CN104749273A - Method for detecting azide ions or cyanide ions in water - Google Patents
Method for detecting azide ions or cyanide ions in water Download PDFInfo
- Publication number
- CN104749273A CN104749273A CN201510108903.6A CN201510108903A CN104749273A CN 104749273 A CN104749273 A CN 104749273A CN 201510108903 A CN201510108903 A CN 201510108903A CN 104749273 A CN104749273 A CN 104749273A
- Authority
- CN
- China
- Prior art keywords
- azide
- cyanide
- ion
- water
- hydroxybutanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- FXHRDEQPODSZQL-UHFFFAOYSA-N CCC(CC#N)O Chemical compound CCC(CC#N)O FXHRDEQPODSZQL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供了一种检测水中叠氮根离子或氰离子的方法,所述方法利用卤醇脱卤酶催化水中的叠氮离子或氰离子与环氧化物反应,生产对应的4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇,根据标准曲线,用气相色谱定量分析生成的4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇含量,进而确定样品中叠氮离子或氰离子的浓度;本发明方法准确性好,可以检测叠氮离子和氰离子的最低浓度分别为0.1mM和0.3mM;同时,该发明方法重现性好、灵敏度高,其测定的叠氮离子和氰离子浓度的标准曲线的R2分别为0.997和0.995,该发明方法可用于环境污水,工业废水以及饮用水等各种样品中的叠氮离子和氰离子的浓度测定。
The invention provides a method for detecting azide ions or cyanide ions in water. The method uses halohydrin dehalogenase to catalyze the reaction of azide ions or cyanide ions in water with epoxides to produce the corresponding 4-azido- 3-hydroxybutanol or 4-cyano-3-hydroxybutanol, according to the standard curve, use gas chromatography to quantitatively analyze the content of 4-azido-3-hydroxybutanol or 4-cyano-3-hydroxybutanol , and then determine the concentration of azide ion or cyanide ion in the sample; the accuracy of the inventive method is good, and the minimum concentration that can detect azide ion and cyanide ion is respectively 0.1mM and 0.3mM; Simultaneously, this inventive method reproducibility is good, The sensitivity is high, and the R2 of the standard curve of the azide ion and the cyanide ion concentration of its determination are respectively 0.997 and 0.995. concentration determination.
Description
(一)技术领域(1) Technical field
本发明涉及水中叠氮离子和氰离子的测定方法,特别涉及利用卤醇脱卤酶催化水中的叠氮离子和氰离子与环氧化物反应,生产对应的取代醇,通过气相色谱分析生成的取代醇的量来确定水中叠氮离子和氰离子的含量,该方法适用于水中叠氮离子和氰离子的检测。The invention relates to a method for measuring azide ions and cyanide ions in water, in particular to the use of halohydrin dehalogenase to catalyze the reaction of azide ions and cyanide ions in water with epoxides to produce corresponding substituted alcohols, which are analyzed by gas chromatography. The amount of alcohol is used to determine the content of azide ion and cyanide ion in water. This method is suitable for the detection of azide ion and cyanide ion in water.
(二)背景技术(2) Background technology
叠氮化合物和氰化物在有机合成反应中占有重要的作用,它们常常被用于一些医药中间体和精细化学品的合成,其中叠氮化钠还用于制造汽车的安全气囊。但是叠氮离子和氰离子都是剧毒化合物,可以与人体的血红蛋白结合,降低其运输氧气的能力,导致人窒息而死。因此,需要一个快速准确的分析方法检测水中的叠氮离子和氰离子。Azides and cyanides play an important role in organic synthesis reactions. They are often used in the synthesis of some pharmaceutical intermediates and fine chemicals. Among them, sodium azide is also used in the manufacture of automobile airbags. However, azide ions and cyanide ions are highly toxic compounds that can combine with human hemoglobin to reduce its ability to transport oxygen and cause people to suffocate to death. Therefore, a fast and accurate analytical method is needed for the detection of azide and cyanide ions in water.
目前,检测水中叠氮离子和氰离子的方法有分光光度法,离子色谱,气相-质谱联用分析法等。其中分光光度法收受外界的干扰较大,随着时间的延长,读取的数值波动较大,精确度不高。离子色谱和气相-质谱法较为准确,但是操作繁琐,对设备要求高。At present, methods for detecting azide ions and cyanide ions in water include spectrophotometry, ion chromatography, gas chromatography-mass spectrometry and so on. Among them, spectrophotometry is more subject to external interference, and as time goes on, the read value fluctuates greatly, and the accuracy is not high. Ion chromatography and gas chromatography-mass spectrometry are more accurate, but the operation is cumbersome and requires high equipment.
(三)发明内容(3) Contents of the invention
本发明提供了一种间接检测水中叠氮离子和氰离子的方法,该方法对设备要求低,操作稳定性好,同时分析所以的时间短,可以快速对多个样品进行分析。The invention provides a method for indirect detection of azide ions and cyanide ions in water. The method has low equipment requirements, good operation stability, short time for simultaneous analysis, and can rapidly analyze multiple samples.
本发明的技术方案是:Technical scheme of the present invention is:
本发明提供一种检测水中叠氮根离子或氰离子的方法,所述方法为:以含卤醇脱卤酶编码基因的重组基因工程菌经诱导培养获得的湿菌体经超声破碎后的上清液为催化剂,以环氧化物为助剂,以待测水样作为原料,在40~45℃、500rpm条件下反应30~60min,取反应液用乙酸乙酯萃取,取上层有机相经无水硫酸钠干燥后采用气相色谱检测4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇峰面积,根据以4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇峰面积为纵坐标、以叠氮化钠或氰化钠浓度为横坐标制作的叠氮化钠标准曲线或氰化钠标准曲线,确定待测水样中叠氮根离子或者氰离子的浓度;所述催化剂的用量以含卤醇脱卤酶编码基因的重组基因工程菌经超声破碎前湿菌体重量计为5-20mg/mL待测水样(优选10mg/mL),环氧化物的用量为0.05~0.2mol/L待测水样(优选0.18mol/L)。The invention provides a method for detecting azide ions or cyanide ions in water. The method is: using the recombinant genetically engineered bacteria containing the halohydrin dehalogenase coding gene to obtain the wet bacterium obtained through ultrasonic crushing. The clear liquid is used as a catalyst, epoxy is used as an auxiliary agent, and the water sample to be tested is used as a raw material. The reaction is carried out at 40-45°C and 500 rpm for 30-60 minutes. Use gas chromatography to detect the peak area of 4-azido-3-hydroxybutanol or 4-cyano-3-hydroxybutanol after drying over sodium sulfate in water, according to 4-azido-3-hydroxybutanol or 4-cyano -3-Hydroxybutanol peak area is the ordinate, and the sodium azide or sodium cyanide concentration is the abscissa standard curve of sodium azide or sodium cyanide standard curve, to determine the azide ion in the water sample to be tested Or the concentration of cyanide ion; The consumption of described catalyzer is 5-20mg/mL water sample to be tested (preferably 10mg/mL) by the recombinant genetically engineered bacterium that contains halohydrin dehalogenase coding gene through sonication before wet thallus weight meter , the amount of epoxide is 0.05-0.2 mol/L water sample to be tested (preferably 0.18 mol/L).
进一步,所述卤醇脱卤酶的氨基酸序列为SEQ ID NO.2所示。Further, the amino acid sequence of the halohydrin dehalogenase is shown in SEQ ID NO.2.
进一步,气相色谱检测条件为:采用日本岛津气相GC-14,色谱柱Astec CHIRALDEXTM G-TA,载气为氦气,分流比为20:1,进样口和检测器的温度均为220℃,GC程序为120℃保留5min,5℃/min升温至140℃,保留2min。Further, the gas chromatographic detection conditions are as follows: Shimadzu gas phase GC-14, chromatographic column Astec CHIRALDEX TM G-TA, carrier gas is helium, split ratio is 20:1, and the temperature of the inlet and detector is 220°C. ℃, the GC program is 120°C for 5 minutes, 5°C/min to 140°C, and hold for 2 minutes.
进一步,标准曲线按如下方法制备:用蒸馏水配制0.2~2.0mM的叠氮化钠水溶液,分别向2ml EP管中加入500μl不同浓度的叠氮化钠水溶液,450μl环氧丁烷溶液和50μl卤醇脱卤酶粗酶液,在40℃,500rpm,反应30min,分别向EP管中加入1ml乙酸乙酯进行萃取,取上层有机相800μl,经无水硫酸钠干燥后采用气相检测4-叠氮-3-羟基丁醇的峰面积,以叠氮化钠浓度为横坐标,以4-叠氮-3-羟基丁醇的峰面积为纵坐标,获得叠氮化钠标准曲线;所述卤醇脱卤酶粗酶液为卤醇脱卤酶经发酵培养获得的湿菌体超声破碎后的上清液,所述粗酶液的浓度以超声破碎前湿菌体重量计为0.1g/ml;所述环氧丁烷溶液是用200mM、pH 7.5的PBS缓冲液配制的200mM环氧丁烷溶液,氰化钠标准曲线的制作同叠氮化钠标准曲线。Further, the standard curve is prepared as follows: prepare 0.2-2.0 mM sodium azide aqueous solution with distilled water, add 500 μl of sodium azide aqueous solution of different concentrations, 450 μl of butylene oxide solution and 50 μl of halohydrin into 2ml EP tubes Dehalogenase crude enzyme solution, at 40°C, 500rpm, react for 30min, add 1ml of ethyl acetate to the EP tube for extraction, take 800μl of the upper organic phase, dry it with anhydrous sodium sulfate, and use gas phase to detect 4-azide- The peak area of 3-hydroxybutanol, taking the concentration of sodium azide as the abscissa, and the peak area of 4-azido-3-hydroxybutanol as the ordinate, obtains the sodium azide standard curve; The crude enzyme liquid of halogenase is the supernatant liquid obtained by fermenting and culturing wet cells of halohydrin dehalogenase after ultrasonic crushing, and the concentration of the crude enzyme liquid is 0.1 g/ml based on the weight of wet cells before ultrasonic crushing; Described butylene oxide solution is the 200mM butylene oxide solution prepared with the PBS damping fluid of 200mM, pH 7.5, and the making of sodium cyanide standard curve is the same as sodium azide standard curve.
进一步,环氧化物为环氧丁烷或环氧辛烷。Further, the epoxide is butylene oxide or octene oxide.
进一步,环氧化物的用量为0.1mol/L水样。Further, the dosage of epoxide is 0.1mol/L water sample.
进一步,催化剂的制备方法为:将含卤醇脱卤醇编码基因的重组基因工程菌接种在含终浓度50μg/ml的氨苄青霉素的LB培养基中,置于37℃摇床中培养至OD600达到0.6~0.8时,加入终浓度0.2mM异丙基硫代半乳糖苷,在28℃摇床诱导12-14小时,9000rpm离心10分钟,弃上清,离心获得的湿菌体按照0.1g/L的比例混悬于100mM的磷酸缓冲液中,50%功率超声破碎30min,破碎混合液在12000rpm离心20分钟,收集上清,获得含有卤醇脱卤酶的粗酶液,即为催化剂。Further, the preparation method of the catalyst is as follows: inoculate the recombinant genetically engineered bacteria containing the coding gene of halohydrin dehalohydrin in LB medium containing ampicillin at a final concentration of 50 μg/ml, and culture it in a shaker at 37°C to OD 600 When it reaches 0.6-0.8, add the final concentration of 0.2mM isopropyl thiogalactopyranoside, induce on a shaker at 28°C for 12-14 hours, centrifuge at 9000rpm for 10 minutes, discard the supernatant, and centrifuge the wet cells obtained at a rate of 0.1g/ The ratio of L was suspended in 100 mM phosphate buffer, ultrasonically crushed at 50% power for 30 minutes, the crushed mixture was centrifuged at 12000 rpm for 20 minutes, and the supernatant was collected to obtain a crude enzyme solution containing halohydrin dehalogenase, which was the catalyst.
本发明检测方法是要测定叠氮离子和氰离子的含量,所以只要保证足量的卤醇脱卤酶,使得叠氮离子和氰离子完全转化就可以,本发明粗酶液中卤醇脱卤酶纯酶质量约占30%左右。The detection method of the present invention is to determine the content of azide ions and cyanide ions, so as long as sufficient halohydrin dehalogenase is ensured to completely convert azide ions and cyanide ions, the halohydrin dehalogenation in the crude enzyme liquid of the present invention The quality of pure enzyme accounts for about 30%.
本发明叠氮离子和氰离子的定量检测方法包括:(1)利用卤醇脱卤酶催化样品中的叠氮离子或氰离子与环氧化物(优选环氧丁烷)反应,将叠氮离子或氰离子转化为对应的4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇;(2)利用气相色谱定量检测4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇含量,进而确定水中叠氮离子和氰离子的含量。The quantitative detection method of azide ion and cyanide ion of the present invention comprises: (1) utilize halohydrin dehalogenase to catalyze the reaction of azide ion or cyanide ion in the sample and epoxide (preferably butylene oxide), and azide ion Or cyanide ion is converted into corresponding 4-azido-3-hydroxybutanol or 4-cyano-3-hydroxybutanol; (2) Utilize gas chromatography to quantitatively detect 4-azido-3-hydroxybutanol or 4- The content of cyano-3-hydroxybutanol, and then determine the content of azide ion and cyanide ion in water.
本发明利用生物催化法,将水中的无机离子(叠氮离子或氰离子)转化为可用气相分析的有机化合物,其反应原理如下式所示:The present invention utilizes biocatalysis to convert inorganic ions (azide ions or cyanide ions) in water into organic compounds that can be analyzed by gas phase. The reaction principle is shown in the following formula:
式中HHDH表示卤醇脱卤酶(halohydrin dehalogenase)。In the formula, HHDH represents halohydrin dehalogenase (halohydrin dehalogenase).
为保证所测数据的准确性,从标准曲线绘制到待测溶液浓度测定的过程中,对于不同浓度的标准曲线溶液和待测溶液,其测定过程中各步骤操作参数完全相同。In order to ensure the accuracy of the measured data, during the process from the drawing of the standard curve to the determination of the concentration of the solution to be tested, for the standard curve solution and the solution to be tested with different concentrations, the operating parameters of each step in the determination process are exactly the same.
所测待测溶液浓度需在所绘制的标准曲线浓度范围内,测得数据才是准确的,若待测溶液浓度超出标准曲线的浓度范围,则有可能不符合其线性关系,此时可将待测溶液稀释或者浓缩之后进行检测,直至所测得浓度在标准曲线浓度范围内为止。The measured concentration of the solution to be tested must be within the concentration range of the standard curve drawn, and the measured data is accurate. If the concentration of the solution to be tested exceeds the concentration range of the standard curve, it may not conform to its linear relationship. At this time, the After the solution to be tested is diluted or concentrated, it is detected until the measured concentration is within the concentration range of the standard curve.
本发明的有效效果主要体现在:本发明方法准确性好,可以检测叠氮离子和氰离子的最低浓度分别为0.1mM和0.3mM;同时,该发明方法重现性好、灵敏度高,其测定的叠氮离子和氰离子浓度的标准曲线的R2分别为0.997和0.995,该发明方法可用于环境污水,工业废水以及饮用水等各种样品中的叠氮离子或氰离子的浓度测定。The effective effect of the present invention is mainly reflected in: the method of the present invention has good accuracy, and the minimum concentrations that can detect azide ion and cyanide ion are respectively 0.1mM and 0.3mM; meanwhile, the method of the invention has good reproducibility and high sensitivity, and its determination The R2 of the standard curve of the azide ion and cyanide ion concentration is 0.997 and 0.995 respectively, and the inventive method can be used for the concentration determination of the azide ion or cyanide ion in various samples such as environmental sewage, industrial waste water and drinking water.
(四)附图说明(4) Description of drawings
图1为4-叠氮-3-羟基丁醇和叠氮化钠的标准曲线。Figure 1 is a standard curve of 4-azido-3-hydroxybutanol and sodium azide.
图2为4-氰基-3-羟基丁醇和氰化钠的标准曲线。Fig. 2 is the standard curve of 4-cyano-3-hydroxybutanol and sodium cyanide.
图3为氯离子和溴离子对叠氮离子和氰离子检测的影响。Figure 3 shows the effect of chloride and bromide ions on the detection of azide and cyanide ions.
图4为硫氰根离子对叠氮离子和氰离子检测的影响。Figure 4 shows the effect of thiocyanate ion on the detection of azide ion and cyanide ion.
图5为氰酸根离子对叠氮离子和氰离子检测的影响。Figure 5 shows the effect of cyanate ion on the detection of azide ion and cyanide ion.
图6为亚硝酸根离子对叠氮离子和氰离子检测的影响。Figure 6 shows the effect of nitrite ions on the detection of azide ions and cyanide ions.
(五)具体实施方式(5) Specific implementation methods
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:The present invention is further described below in conjunction with specific embodiment, but protection scope of the present invention is not limited thereto:
实施例1:制备卤醇脱卤酶Embodiment 1: Preparation of halohydrin dehalogenase
卤醇脱卤酶基因SEQ ID NO.1,利用基因工程技术,实现其在大肠杆菌BL21(DE3)中表达,该卤醇脱卤醇的氨基酸序列为SEQ ID NO.2(构建方案见RSC Adv.,2014,4,64027-64031)。将含SEQ ID NO.1所示卤醇脱卤酶基因的重组基因工程菌接种在含终浓度50μg/ml的氨苄青霉素的LB培养基中,置于37℃摇床中培养,待OD600达到0.6~0.8时,加入0.2mM异丙基硫代半乳糖苷,转移至28℃摇床诱导12-14小时。离心9000rpm×10分钟,弃上清。离心获得的湿菌体按照1/10(wt/vol)比例加入100mM的磷酸缓冲液。50%功率超声破碎30min,离心12000rpm×20分钟,收集上清,即为含有卤醇脱卤酶的粗酶液(每毫升粗酶液相当于0.1g湿菌体破碎后获得),可置于冰箱-4℃保藏,其活力在冻存的情况下几乎没有损失。The halohydrin dehalogenase gene SEQ ID NO.1 is expressed in Escherichia coli BL21 (DE3) by using genetic engineering technology. The amino acid sequence of the halohydrin dehalohydrin is SEQ ID NO.2 (see RSC Adv ., 2014, 4, 64027-64031). Inoculate the recombinant genetically engineered bacteria containing the halohydrin dehalogenase gene shown in SEQ ID NO.1 in LB medium containing ampicillin at a final concentration of 50 μg/ml, and culture it in a shaker at 37°C until the OD 600 reaches At 0.6 to 0.8, add 0.2 mM isopropyl thiogalactoside and transfer to a shaker at 28°C for induction for 12-14 hours. Centrifuge at 9000 rpm for 10 minutes and discard the supernatant. The wet cells obtained by centrifugation were added with 100 mM phosphate buffer at a ratio of 1/10 (wt/vol). Sonicate at 50% power for 30 minutes, centrifuge at 12000 rpm × 20 minutes, collect the supernatant, which is the crude enzyme solution containing halohydrin dehalogenase (each milliliter of crude enzyme solution is equivalent to 0.1g of wet bacterial cell crushing), which can be placed in Stored in the refrigerator at -4°C, there is almost no loss of its activity in the case of frozen storage.
实施例2:制备4-叠氮-3-羟基丁醇和4-氰基-3-羟基丁醇Embodiment 2: Preparation of 4-azido-3-hydroxybutanol and 4-cyano-3-hydroxybutanol
为了确定叠氮离子和氰离子经卤醇脱卤酶催化环氧丁烷开环会形成对应的4-叠氮-3-羟基丁醇和4-氰基-3-羟基丁醇,首先我们利用卤醇脱卤酶催化制备4-叠氮-3-羟基丁醇和4-氰基-3-羟基丁醇。In order to confirm that the azide ion and cyanide ion will form the corresponding 4-azido-3-hydroxybutanol and 4-cyano-3-hydroxybutanol through halohydrin dehalogenase-catalyzed ring opening of butylene oxide, first we use the halogen Alcohol dehalogenase catalyzes the production of 4-azido-3-hydroxybutanol and 4-cyano-3-hydroxybutanol.
制备4-叠氮-3-羟基丁醇:向250ml反应釜中加入100ml PBS(200mM,pH7.5),1ml(0.017mol)环氧丁烷,2g(0.03mol)叠氮化钠和8g卤醇脱卤酶湿菌体(实施例1制备)。将体系的温度升至40℃,搅拌200rpm。用气相监测反应过程,待环氧丁烷转化率大于99%时,停止反应。离心9000rpm×10分钟,上清液用200ml乙酸乙酯萃取一次,分离有机相经无水硫酸钠干燥后,减压蒸馏至没有溶剂流出,获得黄色液体物质4-叠氮-3-羟基丁醇。NMR表征:1H NMR(500MHz,CDCl3)δ3.71-3.37(dd,J=5.8,3.3Hz,1H),3.29(dd,J=12.4,3.3Hz,1H),3.27-3.25(dd,J=12.4,7.4Hz,1H),2.05(s,1H),1.55-1.52(m,2H),1.00-0.97(t,J=7.5Hz,3H)。13C NMR(126MHz,CDCl3)δ72.28,56.71,56.71,27.30,9.63。Preparation of 4-azido-3-hydroxybutanol: Add 100ml PBS (200mM, pH7.5), 1ml (0.017mol) butylene oxide, 2g (0.03mol) sodium azide and 8g halide to a 250ml reactor Alcohol dehalogenase wet cells (prepared in Example 1). The temperature of the system was raised to 40° C. and stirred at 200 rpm. The reaction process is monitored by gas phase, and the reaction is stopped when the conversion rate of butylene oxide is greater than 99%. Centrifuge at 9000rpm for 10 minutes, extract the supernatant once with 200ml ethyl acetate, separate the organic phase and dry it over anhydrous sodium sulfate, distill under reduced pressure until no solvent flows out, and obtain the yellow liquid substance 4-azido-3-hydroxybutanol . NMR characterization: 1 H NMR (500MHz, CDCl 3 ) δ3.71-3.37 (dd, J=5.8, 3.3Hz, 1H), 3.29 (dd, J=12.4, 3.3Hz, 1H), 3.27-3.25 (dd, J=12.4, 7.4Hz, 1H), 2.05(s, 1H), 1.55-1.52(m, 2H), 1.00-0.97(t, J=7.5Hz, 3H). 13 C NMR (126 MHz, CDCl 3 ) δ 72.28, 56.71, 56.71, 27.30, 9.63.
制备4-氰基-3-羟基丁醇:向250ml反应釜中加入100ml PBS(200mM,pH7.5),1ml(0.017mol)环氧丁烷,1.5g(0.03mol)叠氮化钠和8g卤醇脱卤酶湿菌体(实施例1制备)。将体系的温度升至40℃,搅拌200rpm。用气相监测反应过程,待环氧丁烷转化率大于99%时,停止反应。离心9000rpm×10分钟,上清液用200ml乙酸乙酯萃取一次,分离有机相经无水硫酸钠干燥后,减压蒸馏至没有溶剂流出,获得黄色液体物质4-氰基-3-羟基丁醇。NMR表征:1H NMR(500MHz,CDCl3)δ3.89-3.86(dd,J=6.1,5.0Hz,1H),2.56-2.47(m,3H),1.64-1.61(m,2H),1.00-0.97(t,J=7.5Hz,3H)。13C NMR(126MHz,CDCl3)δ117.92,69.14,29.28,25.57,9.90。Preparation of 4-cyano-3-hydroxybutanol: Add 100ml PBS (200mM, pH7.5), 1ml (0.017mol) butylene oxide, 1.5g (0.03mol) sodium azide and 8g Halohydrin dehalogenase wet cells (prepared in Example 1). The temperature of the system was raised to 40° C. and stirred at 200 rpm. The reaction process is monitored by gas phase, and the reaction is stopped when the conversion rate of butylene oxide is greater than 99%. Centrifuge at 9000rpm for 10 minutes, extract the supernatant once with 200ml ethyl acetate, separate the organic phase and dry it over anhydrous sodium sulfate, distill under reduced pressure until no solvent flows out, and obtain the yellow liquid substance 4-cyano-3-hydroxybutanol . NMR characterization: 1 H NMR (500MHz, CDCl 3 ) δ3.89-3.86 (dd, J=6.1, 5.0Hz, 1H), 2.56-2.47 (m, 3H), 1.64-1.61 (m, 2H), 1.00- 0.97 (t, J=7.5Hz, 3H). 13 C NMR (126 MHz, CDCl 3 ) δ 117.92, 69.14, 29.28, 25.57, 9.90.
气相检测环氧丁烷:安捷伦GC-7890A,色谱柱HP-5,载气为氮气,进样口和检测器的温度分别为230℃和250℃,GC程序为,60℃保留4min,20℃/min升温至120℃。环氧丁烷的保留时间为2.7min。Gas phase detection of butylene oxide: Agilent GC-7890A, chromatographic column HP-5, carrier gas is nitrogen, the temperature of the inlet and detector is 230°C and 250°C respectively, the GC program is 60°C for 4min, 20°C /min to 120°C. The retention time of butylene oxide is 2.7min.
实施例3:4-叠氮-3-羟基丁醇和4-氰基-3-羟基丁醇气相检测方法的建立Example 3: Establishment of gas phase detection method for 4-azido-3-hydroxybutanol and 4-cyano-3-hydroxybutanol
4-叠氮-3-羟基丁醇和4-氰基-3-羟基丁醇采用日本岛津气相GC-14,色谱柱Astec CHIRALDEXTM G-TA,载气为氦气,分流比为20:1,进样口和检测器的温度均为220℃,GC程序为120℃保留5min,5℃/min升温至140℃,保留2min。4-叠氮-3-羟基丁醇和4-氰基-3-羟基丁醇的保留时间分别为4.62min和7.56min。4-Azido-3-hydroxybutanol and 4-cyano-3-hydroxybutanol were used Shimadzu gas phase GC-14, the chromatographic column Astec CHIRALDEX TM G-TA, the carrier gas was helium, and the split ratio was 20:1 , the temperature of the injection port and the detector is 220°C, the GC program is 120°C for 5 minutes, 5°C/min to 140°C, and hold for 2 minutes. The retention times of 4-azido-3-hydroxybutanol and 4-cyano-3-hydroxybutanol were 4.62min and 7.56min, respectively.
实施例4:绘制叠氮离子和氰离子的标准曲线Embodiment 4: draw the standard curve of azide ion and cyanide ion
本发明方法的关键是要保证待测样品中的叠氮离子和氰离子要完全转化为对应的取代醇,因此我们要考虑以下几个方面:(1)需要过量的环氧丁烷底物,(2)足量的卤醇脱卤酶,(3)卤醇脱卤酶催化的最佳条件。鉴于以上几点考虑,我们确立了以下测定方案:The key of the inventive method is to guarantee that the azide ion and the cyanide ion in the sample to be tested will be completely converted into corresponding substituted alcohols, so we will consider the following aspects: (1) need excessive butylene oxide substrate, (2) Sufficient amount of halohydrin dehalogenase, (3) optimal conditions for the catalysis of the halohydrin dehalogenase. In view of the above considerations, we have established the following measurement scheme:
准备200mM的环氧丁烷溶液,用200mM(pH 7.5)PBS缓冲液作为溶剂配制。Prepare 200mM butylene oxide solution and use 200mM (pH 7.5) PBS buffer as solvent.
准备卤醇脱卤酶粗酶液,用实施例1制备的卤醇脱卤酶粗酶液。Prepare the crude halohydrin dehalogenase enzyme liquid, using the crude halohydrin dehalogenase enzyme liquid prepared in Example 1.
(1)4-叠氮-3-羟基丁醇标准曲线:用蒸馏水配制0.1mM、0.2mM、0.3mM、0.4mM、0.5mM和1.0mM的4-叠氮-3-羟基丁醇水溶液,取不同浓度的4-叠氮-3-羟基丁醇水溶液各1ml,分别加入到不同的2ml EP管中,随后分别加入1ml乙酸乙酯进行萃取。取上层有机相800μl,经无水硫酸钠干燥后,进行气相检测(检测条件同实施例3),以4-叠氮-3-羟基丁醇浓度为横坐标,以4-叠氮-3-羟基丁醇峰面积为纵坐标,4-叠氮-3-羟基丁醇标准曲线为y=3375.33x-42.03(R2=0.996),见图1。(1) 4-azido-3-hydroxybutanol standard curve: prepare 0.1mM, 0.2mM, 0.3mM, 0.4mM, 0.5mM and 1.0mM 4-azido-3-hydroxybutanol aqueous solution with distilled water, take 1ml of 4-azido-3-hydroxybutanol aqueous solutions with different concentrations were added to different 2ml EP tubes, and then 1ml of ethyl acetate was added for extraction. Take 800 μ l of the upper organic phase, dry it over anhydrous sodium sulfate, and carry out gas phase detection (detection conditions are the same as in Example 3), with the concentration of 4-azido-3-hydroxybutanol as the abscissa and the concentration of 4-azido-3- The peak area of hydroxybutanol is the ordinate, and the standard curve of 4-azido-3-hydroxybutanol is y=3375.33x-42.03 (R 2 =0.996), see FIG. 1 .
(2)叠氮化钠标准曲线:用蒸馏水配制0.2mM、0.4mM、0.6mM、0.8mM、1.0mM和2.0mM的叠氮化钠水溶液作为待测水样,分别向2mlEP管中加入500μl不同浓度的叠氮化钠水溶液,450μl环氧丁烷溶液和50μl的卤醇脱卤酶粗酶液。置于Thermomixer反应器,40℃,500rpm,反应30min。分别向EP管中加入1ml乙酸乙酯萃取,取上层有机相800μl经无水硫酸钠干燥后,气相检测4-叠氮-3-羟基丁醇峰面积(条件见实施例3)。以4-叠氮-3-羟基丁醇峰面积为纵坐标,以叠氮化钠浓度为横坐标,制作叠氮化钠的标准曲线y=3306.37x-20.11(R2=0.997)(见图1)。(2) Sodium azide standard curve: prepare 0.2mM, 0.4mM, 0.6mM, 0.8mM, 1.0mM and 2.0mM sodium azide aqueous solutions with distilled water as the water samples to be tested, and add 500μl of different concentration of sodium azide aqueous solution, 450 μl of butylene oxide solution and 50 μl of halohydrin dehalogenase crude enzyme solution. Place in a Thermomixer reactor at 40°C, 500rpm, and react for 30min. Add 1 ml of ethyl acetate to the EP tubes for extraction, take 800 μl of the upper organic phase and dry it over anhydrous sodium sulfate, and detect the peak area of 4-azido-3-hydroxybutanol by gas phase (see Example 3 for the conditions). Taking the peak area of 4-azido-3-hydroxybutanol as the ordinate and the concentration of sodium azide as the abscissa, make the standard curve y=3306.37x-20.11 (R 2 =0.997) of sodium azide (see figure 1).
(3)4-氰基-3-羟基丁醇标准曲线:用蒸馏水配制0.3mM、0.6mM、0.9mM、1.2mM、1.5mM和2.0mM的4-氰基-3-羟基丁醇水溶液,取不同浓度的4-氰基-3-羟基丁醇水溶液各1ml,分别加入到不同的2ml EP管中,随后分别加入1ml乙酸乙酯进行萃取。取上层有机相800μl,经无水硫酸钠干燥后,进行气相检测(见实施例3)。以4-氰基-3-羟基丁醇的浓度为横坐标,以峰面积为纵坐标,4-氰基-3-羟基丁醇的标准曲线为y=1518.46x-67.52(R2=0.993)(见图2)。(3) 4-cyano-3-hydroxybutanol standard curve: prepare 0.3mM, 0.6mM, 0.9mM, 1.2mM, 1.5mM and 2.0mM 4-cyano-3-hydroxybutanol aqueous solution with distilled water, take 1ml of 4-cyano-3-hydroxybutanol aqueous solutions with different concentrations were added to different 2ml EP tubes, and then 1ml of ethyl acetate was added for extraction. Take 800 μl of the upper organic phase, dry it over anhydrous sodium sulfate, and perform gas phase detection (see Example 3). Taking the concentration of 4-cyano-3-hydroxybutanol as the abscissa and the peak area as the ordinate, the standard curve of 4-cyano-3-hydroxybutanol is y=1518.46x-67.52 (R 2 =0.993) (See Figure 2).
(4)氰化钠标准曲线:用蒸馏水配制0.6mM、1.2mM、1.8mM、2.4mM、3.0mM和4.0mM的氰化钠水溶液,向2ml EP管中加入500μl不同浓度的氰化钠水溶液,450μl环氧丁烷溶液和50μl的卤醇脱卤酶粗酶液。置于Thermomixer反应器,40℃,500rpm,反应30min。向EP管中加入1ml乙酸乙酯萃取,取上层有机相800μl经无水硫酸钠干燥后,进行气相检测4-氰基-3-羟基丁醇峰面积(见实施例3)。以氰化钠浓度为横坐标,以4-氰基-3-羟基丁醇峰面积为纵坐标,氰化钠的标准曲线为y=1371.50x-40.75(R2=0.995)(见图2)。(4) Sodium cyanide standard curve: Prepare 0.6mM, 1.2mM, 1.8mM, 2.4mM, 3.0mM and 4.0mM sodium cyanide aqueous solutions with distilled water, add 500μl sodium cyanide aqueous solutions of different concentrations to 2ml EP tubes, 450 μl of butylene oxide solution and 50 μl of halohydrin dehalogenase crude enzyme solution. Place in a Thermomixer reactor at 40°C, 500rpm, and react for 30min. Add 1ml of ethyl acetate to the EP tube for extraction, take 800 μl of the upper organic phase and dry it over anhydrous sodium sulfate, then perform gas phase detection of the peak area of 4-cyano-3-hydroxybutanol (see Example 3). Taking the sodium cyanide concentration as the abscissa and the 4-cyano-3-hydroxybutanol peak area as the ordinate, the standard curve of sodium cyanide is y=1371.50x-40.75 (R 2 =0.995) (see Figure 2) .
图2可以看出,氰化钠的标准曲线与4-氰基-3-羟基丁醇的标准曲线的线性关系相似,说明建立的氰化钠的标准曲线是准确可行的。As can be seen from Fig. 2, the linear relationship between the standard curve of sodium cyanide and the standard curve of 4-cyano-3-hydroxybutanol is similar, indicating that the standard curve of sodium cyanide established is accurate and feasible.
实施例5:利用卤醇脱卤酶测定叠氮离子和氰离子Embodiment 5: Determination of azide ion and cyanide ion by halohydrin dehalogenase
用蒸馏水随机配置未知浓度的叠氮化钠溶液或者氰化钠溶液10mL,作为待测的叠氮离子样品或者氰离子样品。Randomly configure 10 mL of sodium azide solution or sodium cyanide solution of unknown concentration with distilled water as the azide ion sample or cyanide ion sample to be tested.
测定方案:分别将待测样品用纯水稀释2倍、5倍和1倍,向2ml EP管中加入500μl稀释样品溶液,450μl环氧丁烷溶液(实施例4配制)和50μl卤醇脱卤酶粗酶液(实施例1)。置于Thermomixer反应器,40℃,500rpm,反应30min。向EP管中加入1ml乙酸乙酯萃取,取上层有机相经无水硫酸钠干燥后,进行气相分析。得到的4-叠氮-3-羟基丁醇或者4-氰基-3-羟基丁醇的气相峰面积与氰化钠标准曲线或叠氮化钠标准曲线进行比较,选择峰面积在相应标准曲线峰面积范围内的稀释倍数,获得待测水样中叠氮离子或者氰离子的浓度,结果如表1所示。Determination scheme: Dilute the sample to be tested by 2 times, 5 times and 1 time with pure water respectively, add 500 μl of diluted sample solution, 450 μl of butylene oxide solution (prepared in Example 4) and 50 μl of haloalcohol dehalogenation to a 2ml EP tube Enzyme crude enzyme liquid (embodiment 1). Place in a Thermomixer reactor at 40°C, 500rpm, and react for 30min. Add 1ml of ethyl acetate to the EP tube for extraction, take the upper organic phase and dry it over anhydrous sodium sulfate for gas phase analysis. The gas phase peak area of the obtained 4-azido-3-hydroxybutanol or 4-cyano-3-hydroxybutanol is compared with the sodium cyanide standard curve or the sodium azide standard curve, and the selected peak area is in the corresponding standard curve. The dilution factor within the peak area range is used to obtain the concentration of azide ion or cyanide ion in the water sample to be tested, and the results are shown in Table 1.
表1叠氮离子和氰离子浓度的测定Table 1 Determination of azide ion and cyanide ion concentration
[a]实际浓度以稀释10的峰面积计算,稀释5倍和2倍的峰面积均超出叠氮化钠的标准曲线,计算公式(1)为: [a] The actual concentration is calculated based on the peak area diluted by 10, and the peak areas diluted by 5 times and 2 times all exceed the standard curve of sodium azide, and the calculation formula (1) is:
X[实际浓度]=((Y[峰面积]+20.11)/3306.37)×2[反应稀释的倍数]×10[样品稀释的倍数] X [actual concentration] = ((Y [peak area] +20.11)/3306.37) × 2 [multiple of reaction dilution] × 10 [multiple of sample dilution]
公式(1)中X[实际浓度]为测量的实际浓度,Y[峰面积]为4-叠氮-3-羟基丁醇峰面积,2[反应稀释的倍数]指500ul水样,反应终体积是1mL,即稀释了2倍。In the formula (1), X [actual concentration] is the actual concentration measured, Y [peak area] is the peak area of 4-azido-3-hydroxybutanol, 2 [multiple of reaction dilution] refers to 500ul water sample, and the final volume of reaction It is 1 mL, that is, it is diluted 2 times.
[b]实际浓度以稀释10的峰面积计算,也可以稀释5倍的峰面积计算,稀释2倍的峰面积超出氰化钠的标准曲线。计算公式(2)为: [b] The actual concentration is calculated based on the peak area diluted 10, or the peak area diluted 5 times, and the peak area diluted 2 times exceeds the standard curve of sodium cyanide. Calculation formula (2) is:
X[实际浓度]=((Y[峰面积]+67.52)/1515.46)×2[反应稀释的倍数]×10[样品稀释的倍数] X [actual concentration] = ((Y [peak area] +67.52)/1515.46) × 2 [multiple of reaction dilution] × 10 [multiple of sample dilution]
公式(2)中X[实际浓度]为测量的实际浓度,Y[峰面积]为4-氰基-3-羟基丁醇峰面积,2[反应稀释的倍数]指500ul水样,反应终体积是1mL,即稀释了2倍。In the formula (2), X [actual concentration] is the actual concentration measured, Y [peak area] is the peak area of 4-cyano-3-hydroxybutanol, 2 [multiple of reaction dilution] refers to 500ul water sample, and the final volume of reaction It is 1 mL, that is, it is diluted 2 times.
实施例6:金属离子和去污剂对卤醇脱卤酶活力的影响Example 6: Effects of metal ions and detergents on the activity of halohydrin dehalogenase
考虑到待检测样品中会存在一些金属离子和去污剂如Tween 80和Tween 20,本发明也考察了部分金属离子和去污剂对卤醇脱卤酶催化反应的影响。用蒸馏水配制不容浓度的试剂溶液(见表1)和50mM的1,3-二氯-2-丙醇水溶液,用卤醇脱卤酶粗酶液(实施例1)做催化反应。向2ml EP管中加入500μl试剂溶液,450μl 50mM的1,3-二氯-2-丙醇水溶液和50μl卤醇脱卤酶粗酶液。置于Thermomixer反应器,40℃,500rpm,反应10min。对照反应用500μl蒸馏水代替试剂溶液。用产物环氧氯丙烷的生产量计算各个条件下的相对活力。酶活定义为在40℃,pH 7.5的反应条件下,每分钟催化1μmol环氧氯丙烷合成所需要的酶量为1个酶活单位。Considering that there will be some metal ions and detergents such as Tween 80 and Tween 20 in the sample to be detected, the present invention also investigates the influence of some metal ions and detergents on the catalyzed reaction of halohydrin dehalogenase. Distilled water was used to prepare a reagent solution (see Table 1) and a 50 mM 1,3-dichloro-2-propanol aqueous solution with distilled water, and a crude halohydrin dehalogenase solution (Example 1) was used to catalyze the reaction. Add 500μl reagent solution, 450μl 50mM 1,3-dichloro-2-propanol aqueous solution and 50μl halohydrin dehalogenase crude enzyme solution to 2ml EP tube. Place in a Thermomixer reactor at 40° C., 500 rpm, and react for 10 minutes. For control reactions, 500 μl of distilled water was used instead of the reagent solution. The relative activity under each condition was calculated using the production amount of the product epichlorohydrin. Enzyme activity is defined as the amount of enzyme required to catalyze the synthesis of 1 μmol of epichlorohydrin per minute under the reaction conditions of 40°C and pH 7.5, which is 1 enzyme activity unit.
如表2所示,Fe3+、Ba2+、Al3+和Cu2+对卤醇脱卤酶的活力有较强的抑制作用,而EDTA对卤醇脱卤酶活力只有轻微的影响。因此,在实际测定的过程中,为了保证高效的卤醇脱卤酶活力,可以用EDTA试剂去除金属离子,如此可以保证测定反应的准确性。1,3-二氯-2-丙醇和环氧氯丙烷的气相检测用实施例2的气相方法,1,3-二氯-2-丙醇和环氧氯丙烷的保留时间分别为4.04min和6.41min。As shown in Table 2, Fe 3+ , Ba 2+ , Al 3+ and Cu 2+ have a strong inhibitory effect on the activity of halohydrin dehalogenase, while EDTA has only a slight effect on the activity of halohydrin dehalogenase. Therefore, in the actual determination process, in order to ensure the high-efficiency halohydrin dehalogenase activity, EDTA reagent can be used to remove metal ions, so as to ensure the accuracy of the determination reaction. 1,3-dichloro-2-propanol and epichlorohydrin gas-phase detection with the gas-phase method of embodiment 2, the retention times of 1,3-dichloro-2-propanol and epichlorohydrin are respectively 4.04min and 6.41 min.
表2.金属离子和去污剂对卤醇脱卤酶催化活力的影响Table 2. Effects of metal ions and detergents on the catalytic activity of halohydrin dehalogenases
实施例7:氯离子、溴离子、亚硝酸根、硫氰根和氰酸根对检测的影响Embodiment 7: the impact of chloride ion, bromide ion, nitrite, thiocyanate and cyanate on detection
考虑到卤醇脱卤酶也可以催化氯离子、溴离子、亚硝酸根、硫氰根和氰酸根与环氧化物进行反应,因此,本发明也考察了氯离子、溴离子、亚硝酸根、硫氰根和氰酸根对叠氮离子和氰离子检测的影响。Considering that halohydrin dehalogenase can also catalyze the reaction of chloride ion, bromide ion, nitrite, thiocyanate and cyanate with epoxide, therefore, the present invention also investigates chloride ion, bromide ion, nitrite ion, The effect of thiocyanate and cyanate on the detection of azide and cyanide ions.
分别配制20mM的氯化钠、溴化钠、亚硝酸钠、硫氰化钠和氰酸钠水溶液作为样品溶液,向2ml EP管中加入500μl上述各个样品溶液,450μl环氧丁烷溶液(200mM,实施例4配制)和50μl的卤醇脱卤酶粗酶液(实施例1)。置于Thermomixer反应器,40℃,500rpm,反应30min。向EP管中加入1ml乙酸乙酯萃取,取上层有机相经无水硫酸钠干燥。向有机相中分别加入一定量的4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇(加入量多少对本实验没有影响,主要目的是判断其它亲核试剂形成的化合物是否影响叠氮离子或者氰离子形成的化合物的检测,本实施例加入量约为500μl乙酸乙酯中加入1μl 4-叠氮-3-羟基丁醇或4-氰基-3-羟基丁醇),进行气相分析。Prepare 20mM aqueous solutions of sodium chloride, sodium bromide, sodium nitrite, sodium thiocyanate and sodium cyanate as sample solutions, add 500 μl of the above-mentioned sample solutions, 450 μl of butylene oxide solution (200 mM, Example 4) and 50 μl of halohydrin dehalogenase crude enzyme solution (Example 1). Place in a Thermomixer reactor at 40°C, 500rpm, and react for 30min. Add 1ml of ethyl acetate to the EP tube for extraction, and take the upper organic phase and dry it over anhydrous sodium sulfate. Add a certain amount of 4-azido-3-hydroxybutanol or 4-cyano-3-hydroxybutanol to the organic phase (the amount of addition has no effect on this experiment, the main purpose is to determine the compound formed by other nucleophiles) Whether it affects the detection of compounds formed by azide ions or cyanide ions, the amount added in this example is about 500 μl of ethyl acetate and 1 μl of 4-azido-3-hydroxybutanol or 4-cyano-3-hydroxybutanol) , for gas phase analysis.
观察氯化钠、溴化钠、亚硝酸钠、硫氰化钠和氰酸钠与环氧丁烷反应的产物是否对4-叠氮-3-羟基丁醇和4-氰基-3-羟基丁醇检测有影响。其中氯离子和溴离子对叠氮离子和氰离子的检测没有影响(图3),硫氰根离子对叠氮离子和氰离子的检测没有影响(图4),氰酸根离子叠氮离子和氰离子的检测没有影响(图5),亚硝酸根离子不影响叠氮离子的检测但是影响氰离子的检测(图6)。Observe whether the reaction products of sodium chloride, sodium bromide, sodium nitrite, sodium thiocyanate and sodium cyanate with butylene oxide are sensitive to 4-azido-3-hydroxybutanol and 4-cyano-3-hydroxybutanol Alcohol detection is affected. Among them, chloride ion and bromide ion have no effect on the detection of azide ion and cyanide ion (Fig. 3), thiocyanate ion has no effect on the detection of azide ion and cyanide ion (Fig. The detection of ions has no effect (Figure 5), and the nitrite ion does not affect the detection of azide ion but affects the detection of cyanide ion (Figure 6).
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510108903.6A CN104749273B (en) | 2015-03-12 | 2015-03-12 | Method for detecting azide ions or cyanide ions in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510108903.6A CN104749273B (en) | 2015-03-12 | 2015-03-12 | Method for detecting azide ions or cyanide ions in water |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104749273A true CN104749273A (en) | 2015-07-01 |
CN104749273B CN104749273B (en) | 2017-04-12 |
Family
ID=53589267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510108903.6A Active CN104749273B (en) | 2015-03-12 | 2015-03-12 | Method for detecting azide ions or cyanide ions in water |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104749273B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108918443A (en) * | 2018-07-14 | 2018-11-30 | 浙江迪特西科技有限公司 | A kind of integrated portable water-quality COD detection device |
CN116041684A (en) * | 2022-12-12 | 2023-05-02 | 西北工业大学 | A kind of core-shell multi-arm azide polyether and its preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1158054A1 (en) * | 2000-05-25 | 2001-11-28 | Rijksuniversiteit te Groningen | Enzymatic conversion of epoxides |
CN104263713A (en) * | 2014-08-29 | 2015-01-07 | 浙江工业大学 | Tistrella mobilis, halohydrin dehalogenase, gene, vector, recombinant strain and application of halohydrin dehalogenase |
CN104357468A (en) * | 2014-10-17 | 2015-02-18 | 浙江工业大学 | Parvibaculum lavamentivorans ZJB 14001, halohydrin dehalogenase enzyme gene, enzyme, engineered bacterium and application |
-
2015
- 2015-03-12 CN CN201510108903.6A patent/CN104749273B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1158054A1 (en) * | 2000-05-25 | 2001-11-28 | Rijksuniversiteit te Groningen | Enzymatic conversion of epoxides |
CN104263713A (en) * | 2014-08-29 | 2015-01-07 | 浙江工业大学 | Tistrella mobilis, halohydrin dehalogenase, gene, vector, recombinant strain and application of halohydrin dehalogenase |
CN104357468A (en) * | 2014-10-17 | 2015-02-18 | 浙江工业大学 | Parvibaculum lavamentivorans ZJB 14001, halohydrin dehalogenase enzyme gene, enzyme, engineered bacterium and application |
Non-Patent Citations (6)
Title |
---|
Enantioselective Ring Opening of Epoxides with Cyanide Catalysed Non-Racemic b-Hydroxy Nitriles;Maja Majeric´Elenkov et al.;《Adv.Synth.Catal.》;20061231;第348卷;全文 * |
Highly Enantioselective and Regioselective Biocatalytic Azidolysis of Aromatic Epoxides;Jeffrey H.Lutje Spelberg et al.;《ORGANIC LETTERS》;20011213;第3卷(第1期);全文 * |
JEFFREY H.LUTJE SPELBERG ET AL.: "Highly Enantioselective and Regioselective Biocatalytic Azidolysis of Aromatic Epoxides", 《ORGANIC LETTERS》, vol. 3, no. 1, 13 December 2001 (2001-12-13), XP 055063057, DOI: doi:10.1021/ol0067540 * |
MAJA MAJERIC´ELENKOV ET AL.: "Enantioselective Ring Opening of Epoxides with Cyanide Catalysed Non-Racemic b-Hydroxy Nitriles", 《ADV.SYNTH.CATAL.》, vol. 348, 31 December 2006 (2006-12-31) * |
多功能生物催化剂———卤醇脱卤酶的研究进展;郑楷 等;《化工学报》;20081231;第59卷(第12期);全文 * |
郑楷 等: "多功能生物催化剂———卤醇脱卤酶的研究进展", 《化工学报》, vol. 59, no. 12, 31 December 2008 (2008-12-31) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108918443A (en) * | 2018-07-14 | 2018-11-30 | 浙江迪特西科技有限公司 | A kind of integrated portable water-quality COD detection device |
CN116041684A (en) * | 2022-12-12 | 2023-05-02 | 西北工业大学 | A kind of core-shell multi-arm azide polyether and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN104749273B (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Coulon et al. | Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine | |
CN110501318B (en) | Fluorescence method for detecting alkaline phosphatase activity | |
CN103409475B (en) | A kind of method of enzymatic clarification L theanine | |
CN104749273B (en) | Method for detecting azide ions or cyanide ions in water | |
CN107271511A (en) | Detect acyltransferase polypeptide arginine deiminase biology sensor and its preparation method and application | |
CN109295038B (en) | Beta-galactosidase, coding gene and application thereof | |
CN107217046A (en) | A kind of zearalenone toxin degradation enzyme ZENdease N1 and its encoding gene and application | |
CN103290078B (en) | Method for preparing 5-aminovaleric acid by using L-lysine-2-monooxygenase and delta-valeramide hydrolase as catalysts | |
CN107475170A (en) | A kind of colibacillus engineering and its application for being used to express Pseudomonas putidas Creatininase | |
CN104212820A (en) | Enzyme with catalase activity and encoding gene of enzyme | |
CN108410843B (en) | New pullulanase, and coding gene and application thereof | |
WO2024067086A1 (en) | Bacillus licheniformis cell capable of being stably and repeatedly used for conversion and synthesis of d-allulose | |
CN105861463B (en) | Epoxysuccinate hydrolase and its carrier and application | |
CN103116024B (en) | Application and method of anti-aflatoxin universal monoclonal antibody 1C11 in aflatoxin B1 fluorescence quenching | |
CN105602913A (en) | Restructuring carbonyl reductase mutant ReCR-Mut, encoding gene, engineering bacteria and application | |
CN110407849A (en) | A kind of naphthyl fluorescent molecule and its preparation method and detection method of tyrosinase | |
CN105137099A (en) | Method for detecting total cholesterol by utilization of DeuteroheminAlaHisThrValGluLys | |
CN110857444A (en) | Preparation method of scyllo-inositol | |
CN105112468B (en) | A kind of method of multienzyme couple system preparation Chiral Amine | |
Hasebe et al. | Determinations of citric acid by differential pulse polarography with immobilized enzymes | |
Gayda et al. | Arginase-based electrochemical sensors to L-arginine assay for prediction of ethyl carbamate formation in fermented beverages | |
CN117551626B (en) | A kind of alcohol detoxifying enzyme protein capable of decomposing ethanol and acetaldehyde and its application | |
CN104730129B (en) | A kind of electrochemical method based on ethyl carbamate content in double enzyme modified electrode quick detection solution | |
CN116590248B (en) | Fungus laccase gene derived from lentinus edodes, fungus laccase and application thereof in degradation of tetracycline antibiotics | |
CN103525889B (en) | Synthetic method for Cilengitide by using thioesterase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |