CN104734502A - 一种dc-dc变换器轻载高效实现电路 - Google Patents

一种dc-dc变换器轻载高效实现电路 Download PDF

Info

Publication number
CN104734502A
CN104734502A CN201510173604.0A CN201510173604A CN104734502A CN 104734502 A CN104734502 A CN 104734502A CN 201510173604 A CN201510173604 A CN 201510173604A CN 104734502 A CN104734502 A CN 104734502A
Authority
CN
China
Prior art keywords
nand gate
converter
light load
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510173604.0A
Other languages
English (en)
Other versions
CN104734502B (zh
Inventor
朱波
施家鹏
范建林
陈雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Guobo Electronics Co.,Ltd.
Original Assignee
WST (WUXI) MICROELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WST (WUXI) MICROELECTRONIC CO Ltd filed Critical WST (WUXI) MICROELECTRONIC CO Ltd
Priority to CN201510173604.0A priority Critical patent/CN104734502B/zh
Publication of CN104734502A publication Critical patent/CN104734502A/zh
Application granted granted Critical
Publication of CN104734502B publication Critical patent/CN104734502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种DC-DC变换器轻载高效实现电路,包括计数器、触发器、时钟产生电路、延迟单元、开关控制逻辑、反相器以及与非门。本发明通过内置的计数器对轻载模式进行判定,计数值可调节让实际应用时精度更高。进入轻载后延迟单元的存在降低了开关管的切换频率,轻载逻辑信号同时关闭时钟产生电路减小了内部消耗,以此提高了DC-DC变换器的轻载效率,并且对正常工作状态不产生影响。本发明可应用于BUCK型DC-DC变换器三种轻载控制模式中,结构简单,降低使用成本,安全可靠。

Description

一种DC-DC变换器轻载高效实现电路
技术领域
本发明涉及一种应用到DC-DC变换器中,通过增加轻载时开关管的导通时间来提高DC-DC变换器效率的电路,属于DC-DC变换器技术领域。
背景技术
在日益普及的便携电子产品中,大都采用电池供电,有限的电池容量和产品功能的迅速扩展给电源管理的效率提出越来越高的要求,而集成BUCK型DC-DC变换器在很宽的输入输出电压范围内都可以保持很高的效率,使得它在很多场合成为首选的电源管理器件。
BUCK型DC-DC变换器在轻载时有三种控制模式,可以简单分成强制连续模式、跳脉冲模式、突发模式。强制连续模式的电流双向流动,效率最低,纹波最小。通过迟滞比较器检测输出电压的突发模式开关管工作的时间短,效率高,纹波最大。跳脉冲模式工作在DCM模式并跳去一些脉冲,效率和纹波介于上述两种模式之间。以上三种控制模式各有优缺点,不同的应用可以采用不同的选择。
图1是同步整流BUCK型DC-DC转换器的拓扑结构,其中Q1上管为主开关管,Q2下管为同步开关管,L1为储能电感,RL为电感串联电阻,C为滤波电容,RC为电容等效串联电阻,R为负载电阻。主开关管Q1在每个周期开始时接通,电感电流通过Q1而上升,输入端VIN的电能转换为磁能储存在电感磁场中,到达一定占空比时Q1关断,电感电流通过同步管Q2进行续流而逐渐下降,磁能转换为电能释放到输出端VOUT,完成一个周期的转换。正是有了电能和磁能之间的相互转换,通过控制磁能释放的路径和时间,实现了电压高低和极性的变换。尽管电感上的电流是随着开关周期在作周期性的变化,但在BUCK型DC-DC正常工作时,其负载电流是等于电感电流的平均值。
这种典型的BUCK型DC-DC变换器虽然工作原理简单,所用器件少,成本低,但是该电路也存在一定的问题,主要体现在此时电路中会产生一定的损耗,主要包括控制电路部分损耗,Q1、Q2的导通损耗、开关损耗,驱动Q1、Q2的损耗,死区时间损耗,外部元件损耗等。DC-DC工作在重载时,由于输出功率较大,开关管的导通损耗占主导作用,随着负载电流的降低,导通损耗明显降低,此时开关损耗和内部损耗的影响相对显现。
发明内容
本发明针对BUCK型DC-DC变换器在轻载时的工作特点,提供一种DC-DC变换器轻载高效实现电路,通过减少轻载时损耗达到有效提高效率的目的。本发明可同时应用于三种控制模式中,结构简单,降低使用成本,安全可靠。
本发明的技术方案如下:
一种DC-DC变换器轻载高效实现电路,包括计数器、触发器、时钟产生电路、延迟单元、开关控制逻辑、两个反相器以及五个与非门;计数器的输入端连接PWM信号和时钟信号,输出端连接触发器;触发器的输出端分别接于第一反相器的输入端和第一与非门的一个输入端;所述第一反相器的输出端分别接于第二与非门、第三与非门以及第四与非门的一个输入端;第一与非门的另一个输入端连接PWM信号,输出端连接第五与非门的一个输入端;第二与非门的另一个输入端连接PWM信号,输出端连接时钟产生电路,时钟产生电路输出时钟信号;第三与非门的另一个输入端连接第二反相器的输出端,第二反相器的输入端连接PWM信号,第三与非门的输出端连接延迟单元的输入端,延迟单元的输出端连接第四与非门的另一个输入端,第四与非门的输出端连接第五与非门的另一个输入端,第五与非门的输出端连接开关控制逻辑。
本发明的有益技术效果是:
本发明通过内置的计数器对轻载模式进行判定,计数值可调节也让实际应用时精度更高。进入轻载后延迟单元的存在降低了开关管的切换频率,轻载逻辑信号同时关闭时钟产生电路减小了内部消耗,以此提高了DC-DC变换器的轻载效率,并且对正常工作状态不产生影响。
本发明的优点将在下面具体实施方式部分的描述中给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是同步整流BUCK型DC-DC拓扑结构图。
图2是DC-DC主环路工作逻辑图。
图3是本发明电路原理图。
图4是轻载工作模式时的时序逻辑图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
在此对本发明的核心环节进行阐述。在通常的DC-DC变换器中,开关管为Q1,其导通电阻为RQ1。则当Q1导通时损耗可表示为:
PCOND_D1=IOUT 2*RQ1*D   (1)
其中IOUT指输出负载电流,RQ1指上管Q1的导通电阻,D为占空比。
驱动Q1的损耗(也即开关损耗)可表示为:
PSWITCH=QG*VIN*FSW=CGS1*VGS*VIN*FSW   (2)
其中CGS1为Q1的寄生栅源电容,VGS为开关管工作时的栅源电压,FSW为开关管的切换频率,VIN为电源电压。
内部电路的损耗PIN包括了固定偏置和控制逻辑的消耗。
此时总损耗为导通损耗、开关损耗、内部损耗三者之和,可表示为:
PTOTAL=PCOND_Q1+PSWITGH+PIN   (3)
从式(1)可知,在开关管尺寸和输入输出电压不变的情况下,导通损耗仅取决于输出电流,则若要降低轻载时的总损耗,关键是降低开关损耗和内部损耗,又由式(2)可知,功率管不变的情况下开关损耗依赖于切换频率的大小。而内部损耗包括了稳压电路以及时钟等控制电路的消耗,其中稳压电路部分的损耗较难降低,但控制电路在轻载时可以关闭一部分功能,以达到提高效率的目的。
故本发明的核心思路是当逻辑控制电路判定DC-DC系统工作于轻载模式时,降低开关管的切换频率,并关闭一部分控制电路。因此本发明包括轻载模式的判断电路、开关切换频率调节电路以及轻载下对时钟信号的控制电路。
图2为电流模控制的DC-DC主环路在正常工作状态下的逻辑图,而当系统工作在轻载时,开关管关断后输出电压下降较慢,即OUT_EA下降速度变慢,导致PWM信号持续为高的时间变长。本发明中的电路实现如图3所示。
如图3所示,由计数器对PWM的高电平进行计数,当其持续为高N个CLK周期后(N值随应用可调)判定为轻载。正常工作时,XSELECT信号为高电平,PWM信号通过与非门U1和U5控制开关控制逻辑,延迟单元对其不产生影响。当系统工作在轻载模式时,计数器的输出通过两级触发器后将SELECT信号置为高电平,之后SELECT信号会选通PWM_Delay的信号,使功率管每个周期都多开通一个Delay的时间。当PWM信号变低之后,SELECT信号保持为高,直到PWM_Delay上升沿来到,才关断功率管,功率管关断时会产生一个RESET信号,使用RESET信号将SELECT信号置为0,重新开始计时,当PWM信号再次连续N个周期为高时,SELECT信号再次变高,开始新的周期。在判断负载为轻载时,SELECT信号为高电平,同时PWM信号为高电平,VLIGHT为低电平,它使得时钟产生电路的OSC停止振荡,减小了DC-DC系统的内部损耗。
DC-DC系统处于轻载工作模式时的时序逻辑如图4所示。
以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的基本构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (1)

1.一种DC-DC变换器轻载高效实现电路,其特征在于,包括计数器、触发器、时钟产生电路、延迟单元、开关控制逻辑、两个反相器以及五个与非门;计数器的输入端连接PWM信号和时钟信号,输出端连接触发器;触发器的输出端分别接于第一反相器的输入端和第一与非门的一个输入端;所述第一反相器的输出端分别接于第二与非门、第三与非门以及第四与非门的一个输入端;第一与非门的另一个输入端连接PWM信号,输出端连接第五与非门的一个输入端;第二与非门的另一个输入端连接PWM信号,输出端连接时钟产生电路,时钟产生电路输出时钟信号;第三与非门的另一个输入端连接第二反相器的输出端,第二反相器的输入端连接PWM信号,第三与非门的输出端连接延迟单元的输入端,延迟单元的输出端连接第四与非门的另一个输入端,第四与非门的输出端连接第五与非门的另一个输入端,第五与非门的输出端连接开关控制逻辑。
CN201510173604.0A 2015-04-13 2015-04-13 一种dc‑dc变换器轻载高效实现电路 Active CN104734502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510173604.0A CN104734502B (zh) 2015-04-13 2015-04-13 一种dc‑dc变换器轻载高效实现电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510173604.0A CN104734502B (zh) 2015-04-13 2015-04-13 一种dc‑dc变换器轻载高效实现电路

Publications (2)

Publication Number Publication Date
CN104734502A true CN104734502A (zh) 2015-06-24
CN104734502B CN104734502B (zh) 2017-04-05

Family

ID=53458050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510173604.0A Active CN104734502B (zh) 2015-04-13 2015-04-13 一种dc‑dc变换器轻载高效实现电路

Country Status (1)

Country Link
CN (1) CN104734502B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207480A (zh) * 2015-09-21 2015-12-30 西安三馀半导体有限公司 一种轻载时低输出纹波的同步降压型dc-dc转换器
CN106787702A (zh) * 2017-01-06 2017-05-31 上海艾为电子技术股份有限公司 开关电源及其音频噪声抑制方法
CN109889045A (zh) * 2019-04-15 2019-06-14 南京能芯半导体有限公司 一种谷底电流控制的dc/dc转换器在轻载时抑制电流过冲的方法
CN110932547A (zh) * 2019-10-16 2020-03-27 重庆中易智芯科技有限责任公司 一种应用于高效率dc-dc转换器的自适应调制模式切换电路
CN110971226A (zh) * 2019-12-18 2020-04-07 思瑞浦微电子科技(苏州)股份有限公司 待机模式控制方法及控制系统
CN114079377A (zh) * 2020-08-19 2022-02-22 圣邦微电子(北京)股份有限公司 功率变换器及其控制电路和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453926A (zh) * 2002-04-24 2003-11-05 罗姆股份有限公司 开关电源装置
CN201001085Y (zh) * 2006-12-27 2008-01-02 中国科学院上海光学精密机械研究所 高效率同步整流降压型开关变换器
CN101707440A (zh) * 2009-11-12 2010-05-12 中兴通讯股份有限公司 Llc谐振变换器控制方法、同步整流控制方法及装置
CN102027679A (zh) * 2008-05-07 2011-04-20 密克罗奇普技术公司 脉宽调制空载时间补偿方法及设备
CN103219887A (zh) * 2012-03-19 2013-07-24 崇贸科技股份有限公司 用于电源转换器的省能控制器及省能方法
CN204578364U (zh) * 2015-04-13 2015-08-19 无锡新硅微电子有限公司 一种dc-dc变换器轻载高效实现电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453926A (zh) * 2002-04-24 2003-11-05 罗姆股份有限公司 开关电源装置
CN201001085Y (zh) * 2006-12-27 2008-01-02 中国科学院上海光学精密机械研究所 高效率同步整流降压型开关变换器
CN102027679A (zh) * 2008-05-07 2011-04-20 密克罗奇普技术公司 脉宽调制空载时间补偿方法及设备
CN101707440A (zh) * 2009-11-12 2010-05-12 中兴通讯股份有限公司 Llc谐振变换器控制方法、同步整流控制方法及装置
CN103219887A (zh) * 2012-03-19 2013-07-24 崇贸科技股份有限公司 用于电源转换器的省能控制器及省能方法
CN204578364U (zh) * 2015-04-13 2015-08-19 无锡新硅微电子有限公司 一种dc-dc变换器轻载高效实现电路

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207480A (zh) * 2015-09-21 2015-12-30 西安三馀半导体有限公司 一种轻载时低输出纹波的同步降压型dc-dc转换器
CN105207480B (zh) * 2015-09-21 2017-09-01 西安三馀半导体有限公司 一种轻载时低输出纹波的同步降压型dc‑dc转换器
CN106787702A (zh) * 2017-01-06 2017-05-31 上海艾为电子技术股份有限公司 开关电源及其音频噪声抑制方法
CN106787702B (zh) * 2017-01-06 2019-05-10 上海艾为电子技术股份有限公司 开关电源及其音频噪声抑制方法
CN109889045A (zh) * 2019-04-15 2019-06-14 南京能芯半导体有限公司 一种谷底电流控制的dc/dc转换器在轻载时抑制电流过冲的方法
CN109889045B (zh) * 2019-04-15 2021-06-29 南京融芯微电子有限公司 一种谷底电流控制的dc/dc转换器在轻载时抑制电流过冲的方法
CN110932547A (zh) * 2019-10-16 2020-03-27 重庆中易智芯科技有限责任公司 一种应用于高效率dc-dc转换器的自适应调制模式切换电路
CN110932547B (zh) * 2019-10-16 2022-06-21 重庆中易智芯科技有限责任公司 一种应用于高效率dc-dc转换器的自适应调制模式切换电路
CN110971226A (zh) * 2019-12-18 2020-04-07 思瑞浦微电子科技(苏州)股份有限公司 待机模式控制方法及控制系统
CN110971226B (zh) * 2019-12-18 2022-08-02 思瑞浦微电子科技(苏州)股份有限公司 待机模式控制方法及控制系统
CN114079377A (zh) * 2020-08-19 2022-02-22 圣邦微电子(北京)股份有限公司 功率变换器及其控制电路和控制方法
CN114079377B (zh) * 2020-08-19 2024-02-06 圣邦微电子(北京)股份有限公司 功率变换器及其控制电路和控制方法

Also Published As

Publication number Publication date
CN104734502B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
CN103795260B (zh) 一种非互补反激有源钳位变换器
CN104734502A (zh) 一种dc-dc变换器轻载高效实现电路
US10355606B2 (en) Quasi-resonant valley lockout without feedback reference
TWI483518B (zh) 用於接收輸入電壓的開關調製器的控制電路及在開關調製器中利用接通時間恆定體系控制主開關和低端開關的方法
CN102364859B (zh) 开关电源控制装置及包含该控制装置的反激式开关电源
US11296603B2 (en) Mode switching circuit and mode switching method for switching power supply
JP4674661B2 (ja) Dc/dcコンバータ
CN104300795A (zh) 一种反激变换器及其控制方法
CN102132478A (zh) 具有动态阈值的磁滞降压变换器
TW201635685A (zh) 功率轉換器及其控制方法
CN201846243U (zh) 一种开关电源的过零检测电路
CN113196640A (zh) 用于功率转换器中的变压器的次级侧的硬开关检测的次级绕组感测
CN102810984A (zh) 一种开关电源电路
WO2013188119A1 (en) Method for operating a non-isolated switching converter having synchronous rectification capability suitable for power factor correction applications
EP2704301B1 (en) DC-DC converter and control method thereof
US11929684B2 (en) Isolated power supply control circuits, isolated power supply and control method thereof
CN110995013A (zh) 开关电源同步整流控制电路
US20210384833A1 (en) Three-Switch Power Converter
CN204578364U (zh) 一种dc-dc变换器轻载高效实现电路
CN204517684U (zh) 一种隔离式电压变换电路和控制电路
CN101917117A (zh) 实现开关电源空载间歇性工作的电路
CN102801324A (zh) 一种直流-直流变换器副边有源吸收线路和控制方法
CN103856053A (zh) 具有过功率保护的电源控制器
TWI768888B (zh) 二級電源轉換器及操作二級轉換器的方法
CN205232027U (zh) 低功耗短路保护的降压转换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191121

Address after: 211106 No.166 Zhengfang Middle Road, Jiangning Economic and Technological Development Zone, Nanjing City, Jiangsu Province

Patentee after: Nanjing GEC Electonics Co., Ltd.

Address before: 1204, room 214028, building B, Wang Zhuang hi tech center, 4 Longshan Road, New District, Jiangsu, Wuxi

Patentee before: WST (Wuxi) Microelectronic Co., Ltd.

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: 210016 No.166, zhengfangzhong Road, moling street, Jiangning District, Nanjing City, Jiangsu Province

Patentee after: Nanjing Guobo Electronics Co.,Ltd.

Address before: 211106 No.166, Zhengfang Middle Road, Jiangning Economic and Technological Development Zone, Nanjing, Jiangsu Province

Patentee before: NANJING GUOBO ELECTRONICS Co.,Ltd.

CP03 Change of name, title or address