CN104753311B - 长行程永磁直线涡流制动器 - Google Patents

长行程永磁直线涡流制动器 Download PDF

Info

Publication number
CN104753311B
CN104753311B CN201510201323.1A CN201510201323A CN104753311B CN 104753311 B CN104753311 B CN 104753311B CN 201510201323 A CN201510201323 A CN 201510201323A CN 104753311 B CN104753311 B CN 104753311B
Authority
CN
China
Prior art keywords
primary
permanent magnet
mover
long
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510201323.1A
Other languages
English (en)
Other versions
CN104753311A (zh
Inventor
寇宝泉
张赫
张鲁
金银锡
尹相睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510201323.1A priority Critical patent/CN104753311B/zh
Publication of CN104753311A publication Critical patent/CN104753311A/zh
Application granted granted Critical
Publication of CN104753311B publication Critical patent/CN104753311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Linear Motors (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

长行程永磁直线涡流制动器,属于电机技术领域。本发明是为了解决现有永磁涡流制动器的磁场大小无法调节,制动力特性不能兼顾高速与低速的问题。它包括初级和次级,初级和次级之间形成气隙,初级包括初级基板和初级永磁体,初级基板为平板型,在初级基板的气隙侧表面沿动子运动方向均匀排布长条形初级永磁体,所有初级永磁体的充磁方向与初级基板平行,并与动子运动方向垂直,相邻初级永磁体的充磁方向相反;次级包括次级导体板,次级导体板为复合材料金属板。本发明作为一种涡流制动器。

Description

长行程永磁直线涡流制动器
技术领域
本发明涉及长行程永磁直线涡流制动器,属于电机技术领域。
背景技术
永磁涡流制动是上世纪90年代发展起来的一门新型的制动技术,它是利用导体在永磁阵列中运动产生的强大涡流以及涡流磁场与永磁体磁场的相互作用进行制动,在制动过程中无摩擦、无接触,外部环境对制动效果没有影响。永磁制动无需外部能量,制动时无噪音、无振动、不怕污染、耐天候、且永无磨损,是一种绿色环保、高可靠性的制动技术,目前已逐渐成为制动技术领域研究发展的新方向。
相对电磁涡流制动而言,永磁涡流制动主要优点在于不需要外加励磁电源和励磁绕组,这样既节省了用电和用铜,很好地避免了电磁制动的温升问题,又不存在断电时制动失效的危险,可靠性更高,同时,永磁体良好的磁性能可以保证足够的制动力。缺点在于不可调性,一旦安装好,永磁体产生的磁场大小不能随意调节,动态性能稍差,且制动力特性不能兼顾高速与低速。
发明内容
本发明目的是为了解决现有永磁涡流制动器的磁场大小无法调节,制动力特性不能兼顾高速与低速的问题,提供了一种长行程永磁直线涡流制动器。
本发明所述长行程永磁直线涡流制动器,它包括初级和次级,初级和次级之间形成气隙,
初级包括初级基板和初级永磁体,初级基板为平板型,在初级基板的气隙侧表面沿动子运动方向均匀排布长条形初级永磁体,所有初级永磁体的充磁方向与初级基板平行,并与动子运动方向垂直,相邻初级永磁体的充磁方向相反;次级包括次级导体板,次级导体板为复合材料金属板。
所述制动器为短初级、长次级结构,初级为动子;次级导体板为由电导率金属材料与磁导率金属材料复合制成的复合材料金属板,该次级导体板的电导率由其首端至末端均匀递增,所述首端为对应于动子运动起始位置的一端。
所述制动器为短初级、长次级结构,初级为动子;次级导体板由高电导率金属板与高磁导率金属板叠加固定而成,所述高电导率金属板靠近气隙侧,该高电导率金属板的厚度由其首端至末端均匀递增,所述首端为对应于动子运动起始位置的一端。
所述制动器为短初级、长次级结构,初级为动子;次级导体板由高磁导率金属板与高电导率短路绕组构成;
次级导体板采用第一种设置形式或第二种设置形式;
第一种设置形式:
高磁导率金属板的气隙侧表面上沿与动子运动方向的相垂直的方向开多个导条槽,多个导条槽的槽距由高磁导率金属板的首端至末端均匀递减,高磁导率金属板的首端为对应于动子运动起始位置的一端;
高电导率短路绕组由多段金属导条和两根端部导条构成,每个导条槽内嵌放一段金属导条,所有金属导条的首端通过一根端部导条短路,所有金属导条的末端通过另一根端部导条短路;
第二种设置形式:高电导率短路绕组粘贴固定在高磁导率金属板的气隙侧表面上。
所述制动器为短初级、长次级结构,初级为动子;次级导体板沿动子运动方向均匀分为多个分段,多个分段的电导率由次级导体板的首端至末端均匀递增,次级导体板的首端为对应于动子运动起始位置的一端。
所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级永磁体的极距沿初级基板的首端至末端均匀递增;所述首端为对应于动子运动起始位置的一端。
所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级永磁体的厚度沿初级基板的首端至末端均匀递增;所述首端为对应于动子运动起始位置的一端。
所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级和次级之间形成的气隙由初级基板首端至末端均匀递减,所述首端为对应于动子运动起始位置的一端。
所述初级为双边结构;
次级由两根纵向长金属导条和多根横向短金属导条组成,所述纵向长金属导条和横向短金属导条均由高电导率金属导体制成,多根横向短金属导条在两根纵向长金属导条之间沿动子运动方向均匀分布,或者多根横向短金属导条在两根纵向长金属导条之间沿动子运动方向分散排布,并且由两根纵向长金属导条的首端至末端,相邻横向短金属导条的间距均匀递减;所述首端为对应于动子运动起始位置的一端;
两根纵向长金属导条和多根横向短金属导条所形成的平面与初级基板平行。
所述制动器为单边初级、单边次级结构,单边初级、双边次级结构或者双边初级、单边次级结构。
本发明的优点:本发明所述制动器主要由初级和次级构成,初级主要由初级基板和初级永磁体构成;次级主要由次级导体板构成。
本发明所述长行程永磁直线涡流制动器,在整个制动行程范围内,通过调整制动器的初级或次级材料特性参数或尺寸参数,实现制动器从高速到低速的速度变化过程中,保持最高的制动力输出,可有效提高长行程永磁直线涡流制动器的制动力密度,缩短制动距离,降低制动系统成本,提高系统可靠性。
附图说明
图1是本发明所述长行程永磁直线涡流制动器的结构示意图,所述制动器为短初级、长次级结构,次级为双边结构;
图2是图1中初级的结构示意图;
图3是本发明所述长行程永磁直线涡流制动器的结构示意图,所述制动器为长初级、短次级结构,初级为双边结构;
图4是图3中初级的一个边的永磁体的一种分布示意图;双边结构中永磁体的分布对应相同;
图5是图3中初级的一个边的永磁体的另一种分布示意图;双边结构中永磁体的分布对应相同。
具体实施方式
具体实施方式一:下面结合图1、图2和图3说明本实施方式,本实施方式所述长行程永磁直线涡流制动器,它包括初级和次级,初级和次级之间形成气隙,
初级包括初级基板和初级永磁体,初级基板为平板型,在初级基板的气隙侧表面沿动子运动方向均匀排布长条形初级永磁体,所有初级永磁体的充磁方向与初级基板平行,并与动子运动方向垂直,相邻初级永磁体的充磁方向相反;次级包括次级导体板,次级导体板为复合材料金属板。
本实施方式中,长条形初级永磁体沿运动方向N、S交替排列。
具体实施方式二:下面结合图1和图2说明本实施方式,本实施方式对实施方式一作进一步说明,所述制动器为短初级、长次级结构,初级为动子;次级导体板为由电导率金属材料与磁导率金属材料复合制成的复合材料金属板,该次级导体板的电导率由其首端至末端均匀递增,所述首端为对应于动子运动起始位置的一端。
所述次级导体板为由不同电导率、磁导率金属材料构成的复合材料金属板。在制动过程中,随着动子运动速度减小,次级导体板材料的电导率逐渐增加。
具体实施方式三:下面结合图1和图2说明本实施方式,本实施方式对实施方式一作进一步说明,所述制动器为短初级、长次级结构,初级为动子;次级导体板由高电导率金属板与高磁导率金属板叠加固定而成,所述高电导率金属板靠近气隙侧,该高电导率金属板的厚度由其首端至末端均匀递增,所述首端为对应于动子运动起始位置的一端。
在制动过程中,随着动子运动速度减小,高电导率金属板的厚度逐渐增加。
具体实施方式四:下面结合图1和图2说明本实施方式,本实施方式对实施方式一作进一步说明,所述制动器为短初级、长次级结构,初级为动子;次级导体板由高磁导率金属板与高电导率短路绕组构成;
次级导体板采用第一种设置形式或第二种设置形式;
第一种设置形式:
高磁导率金属板的气隙侧表面上沿与动子运动方向的相垂直的方向开多个导条槽,多个导条槽的槽距由高磁导率金属板的首端至末端均匀递减,高磁导率金属板的首端为对应于动子运动起始位置的一端;
高电导率短路绕组由多段金属导条和两根端部导条构成,每个导条槽内嵌放一段金属导条,所有金属导条的首端通过一根端部导条短路,所有金属导条的末端通过另一根端部导条短路;
第二种设置形式:高电导率短路绕组粘贴固定在高磁导率金属板的气隙侧表面上。
对于第一种设置形式,在制动过程中,随着动子运动速度减小,嵌放高电导率金属导条槽的槽距逐渐减小。
具体实施方式五:下面结合图1和图2说明本实施方式,本实施方式对实施方式一作进一步说明,所述制动器为短初级、长次级结构,初级为动子;次级导体板沿动子运动方向均匀分为多个分段,多个分段的电导率由次级导体板的首端至末端均匀递增,次级导体板的首端为对应于动子运动起始位置的一端。
所述每一个分段采用不同金属材料制成,在制动过程中,随着动子运动速度减小,每一分段次级导体板材料的电导率逐渐增加。
图1和图2是本发明的一个具体实施例。本实施例的长行程永磁直线涡流制动器,由初级和次级构成。初级主要由初级基板和初级永磁体构成;初级基板为平板形,在初级基板的左右两气隙侧,沿运动方向长条形初级永磁体N、S交替排列,两侧永磁体对称粘贴固定在初级基板上,对应位置上的永磁体充磁方向相同,形成串联磁路;次级为双边结构,次级主要由次级导体板构成。
该长行程永磁直线涡流制动器为短初级、长次级结构,初级为动子。次级导体板由高电导率金属板与高磁导率金属板复合而成,高电导率金属板靠近气隙侧。在整个行程范围内,次级导体板分为三段,在制动过程中,随着动子运动速度减小,三段高电导率金属板的厚度逐渐增加。
具体实施方式六:下面结合图3、图4和图5说明本实施方式,本实施方式对实施方式一作进一步说明,所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级永磁体的极距沿初级基板的首端至末端均匀递增;所述首端为对应于动子运动起始位置的一端。
在制动过程中,随着动子运动速度减小,初级永磁体的极距逐渐增加。
具体实施方式七:下面结合图3说明本实施方式,本实施方式对实施方式一作进一步说明,所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级永磁体的厚度沿初级基板的首端至末端均匀递增;所述首端为对应于动子运动起始位置的一端。
在制动过程中,随着动子运动速度减小,初级永磁体的厚度逐渐增加。
具体实施方式八:下面结合图3说明本实施方式,本实施方式对实施方式一作进一步说明,所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级和次级之间形成的气隙由初级基板首端至末端均匀递减,所述首端为对应于动子运动起始位置的一端。
在制动过程中,随着动子运动速度减小,初级与次级之间气隙逐渐减小。
图3、图4和图5是本发明的第二个具体实施例。本实施例的长行程永磁直线涡流制动器,由初级和次级构成。初级为双边结构,每边初级主要由初级基板和初级永磁体构成;初级基板为平板形,在初级基板的面向气隙侧,沿运动方向长条形初级永磁体N、S交替排列;双边初级上的永磁体对称粘贴固定在初级基板上,对称位置上的永磁体充磁方向相同,形成串联磁路;次级主要由次级导体板构成。
该长行程永磁直线涡流制动器为长初级、短次级结构,次级为动子。次级导体板由高电导率金属材料构成。在整个行程范围内,初级分为三段,在制动过程中,随着动子运动速度减小,三段初级永磁体的极距逐渐增大。图4所示,为初级永磁体的宽度不变,通过增大相邻永磁体之间的距离,来增大永磁体极距;图5所示,为相邻永磁体之间的距离不变,通过逐步增加相邻永磁体的宽度,来增大永磁体极距。
具体实施方式九:本实施方式对实施方式一作进一步说明,所述初级为双边结构;
次级由两根纵向长金属导条和多根横向短金属导条组成,所述纵向长金属导条和横向短金属导条均由高电导率金属导体制成,多根横向短金属导条在两根纵向长金属导条之间沿动子运动方向均匀分布,或者多根横向短金属导条在两根纵向长金属导条之间沿动子运动方向分散排布,并且由两根纵向长金属导条的首端至末端,相邻横向短金属导条的间距均匀递减;所述首端为对应于动子运动起始位置的一端;
两根纵向长金属导条和多根横向短金属导条所形成的平面与初级基板平行。
本实施方式所述制动器可以为长初级,短次级结构,此时次级为动子;也可以为长次级,短初级结构,此时初级为动子。
初级可以采用初级永磁体的极距沿初级基板的首端至末端均匀递增的形式、初级永磁体的厚度沿初级基板的首端至末端均匀递增的形式或者初级和次级之间形成的气隙由初级基板首端至末端均匀递减的形式。
具体实施方式十:本实施方式对实施方式一、二、三、四、五、六、七或八作进一步说明,所述制动器为单边初级、单边次级结构,单边初级、双边次级结构或者双边初级、单边次级结构。
本发明所述制动器可以为多初级、多次级横向并联结构,初级永磁体的磁路为横向串联磁路。

Claims (9)

1.一种长行程永磁直线涡流制动器,它包括初级和次级,初级和次级之间形成气隙,初级包括初级基板和初级永磁体,初级基板为平板型,在初级基板的气隙侧表面沿动子运动方向均匀排布长条形初级永磁体,所有初级永磁体的充磁方向与初级基板平行,并与动子运动方向垂直,相邻初级永磁体的充磁方向相反;次级包括次级导体板,次级导体板为复合材料金属板;
其特征在于,所述制动器为短初级、长次级结构,初级为动子;次级导体板为由电导率金属材料与磁导率金属材料复合制成的复合材料金属板,该次级导体板的电导率由其首端至末端均匀递增,所述首端为对应于动子运动起始位置的一端。
2.根据权利要求1所述的长行程永磁直线涡流制动器,其特征在于,所述制动器为短初级、长次级结构,初级为动子;次级导体板由高电导率金属板与高磁导率金属板叠加固定而成,所述高电导率金属板靠近气隙侧,该高电导率金属板的厚度由其首端至末端均匀递增,所述首端为对应于动子运动起始位置的一端。
3.根据权利要求1所述的长行程永磁直线涡流制动器,其特征在于,所述制动器为短初级、长次级结构,初级为动子;次级导体板由高磁导率金属板与高电导率短路绕组构成;
次级导体板采用第一种设置形式或第二种设置形式;
第一种设置形式:
高磁导率金属板的气隙侧表面上沿与动子运动方向的相垂直的方向开多个导条槽,多个导条槽的槽距由高磁导率金属板的首端至末端均匀递减,高磁导率金属板的首端为对应于动子运动起始位置的一端;
高电导率短路绕组由多段金属导条和两根端部导条构成,每个导条槽内嵌放一段金属导条,所有金属导条的首端通过一根端部导条短路,所有金属导条的末端通过另一根端部导条短路;
第二种设置形式:高电导率短路绕组粘贴固定在高磁导率金属板的气隙侧表面上。
4.根据权利要求1所述的长行程永磁直线涡流制动器,其特征在于,所述制动器为短初级、长次级结构,初级为动子;次级导体板沿动子运动方向均匀分为多个分段,多个分段的电导率由次级导体板的首端至末端均匀递增,次级导体板的首端为对应于动子运动起始位置的一端。
5.根据权利要求1所述的长行程永磁直线涡流制动器,其特征在于,所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级永磁体的极距沿初级基板的首端至末端均匀递增;所述首端为对应于动子运动起始位置的一端。
6.根据权利要求1所述的长行程永磁直线涡流制动器,其特征在于,所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级永磁体的厚度沿初级基板的首端至末端均匀递增;所述首端为对应于动子运动起始位置的一端。
7.根据权利要求1所述的长行程永磁直线涡流制动器,其特征在于,所述制动器为短次级、长初级结构,次级为动子;次级导体板由高电导率金属材料制成、由电导率金属材料与磁导率金属材料复合制成或由高电导率金属板与高磁导率金属板叠加固定而成;初级和次级之间形成的气隙由初级基板首端至末端均匀递减,所述首端为对应于动子运动起始位置的一端。
8.根据权利要求1所述的长行程永磁直线涡流制动器,其特征在于,所述初级为双边结构;
次级由两根纵向长金属导条和多根横向短金属导条组成,所述纵向长金属导条和横向短金属导条均由高电导率金属导体制成,多根横向短金属导条在两根纵向长金属导条之间沿动子运动方向均匀分布,或者多根横向短金属导条在两根纵向长金属导条之间沿动子运动方向分散排布,并且由两根纵向长金属导条的首端至末端,相邻横向短金属导条的间距均匀递减;所述首端为对应于动子运动起始位置的一端;
两根纵向长金属导条和多根横向短金属导条所形成的平面与初级基板平行。
9.根据权利要求1、2、3、4、5、6或7所述的长行程永磁直线涡流制动器,其特征在于,所述制动器为单边初级、单边次级结构,单边初级、双边次级结构或者双边初级、单边次级结构。
CN201510201323.1A 2015-04-24 2015-04-24 长行程永磁直线涡流制动器 Active CN104753311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510201323.1A CN104753311B (zh) 2015-04-24 2015-04-24 长行程永磁直线涡流制动器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510201323.1A CN104753311B (zh) 2015-04-24 2015-04-24 长行程永磁直线涡流制动器

Publications (2)

Publication Number Publication Date
CN104753311A CN104753311A (zh) 2015-07-01
CN104753311B true CN104753311B (zh) 2017-03-01

Family

ID=53592555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510201323.1A Active CN104753311B (zh) 2015-04-24 2015-04-24 长行程永磁直线涡流制动器

Country Status (1)

Country Link
CN (1) CN104753311B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896877B (zh) * 2016-04-21 2018-08-31 成都茂源科技有限公司 一种直线电涡流制动装置及直线载运装置
CN106411101A (zh) * 2016-11-09 2017-02-15 中国人民解放军国防科学技术大学 直线型永磁涡流制动系统
CN107124086B (zh) * 2017-05-12 2019-01-22 哈尔滨工业大学 混合绕组直线电磁制动器
CN107104575B (zh) * 2017-05-12 2019-02-22 哈尔滨工业大学 高速直线电磁制动器
CN108233645B (zh) * 2017-12-27 2020-09-15 深圳市忠维新实业有限公司 一种直线电机定子拼接的工艺
CN108382264B (zh) * 2018-03-21 2020-07-03 哈尔滨工业大学 永磁磁悬浮直线电磁推进系统
CN108306477B (zh) * 2018-03-21 2019-11-29 哈尔滨工业大学 高速磁悬浮直线电磁推进系统
CN108448873B (zh) * 2018-03-21 2020-01-07 哈尔滨工业大学 超导磁悬浮直线电磁推进系统
CN108306478B (zh) * 2018-03-21 2020-07-03 哈尔滨工业大学 高速磁悬浮直线涡流制动系统
CN110588360A (zh) * 2019-10-08 2019-12-20 哈尔滨工业大学 一种用于高速列车的制动力可控永磁式涡流制动装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011828A (zh) * 2010-12-07 2011-04-13 哈尔滨工业大学 混合励磁直线电磁阻尼器
CN102279362A (zh) * 2011-05-16 2011-12-14 哈尔滨工业大学 集成绕组结构直线电磁阻尼器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040055836A1 (en) * 1999-11-22 2004-03-25 Pribonic Edward M. Eddy current braking apparatus with adjustable braking force
US8727078B2 (en) * 2004-05-28 2014-05-20 Velocity Magnetics, Inc. Selectively incrementally actuated linear eddy current braking system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011828A (zh) * 2010-12-07 2011-04-13 哈尔滨工业大学 混合励磁直线电磁阻尼器
CN102279362A (zh) * 2011-05-16 2011-12-14 哈尔滨工业大学 集成绕组结构直线电磁阻尼器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
永磁涡流制动技术及其应用研究;赵小波等;《新技术新工艺》;20071031(第10期);第58-62页 *
永磁涡流制动的电磁分析与设计;张圣楠;《内蒙古科技与经济》;20050731(第13期);第118-120页 *

Also Published As

Publication number Publication date
CN104753311A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
CN104753311B (zh) 长行程永磁直线涡流制动器
CN105896877B (zh) 一种直线电涡流制动装置及直线载运装置
CN104967276A (zh) 液体冷却无铁心永磁直线电机
Waloyo et al. Mini review on the design of axial type eddy current braking technology
CN106411101A (zh) 直线型永磁涡流制动系统
CN107104575A (zh) 高速直线电磁制动器
CN101888164A (zh) 低速大推力单气隙磁齿轮复合直线电机
CN108736687A (zh) 一种基于v型槽次级结构的直线感应电机
CN107124086B (zh) 混合绕组直线电磁制动器
Lv et al. Analysis of secondary losses and efficiency in linear induction motors with composite secondary based on space harmonic method
CN205123554U (zh) 高效大推力双边直线电机
CN202918085U (zh) 一种永磁同步电机的斜极转子结构
Li et al. Characteristics of Linear Induction Motor Considering Material of Reaction Plate Change.
CN104092351A (zh) 一种增速型直线磁齿轮永磁复合电机
CN201667604U (zh) 用于数控进给平台的直接磁悬浮永磁直线同步电动机
Ying et al. Analysis of simulation design of the disc eddy current braking device
Sainjargal et al. Analysis and case study of permanent magnet arrays for eddy current brake systems with a new performance index
CN105703512B (zh) 一种高平面度永磁直线电机平面线圈
Xu et al. Detent Force Analysis and Optimization for Vertical Permanent-magnet Linear Synchronous Motor with Fractional-slot Windings.
CN107819391A (zh) 一种新型永磁阵列及平面电机
CN107994739A (zh) 一种基于齿槽转矩的制动设计方法
Ubaidillah et al. Magnetic flux distribution and braking torque of a grooved eddy current brake
CN105305770B (zh) 高效大推力双边直线电机
CN201797432U (zh) 提高低速大推力应用情况下电机功率密度的直线电机
CN103683602A (zh) 低涡流损耗的永磁电机转子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant