CN104756117B - 用于临床决策支持的对血栓形成的临床风险因子与分子标记物的组合使用 - Google Patents

用于临床决策支持的对血栓形成的临床风险因子与分子标记物的组合使用 Download PDF

Info

Publication number
CN104756117B
CN104756117B CN201380055556.4A CN201380055556A CN104756117B CN 104756117 B CN104756117 B CN 104756117B CN 201380055556 A CN201380055556 A CN 201380055556A CN 104756117 B CN104756117 B CN 104756117B
Authority
CN
China
Prior art keywords
patient
feature vector
blood
input feature
predetermined amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380055556.4A
Other languages
English (en)
Chinese (zh)
Other versions
CN104756117A (zh
Inventor
B·J·巴克
H·J·范奥义任
R·范德汉姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN104756117A publication Critical patent/CN104756117A/zh
Application granted granted Critical
Publication of CN104756117B publication Critical patent/CN104756117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
CN201380055556.4A 2012-10-25 2013-10-17 用于临床决策支持的对血栓形成的临床风险因子与分子标记物的组合使用 Active CN104756117B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261718242P 2012-10-25 2012-10-25
US61/718,242 2012-10-25
PCT/IB2013/059424 WO2014064585A1 (en) 2012-10-25 2013-10-17 Combined use of clinical risk factors and molecular markers for thrombosis for clinical decision support

Publications (2)

Publication Number Publication Date
CN104756117A CN104756117A (zh) 2015-07-01
CN104756117B true CN104756117B (zh) 2019-01-29

Family

ID=49956255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380055556.4A Active CN104756117B (zh) 2012-10-25 2013-10-17 用于临床决策支持的对血栓形成的临床风险因子与分子标记物的组合使用

Country Status (7)

Country Link
US (1) US20150278470A1 (enExample)
EP (1) EP2912584B1 (enExample)
JP (1) JP6335910B2 (enExample)
CN (1) CN104756117B (enExample)
BR (1) BR112015009056A2 (enExample)
RU (1) RU2682622C2 (enExample)
WO (1) WO2014064585A1 (enExample)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11568982B1 (en) 2014-02-17 2023-01-31 Health at Scale Corporation System to improve the logistics of clinical care by selectively matching patients to providers
US11114204B1 (en) 2014-04-04 2021-09-07 Predictive Modeling, Inc. System to determine inpatient or outpatient care and inform decisions about patient care
US10748659B2 (en) * 2015-03-10 2020-08-18 Abbott Cardiovascular Systems Inc. Method and system for predicting risk of thrombosis
US20160283686A1 (en) * 2015-03-23 2016-09-29 International Business Machines Corporation Identifying And Ranking Individual-Level Risk Factors Using Personalized Predictive Models
JP2019514148A (ja) * 2016-04-07 2019-05-30 ホワイト・アンヴィル・イノベーションズ,エルエルシー デジタルデータを解析するための方法
WO2018071845A1 (en) * 2016-10-13 2018-04-19 Krishnamurti Tamar Priya A structured medical data classification system for monitoring and remediating treatment risks
KR101865110B1 (ko) * 2016-11-21 2018-06-07 재단법인 아산사회복지재단 급성뇌경색 발생시점 추정시스템, 방법 및 프로그램
US20180181718A1 (en) * 2016-12-23 2018-06-28 King Abdulaziz University Interactive clinical decision support system
EP3422011A1 (en) * 2017-06-28 2019-01-02 Koninklijke Philips N.V. Parameter value estimation in coagulation system
WO2020054028A1 (ja) * 2018-09-13 2020-03-19 株式会社島津製作所 データ解析装置
CN109324188B (zh) * 2018-10-11 2022-04-08 珠海沃姆电子有限公司 一种精准化动态尿液测量方法和系统
US11922301B2 (en) * 2019-04-05 2024-03-05 Samsung Display Co., Ltd. System and method for data augmentation for trace dataset
US11710045B2 (en) 2019-10-01 2023-07-25 Samsung Display Co., Ltd. System and method for knowledge distillation
US11610679B1 (en) 2020-04-20 2023-03-21 Health at Scale Corporation Prediction and prevention of medical events using machine-learning algorithms
US12094582B1 (en) 2020-08-11 2024-09-17 Health at Scale Corporation Intelligent healthcare data fabric system
US12080428B1 (en) 2020-09-10 2024-09-03 Health at Scale Corporation Machine intelligence-based prioritization of non-emergent procedures and visits
JP7623120B2 (ja) 2020-10-01 2025-01-28 キヤノンメディカルシステムズ株式会社 診療支援システム
CN112767350B (zh) * 2021-01-19 2024-04-26 深圳麦科田生物医疗技术股份有限公司 血栓弹力图最大区间预测方法、装置、设备和存储介质
CN115188476B (zh) * 2022-07-20 2025-04-18 西安市红会医院(西安市骨科研究所) 基于遗传学特征预测骨折合并深静脉血栓风险的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505678A (ja) * 1999-07-23 2003-02-12 ザ スクリップス リサーチ インスティテュート 全血の凝固因子活性を測定する方法
AUPR005600A0 (en) * 2000-09-12 2000-10-05 University Of Sydney, The Diagnostic assay
US7713705B2 (en) * 2002-12-24 2010-05-11 Biosite, Inc. Markers for differential diagnosis and methods of use thereof
US8936588B2 (en) * 2001-09-21 2015-01-20 Fred Herz Patents, LLC Device and method for prevention and treatment of deep venous thrombosis
WO2005116246A2 (en) * 2004-05-26 2005-12-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for detection of splice form and alternative splice forms in dna or rna sequences
WO2006052952A2 (en) * 2004-11-09 2006-05-18 The Brigham And Women's Hospital, Inc. System and method for determining whether to issue an alert to consider prophylaxis for a risk condition
US20090298103A1 (en) 2008-05-20 2009-12-03 The University Of Vermont And State Agriculture College Predicting hemostatic risk; dependence on plasma composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
剖宫产术后下肢深静脉血栓形成的危险因素分析;高丹丽 等;《中国妇幼保健》;20121231;第27卷(第23期);第3581-3584页

Also Published As

Publication number Publication date
EP2912584A1 (en) 2015-09-02
RU2015119520A (ru) 2016-12-20
RU2682622C2 (ru) 2019-03-19
EP2912584B1 (en) 2020-10-07
JP6335910B2 (ja) 2018-05-30
CN104756117A (zh) 2015-07-01
JP2016502650A (ja) 2016-01-28
US20150278470A1 (en) 2015-10-01
WO2014064585A1 (en) 2014-05-01
BR112015009056A2 (pt) 2017-07-04

Similar Documents

Publication Publication Date Title
CN104756117B (zh) 用于临床决策支持的对血栓形成的临床风险因子与分子标记物的组合使用
Prajapati et al. Designing AI to Predict Covid-19 Outcomes by Gender
Garthwaite The doctor might see you now: The supply side effects of public health insurance expansions
Azari et al. Predicting hospital length of stay (phlos): A multi-tiered data mining approach
US7418399B2 (en) Methods and kits for managing diagnosis and therapeutics of bacterial infections
Hu et al. Automated detection of postoperative surgical site infections using supervised methods with electronic health record data
US20030018595A1 (en) Machine learning method
US10593000B2 (en) System and method for determining thresholds or a range of values used to allocate patients to a treatment level of a treatment program
Wingbermühle et al. Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: a systematic review
CN1385702A (zh) 提供临床诊断服务的方法
KR101595784B1 (ko) 패혈증 고위험군 예측 방법 및 시스템
KR102541510B1 (ko) 국가건강검진 자료를 이용한 자살 예측 모델 구축 방법
Sun et al. Machine learning-assisted rapid determination for traditional Chinese Medicine Constitution
Gonçalves et al. Mapping studies to estimate Health-State utilities from Nonpreference-Based outcome measures: A systematic review on how repeated measurements are taken into account
Sirven et al. Disparities in regular health care utilisation in Europe
Howe et al. A vision for cancer incidence surveillance in the United States
Schork et al. Strategies for testing intervention matching schemes in cancer
Makwana Identify the patients at high risk of re-admission in hospital in the next year
Parkerson Jr et al. Duke Case-Mix System (DUMIX) for ambulatory health care
Arbour et al. Beyond Traditional Risk Scores: Tackling LS/CMI Offender Misclassifications with Machine Learning
CN113782140B (zh) 基于机器学习的诊疗策略确定方法、装置、设备及介质
Holt et al. A nationwide adaptive prediction tool for coronary heart disease prevention
Barsbay Two-Stage Data Envelopment Analysis in Healthcare: Concerns, Controversies, and Future Directions
Jorm Towards a “Wisdom of Scientific Crowds”
Biswas Risk Factors for Autism Spectrum Disorder: A Statistical and Machine Learning Perspective

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant