CN104758982A - 一种个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架 - Google Patents

一种个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架 Download PDF

Info

Publication number
CN104758982A
CN104758982A CN201510167949.5A CN201510167949A CN104758982A CN 104758982 A CN104758982 A CN 104758982A CN 201510167949 A CN201510167949 A CN 201510167949A CN 104758982 A CN104758982 A CN 104758982A
Authority
CN
China
Prior art keywords
alloy
artificial bone
bone scaffold
acetabulum
scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510167949.5A
Other languages
English (en)
Other versions
CN104758982B (zh
Inventor
谢杨
章云童
金光辉
孙晓飞
马兵
李超
董薇
夏琰
李刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Military Medical University SMMU
Original Assignee
Second Military Medical University SMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Military Medical University SMMU filed Critical Second Military Medical University SMMU
Priority to CN201510167949.5A priority Critical patent/CN104758982B/zh
Publication of CN104758982A publication Critical patent/CN104758982A/zh
Application granted granted Critical
Publication of CN104758982B publication Critical patent/CN104758982B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明属于医用器械领域,具体为一种个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架,本发明根据患者髋臼骨折缺损部位的机构,利用反求工程和CAD技术设计并使用选择性激光烧结技术制作与缺损部位相匹配的个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架,由多孔隙β-Ti-15Mo合金人工骨小梁,2Co-28Cr-6Mo合金支撑层,Al2O3陶瓷关节面构成。本发明弥补了髋臼人工骨的空白,为髋臼骨折提供了新的治疗思路,使个性化治疗有了可行的方案。

Description

一种个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架
技术领域
本发明属于医用器械领域,具体为个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架。
背景技术
髋关节是人体最大的关节,其解剖的复杂性,需要起承重作用,关节活动大,骨折类型的多样性致使髋臼骨折的修复治疗存在一定难度。一般的内固定存在显露困难,易损伤坐骨神经,螺钉松动等术后并发症,且对骨科医师的要求较高。利用人工骨支架填充修复骨缺损是常用的治疗手段。例如专利200810227420.8医用金属人工骨小梁的制备及应用,其利用电子束熔融成形法制作钛合金骨小梁用于填补缺损。但电子束熔融成形法需要高功率激光和电子束,在安全性,稳定性上不及选择性激光烧结法,此外实际应用中发现其成品在精度和重复性上也差强人意,而带关节面人工骨支架对解剖精度要求高,要避免台阶。且依靠电脑设计多为规则几何形状,而骨折类型多,缺损形状复杂,单单靠人为用电脑设计出的植入物形态贴合度不及由CT重建后应用MIMCS软件设计出CAD三维模型。另外此发明忽略了关节的功能要求,完全使用金属材料会产生磨损颗粒使植入区发生溶骨而松动。借此,我们创新性发明了个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架。利用CT能将患者髋臼骨折的位置、具体数目、骨折碎片的形态及关节腔内游离体的形态更加清晰的显示出来。利用反求工程可建立缺损三维模型。再结合3D打印技术可以构造与缺损部位相匹配的人工骨支架,避免手术者在术中对传统植入物的塑形与反复的匹配,缩短了手术时间、减少了术中的出血量。在材料方面,高孔隙率的医用钛合金骨小梁可使新生骨组织长入其中,且比自然松质骨拥有更好地力学性能而被设计为人工骨小梁。β相的钛合金较α相拥有更好的强度。Ti-15Mo合金为其中一种,因其低弹性模量、优异的成形性和抗腐蚀性而被FDA批准使用。Co-28Cr-6Mo合金已用于牙科数十年,目前金用来制造承受大负荷重关节如膝关节和髋关节,其抗拉伸强度达到569MPa,抗屈曲强度357MPa,远超皮质骨。而Al2O3陶瓷是惰性生物陶瓷的一种,具有良好的生物相容性、抗疲劳、低表面摩擦系数以及极高的耐磨性。因此常常设计为人工关节面。
发明内容
本发明的目的在于提供一种个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架。
本发明提出的个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架,由多孔隙β-Ti-15Mo合金人工骨小梁1、Co-28Cr-6Mo合金支撑层2和Al2O3陶瓷关节面3构成,其中:多孔隙β-Ti-15Mo合金骨小梁设有螺钉孔洞5,多孔隙β-Ti-15Mo合金人工骨小梁1和Al2O3陶瓷关节面3之间设有Co-28Cr-6Mo合金支撑层2,螺钉穿过螺钉孔洞5用于固定多孔隙β-Ti-15Mo合金人工骨小梁1、Co-28Cr-6Mo合金支撑层2和Al2O3陶瓷关节面3,所述Co-28Cr-6Mo合金支撑层2起到承受负荷防止人工骨支架因承重而变形甚至损坏, Al2O3陶瓷关节面3能适应髋关节的活动,耐磨损;具体制备工艺如下:
(1)根据患者髋臼骨折的情况,利用反求工程建立骨和软骨折缺损部位的三维模型,结合CAD技术设计建立与骨和软骨折缺损部位相匹配的人工骨支架;
(2)将15wt%Mo、85wt%Ti粉末、66wt%Co、28wt%Cr、6wt%Mo粉末和Al2O3粉末分别加入选择性激光烧结系统粉末槽内,利用选择性激光烧结技术,在惰性气体保护下加温至1200℃,升温速度为5℃/min~10℃/min,得到人工骨支架主体部分,保温2小时后随选择性激光烧结系统逐步冷却,降温速度为5℃/min~10℃/min,进行退火处理;
(3)采用直径为3.5mm螺钉,螺钉长度视损伤情况选择合适的长度,将三根螺钉尽量平行打入螺钉孔洞内,即得人工骨支架。
本发明的有益效果在于:本发明旨在利用SLS技术制备个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨,为精确、个性化髋臼骨折修复提供新的方法。所述β-Ti-15Mo合金骨小梁具有相互连通的孔隙结构,可用于骨长入。Co-28Cr-6Mo合金支撑层起到加强人工骨机械强度,适应髋关节负重。Al2O3陶瓷关节面具有低表面摩擦系数以及极高的耐磨性,可耐受膝关节的长期磨损。
附图说明
图1为本发明的冠状面图示。
图2为本发明的矢状面图示。
图3为本发明的修复效果图示。
图中标号:1 多孔隙β-Ti-15Mo合金人工骨小梁,2 Co-28Cr-6Mo合金支撑层,3 Al2O3陶瓷关节面;4螺钉;5螺钉孔洞。
具体实施方式
下面通过实施例进一步说明本发明。
实施例1:
对髋臼骨折区域进行薄层CT扫描,获得包含骨折缺损部分的薄层CT影像,应用MIMCS软件设计出CAD三维模型将最终设计参数输入3D打印机,将将15wt%Mo、85wt%Ti粉末、66wt%Co、28wt%Cr、6wt%Mo粉末和Al2O3粉末分别加入选择性激光烧结系统粉末槽,利用选择性激光烧结技术,在惰性气体保护下加温至1200℃,升温速度为5℃/min~10℃/min,烧结出一体化一体化多孔隙β-Ti-15Mo合金骨小梁-Co-28Cr-6Mo支撑层-Al2O3陶瓷关节面的主体部分,保温2小时后随炉逐步冷却,降温速度为5℃/min~10℃/min,进行退火处理。将打印好的多孔隙β-Ti-15Mo合金人工骨小梁, Co-28Cr-6Mo合金支撑层, Al2O3陶瓷关节面人工骨主体部分植入髋臼骨折区域,用三个螺钉4通过三个螺钉孔洞5固定在骨折区域。

Claims (1)

1.一种个性化β-Ti-15Mo合金-Co-28Cr-6Mo合金-Al2O3陶瓷髋臼人工骨支架,其特征在于由多孔隙β-Ti-15Mo合金人工骨小梁(1)、Co-28Cr-6Mo合金支撑层(2)和Al2O3陶瓷关节面(3)构成,其中:多孔隙β-Ti-15Mo合金骨小梁设有螺钉孔洞(5),多孔隙β-Ti-15Mo合金人工骨小梁(1)和Al2O3陶瓷关节面(3)之间设有Co-28Cr-6Mo合金支撑层(2),螺钉穿过螺钉孔洞(5)用于固定多孔隙β-Ti-15Mo合金人工骨小梁(1)、Co-28Cr-6Mo合金支撑层(2)和Al2O3陶瓷关节面(3),所述Co-28Cr-6Mo合金支撑层2起到承受负荷防止人工骨支架因承重而变形甚至损坏, Al2O3陶瓷关节面(3)能适应髋关节的活动,耐磨损;具体制备工艺如下:
(1)根据患者髋臼骨折的情况,利用反求工程建立骨和软骨折缺损部位的三维模型,结合CAD技术设计建立与骨和软骨折缺损部位相匹配的人工骨支架;
(2)将15wt%Mo、85wt%Ti粉末、66wt%Co、28wt%Cr、6wt%Mo粉末和Al2O3粉末分别加入选择性激光烧结系统粉末槽内,利用选择性激光烧结技术,在惰性气体保护下加温至1200℃,升温速度为5℃/min~10℃/min,得到人工骨支架主体部分,保温2小时后随选择性激光烧结系统逐步冷却,降温速度为5℃/min~10℃/min,进行退火处理;
(3)采用直径为3.5mm螺钉,螺钉长度视损伤情况选择合适的长度,将三根螺钉尽量平行打入螺钉孔洞内,即得人工骨支架。
CN201510167949.5A 2015-04-10 2015-04-10 一种个性化β‑Ti‑15Mo合金‑Co‑28Cr‑6Mo合金‑Al2O3陶瓷髋臼人工骨支架 Expired - Fee Related CN104758982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510167949.5A CN104758982B (zh) 2015-04-10 2015-04-10 一种个性化β‑Ti‑15Mo合金‑Co‑28Cr‑6Mo合金‑Al2O3陶瓷髋臼人工骨支架

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510167949.5A CN104758982B (zh) 2015-04-10 2015-04-10 一种个性化β‑Ti‑15Mo合金‑Co‑28Cr‑6Mo合金‑Al2O3陶瓷髋臼人工骨支架

Publications (2)

Publication Number Publication Date
CN104758982A true CN104758982A (zh) 2015-07-08
CN104758982B CN104758982B (zh) 2017-03-15

Family

ID=53641287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510167949.5A Expired - Fee Related CN104758982B (zh) 2015-04-10 2015-04-10 一种个性化β‑Ti‑15Mo合金‑Co‑28Cr‑6Mo合金‑Al2O3陶瓷髋臼人工骨支架

Country Status (1)

Country Link
CN (1) CN104758982B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105105875A (zh) * 2015-08-04 2015-12-02 西安交通大学 一种具有内生长功能的仿生人工髋关节
US10675158B2 (en) 2015-12-16 2020-06-09 Nuvasive, Inc. Porous spinal fusion implant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994085A (en) * 1988-03-09 1991-02-19 Aisin Seiki Kabushiki Kaisha Artificial stem unit for coxa with setting guide
CN101416906A (zh) * 2008-11-26 2009-04-29 北京天新福医疗器材有限公司 医用金属人工骨小梁的制备及应用
CN101994143A (zh) * 2010-10-27 2011-03-30 江苏科技大学 一种钛合金/生物陶瓷层复合材料的制备方法
CN102335742A (zh) * 2011-11-04 2012-02-01 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
CN103169549A (zh) * 2013-02-25 2013-06-26 上海大学 人工髋关节杯臼
US20140018862A1 (en) * 2012-06-27 2014-01-16 DePuy Synthes Products, LLC Variable angle bone fixation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994085A (en) * 1988-03-09 1991-02-19 Aisin Seiki Kabushiki Kaisha Artificial stem unit for coxa with setting guide
CN101416906A (zh) * 2008-11-26 2009-04-29 北京天新福医疗器材有限公司 医用金属人工骨小梁的制备及应用
CN101994143A (zh) * 2010-10-27 2011-03-30 江苏科技大学 一种钛合金/生物陶瓷层复合材料的制备方法
CN102335742A (zh) * 2011-11-04 2012-02-01 北京科技大学 一种复杂形状生物医用多孔钛钼合金植入体的制备方法
US20140018862A1 (en) * 2012-06-27 2014-01-16 DePuy Synthes Products, LLC Variable angle bone fixation device
CN103169549A (zh) * 2013-02-25 2013-06-26 上海大学 人工髋关节杯臼

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105105875A (zh) * 2015-08-04 2015-12-02 西安交通大学 一种具有内生长功能的仿生人工髋关节
CN105105875B (zh) * 2015-08-04 2018-01-16 西安交通大学 一种具有内生长功能的仿生人工髋关节
US10675158B2 (en) 2015-12-16 2020-06-09 Nuvasive, Inc. Porous spinal fusion implant
US11660203B2 (en) 2015-12-16 2023-05-30 Nuvasive, Inc. Porous spinal fusion implant

Also Published As

Publication number Publication date
CN104758982B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
Sing et al. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs
Moiduddin et al. Structural and mechanical characterization of custom design cranial implant created using additive manufacturing
Nouri et al. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review
Murr Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting
Cronskär et al. Production of customized hip stem prostheses–a comparison between conventional machining and electron beam melting (EBM)
Gao et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics
Harun et al. A review of powder additive manufacturing processes for metallic biomaterials
Hao et al. Biomedical titanium alloys and their additive manufacturing
Oldani et al. Titanium as a Biomaterial for Implants
Yang et al. Additive manufacturing of trabecular tantalum scaffolds by laser powder bed fusion: Mechanical property evaluation and porous structure characterization
Dhiman et al. Mechanobiological assessment of Ti-6Al-4V fabricated via selective laser melting technique: a review
San Cheong et al. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants
CN204581484U (zh) 一种具有三维贯通多孔结构的3d打印骨螺钉
Avila et al. Additive manufacturing of titanium and titanium alloys for biomedical applications
Wong et al. Additive manufactured metallic implants for orthopaedic applications
Tilton et al. Additive manufacturing of orthopedic implants
Munsch Laser additive manufacturing of customized prosthetics and implants for biomedical applications
Koptyug et al. Additive manufacturing technology applications targeting practical surgery
Liu et al. Additive manufacturing techniques and their biomedical applications
CN104758042A (zh) 一种具有三维贯通多孔结构的骨螺钉
Bandyopadhyay et al. Metal additive manufacturing for load-bearing implants
Moiduddin et al. Customized porous implants by additive manufacturing for zygomatic reconstruction
杨永强 et al. Selective laser melting and its applications on personalized medical parts
Wu et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives
Mondal et al. Biomedical porous scaffold fabrication using additive manufacturing technique: Porosity, surface roughness and process parameters optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170315

Termination date: 20170410

CF01 Termination of patent right due to non-payment of annual fee