN201510135919.6A 2015-03-26 2015-03-26 一种用于水稻表土氮肥施用等级评定方法 Active CN104778349B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510135919.6A CN104778349B (zh) 2015-03-26 2015-03-26 一种用于水稻表土氮肥施用等级评定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510135919.6A CN104778349B (zh) 2015-03-26 2015-03-26 一种用于水稻表土氮肥施用等级评定方法

Publications (2)

Publication Number Publication Date
CN104778349A true CN104778349A (zh) 2015-07-15
CN104778349B CN104778349B (zh) 2017-11-10

Family

ID=53619809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510135919.6A Active CN104778349B (zh) 2015-03-26 2015-03-26 一种用于水稻表土氮肥施用等级评定方法

Country Status (1)

Country Link
CN (1) CN104778349B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050687A (zh) * 2016-08-09 2016-10-26 万毅 一种叶轮式水泵磨耗特性分析和优化方法
CN109034261A (zh) * 2018-08-10 2018-12-18 武汉工程大学 一种基于支持向量机的近红外光谱数据分析方法
CN109596788A (zh) * 2019-01-30 2019-04-09 湖南农业大学 一种双季超级稻水肥耦合测定方法
CN109696407A (zh) * 2019-01-22 2019-04-30 中国农业大学 一种基于特征波长的椰糠基质有效氮光谱检测方法
CN116636369A (zh) * 2023-07-19 2023-08-25 长春理工大学 一种基于可见-近红外光谱技术的施肥方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455726B (zh) * 2019-07-30 2022-02-11 东方智感(浙江)科技股份有限公司 一种实时预测土壤水分和全氮含量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210875A (zh) * 2007-12-25 2008-07-02 浙江大学 基于近红外光谱技术的无损测量土壤养分含量的方法
US20100283994A1 (en) * 2009-05-07 2010-11-11 Michael John Preiner Measurement of Nitrate-Nitrogen Concentration in Soil based on Absorption Spectroscopy
CN103884661A (zh) * 2014-02-21 2014-06-25 浙江大学 基于土壤可见-近红外光谱库的土壤全氮实时检测方法
US20140273253A1 (en) * 2013-03-15 2014-09-18 Board Of Trustees Of The University Of Arkansas System and process for quantifying potentially mineralizable nitrogen for agricultural crop production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210875A (zh) * 2007-12-25 2008-07-02 浙江大学 基于近红外光谱技术的无损测量土壤养分含量的方法
US20100283994A1 (en) * 2009-05-07 2010-11-11 Michael John Preiner Measurement of Nitrate-Nitrogen Concentration in Soil based on Absorption Spectroscopy
US20140273253A1 (en) * 2013-03-15 2014-09-18 Board Of Trustees Of The University Of Arkansas System and process for quantifying potentially mineralizable nitrogen for agricultural crop production
CN103884661A (zh) * 2014-02-21 2014-06-25 浙江大学 基于土壤可见-近红外光谱库的土壤全氮实时检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李正最,谢悦波: "《洞庭湖富营养化支持向量机评价模型研究》", 《人民长江》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106050687A (zh) * 2016-08-09 2016-10-26 万毅 一种叶轮式水泵磨耗特性分析和优化方法
CN106050687B (zh) * 2016-08-09 2020-06-26 温州大学 一种叶轮式水泵磨耗特性分析和优化方法
CN109034261A (zh) * 2018-08-10 2018-12-18 武汉工程大学 一种基于支持向量机的近红外光谱数据分析方法
CN109696407A (zh) * 2019-01-22 2019-04-30 中国农业大学 一种基于特征波长的椰糠基质有效氮光谱检测方法
CN109696407B (zh) * 2019-01-22 2020-11-03 中国农业大学 一种基于特征波长的椰糠基质有效氮光谱检测方法
CN109596788A (zh) * 2019-01-30 2019-04-09 湖南农业大学 一种双季超级稻水肥耦合测定方法
CN116636369A (zh) * 2023-07-19 2023-08-25 长春理工大学 一种基于可见-近红外光谱技术的施肥方法

Also Published As

Publication number Publication date
CN104778349B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
CN104778349A (zh) 一种用于水稻表土氮肥施用等级评定方法
Li et al. Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing
Yi et al. Estimation of leaf water content in cotton by means of hyperspectral indices
CN103884661A (zh) 基于土壤可见-近红外光谱库的土壤全氮实时检测方法
Chen et al. Hyperspectral characteristics and quantitative analysis of leaf chlorophyll by reflectance spectroscopy based on a genetic algorithm in combination with partial least squares regression
CN102252973B (zh) 土壤含水量遥感监测方法
Zhou et al. Development and performance test of an in-situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy
Zhu et al. Monitoring leaf nitrogen in wheat using canopy reflectance spectra
Xie et al. Canopy hyperspectral characteristics and yield estimation of winter wheat (Triticum aestivum) under low temperature injury
Bauer et al. On the potential of Wireless Sensor Networks for the in-situ assessment of crop leaf area index
CN105486655A (zh) 基于红外光谱智能鉴定模型的土壤有机质快速检测方法
Gholizadeh et al. Models for estimating the physical properties of paddy soil using visible and near infrared reflectance spectroscopy
Chu et al. Comparison of different hyperspectral vegetation indices for estimating canopy leaf nitrogen accumulation in rice
Guo et al. A robust method to estimate foliar phosphorus of rubber trees with hyperspectral reflectance
CN106990056A (zh) 一种土壤全氮光谱估算模型校正样本集构建方法
Zhang et al. Vis/NIR reflectance spectroscopy for hybrid rice variety identification and chlorophyll content evaluation for different nitrogen fertilizer levels
Lin et al. Mixture-based weight learning improves the random forest method for hyperspectral estimation of soil total nitrogen
CN106290240A (zh) 一种基于近红外光谱分析技术对酵母菌生长曲线测定的方法
Wang et al. Predicting organic matter content, total nitrogen and ph value of lime concretion black soil based on visible and near infrared spectroscopy
Kong et al. Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data
Liu et al. Organic matter estimation of surface soil using successive projection algorithm
CN112362812A (zh) 基于Lars算法的水稻叶片叶绿素类胡萝卜素含量比值遥感反演模型和方法
Song et al. Fractional-order derivative spectral transformations improved partial least squares regression estimation of photosynthetic capacity from hyperspectral reflectance
Tian et al. Estimation of sugar beet aboveground biomass by band depth optimization of hyperspectral canopy reflectance
Kong et al. An integrated field and hyperspectral remote sensing method for the estimation of pigments content of Stipa Purpurea in Shenzha, Tibet

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant