CN104700851A - 超高容量全像储存盘片构造 - Google Patents

超高容量全像储存盘片构造 Download PDF

Info

Publication number
CN104700851A
CN104700851A CN201410827175.XA CN201410827175A CN104700851A CN 104700851 A CN104700851 A CN 104700851A CN 201410827175 A CN201410827175 A CN 201410827175A CN 104700851 A CN104700851 A CN 104700851A
Authority
CN
China
Prior art keywords
disc
storage
full
reflection
described cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410827175.XA
Other languages
English (en)
Other versions
CN104700851B (zh
Inventor
孙庆成
余业纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Tai Gu Photoelectric Project Technology Co Ltd
Original Assignee
Qingdao Tai Gu Photoelectric Project Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Tai Gu Photoelectric Project Technology Co Ltd filed Critical Qingdao Tai Gu Photoelectric Project Technology Co Ltd
Priority to CN201410827175.XA priority Critical patent/CN104700851B/zh
Publication of CN104700851A publication Critical patent/CN104700851A/zh
Application granted granted Critical
Publication of CN104700851B publication Critical patent/CN104700851B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

本发明提供了一种超高容量的全像储存盘片构造,其中在全像储存盘片中建立由反射结构组成的腔体以限制写入光的扩散面积,增加参考光与讯号光之混合程度,增加全像储存材料之利用率。

Description

超高容量全像储存盘片构造
技术领域
本发明涉及一种超高容量的全像储存盘片构造,更具体地,涉及储存材料中具有反射腔体的全像储存盘片。
背景技术
传统的全像储存系统在储存容量上最大的限制是,在每一页写入盘片时,必定需要对一定范围的储存材料曝光,而此曝光范围往往超过信息储存所需的材料范围,因而浪费大量的感光分子。
图1显示了传统的同轴全像储存系统在记录时造成盘片中光学记录材料的曝光耗损,图1(a)为讯号光的分布范围,其中讯号光分布最窄处之宽度是经前端光学共轭处进行滤波后所达成之宽度,通常这个宽度会落于1倍至2倍奈奎斯特孔径(Nyquist Aperture)宽度之间;图1(b)为参考光分布范围;图1(c)为总体造成的曝光损耗范围。我们可以发现,曝光损耗远大于实际干涉区域,以数值孔径(NA)0.85的物镜为例,同轴系统的光分布最宽处较最窄处增加3.2T,其中T为盘片厚度。
图2显示角度多功全像储存系统的Polytopic架构在记录时造成盘片中光学记录材料的曝光耗损,图2(a)为讯号光的分布范围,其中讯号光分布最窄处之宽度约落于1倍至2倍奈奎斯特孔径(NyquistAperture)宽度之间;图2(b)为参考光分布范围,图2(c)为总体造成的曝光损耗范围。我们可以发现,曝光损耗远大于实际干涉区域,以数值孔径(NA)0.85的物镜为例,同轴系统的光分布最宽处较最窄处增加1.6T,其中T为盘片厚度。
此外,如果采取缩短物镜焦距的方式来缩小聚焦点区域,将造成参考光与讯号光的干涉比例大幅降低,无益于储存容量的提升。
奈奎斯特孔径(Nyquist Aperture)的计算公式为:
Dv=(fλ)/δv   (1)
其中,Dv为v方向上的孔径宽度,f为聚焦透镜焦距,λ为光波在介质中的波长,δv为讯号在v方向上的最小分辨率。
下面举例对此进行说明。
范例一
可见光波长可以解析的最小分辨率0.2μm进行讯号输入,物镜焦距为4mm,光波在介质中的波长为0.4μm,由此可得在物镜的聚焦平面上需要Dv=8mm的孔径才能让讯号通过系统。若取1.25倍之奈奎斯特孔径(Nyquist Aperture)宽度,可以获得孔径面积最大约需为1cm2
范例二
若以空间光调制器(SLM)进行讯号输入,则SLM的像素大小为3.5μm×3.5μm,经由中继透镜(Relay lens)3.5倍缩小成像后,可以在物镜前焦面产生1μm×1μm分辨率的输入讯号,物镜焦距为4mm,光波在介质中的波长为0.4μm,由此可得,在物镜的聚焦平面上需要1.6mm×1.6mm之孔径才能让讯号通过系统。
范例三
若物镜的入射讯号为一纯粹无调制的平面波,则此光分布的最窄处即为绕射极限的聚焦光点大小,即Dv=1/2λ,以波长为0.4μm为例,可以获得孔径面积最小约需为0.25μm2
发明内容
针对传统全像储存系统中曝光范围往往超过信息储存所需的材料范围,因而浪费大量的感光分子,本发明提供了一种超高容量的全像储存盘片构造,其中在全像储存盘片中建立由反射结构组成的腔体以限制写入光的扩散面积,增加参考光与讯号光之混合程度,增加全像储存材料之利用率。更进一步地,本发明的全像储存盘片中加入了低折射率区域或反射材质,构成入口面积相当于讯号所需最小聚焦区域大小(奈奎斯特孔径)的腔体,限制写入光的扩散面积,增加全像储存材料的利用率。
本发明提供了一种超高容量全像储存盘片,该盘片的储存材料中存在多个其侧壁具有反射能力的腔体。
优选地,该腔体的入口孔径的面积可以小于24mm2
优选地,该腔体的入口孔径的面积可以大于0.1μm2
优选地,该腔体的入口形状可以为扇形,且切向方向上的两个侧壁是以盘片中心为圆心的圆弧。
优选地,该腔体可以是沿着光盘的轨道分布的。
优选地,该腔体可以填满一半以上的盘片面积。
优选地,该盘片中可以存在与盘片表面平行的穿透基板。
优选地,该盘片中可以存在与盘片表面平行的反射层。
优选地,该腔体的一个侧壁可以是倾斜的,且其倾斜角度在±45°之间。
优选地,该腔体的其中一个方向的两面侧壁可以是平行的,另一个方向的两面侧壁可以是倾斜的,使得该腔体的内部宽度较腔体入口窄。
优选地,在该储存材料结构中,腔体中的一些的开口垂直于盘片向上,另一些的开口垂直于盘片向下。更进一步地,该腔体的开口方向(向上或向下)可以是在平行于盘片的其中一个方向上呈交错分布的。
优选地,该腔体的侧壁可以是借助反射材料形成反射,例如使用反射材质或者镀上反射镀膜。
优选地,该腔体的侧壁可以是借助全反射效应来形成反射能力的。
优选地,该盘片中的储存材料层可以是由集结成束的反射腔体经横切而形成的。
优选地,该盘片中的储存材料层中的反射腔体可以是使用模具压铸而形成的。
本发明还提供了一种超高容量全像储存盘片的制造方法,其包括以下步骤:在由光学储存材料构成的长条的表面上涂布或镀上反射材料;将所述长条集结成束并固形,形成长条集束;将所述集束横切,形成具有反射腔体的记录层;将所述记录层与盘片的其它层组合。
优选地,在组合步骤之前,还可以进行将记录层的正反两面抛光的步骤。
本发明还提供了一种超高容量全像储存盘片的制造方法,其包括以下步骤:将压模置于反射材料上方;在低真空环境下进行压铸;在高真空环境下进行脱模;在高真空环境下将尚未固化的感光材料原料液体注入反射腔体;在一般气压环境下使感光材料固化,形成记录层;将所述记录层与盘片的其它层组合。
优选地,在压铸步骤之前还可以对反射材质进行加热。
优选地,在组合步骤之前,还可以通过磨平抛光或者其它抛光方式将记录层的正反两面进行平整处理。
附图说明
图1用于显示传统的同轴全像储存系统在记录时造成的盘片中光学记录材料曝光耗损情况,其中,图1(a)为讯号光的分布范围,图1(b)为参考光的分布范围,图1(c)为总体造成的曝光损耗范围;
图2用于显示角度多功全像储存系统的Polytopic架构在记录时造成的盘片中光学记录材料曝光耗损情况,其中,图2(a)为讯号光的分布范围,图2(b)为参考光的分布范围,图2(c)为总体造成的曝光损耗范围;
图3和图4示出了根据本发明在全像储存盘片中创造的反射结构;
图5示出了根据本发明的反射腔体的入口形状为扇形;
图6示出了根据本发明的一种反射腔体结构,其中图6(a)为垂直于盘片切向的剖视图,图6(b)为垂直于盘片径向的剖视图;
图7示出了根据本发明的另一种反射腔体结构,其中图7(a)为垂直于盘片切向的剖视图,图7(b)为垂直于盘片径向的剖视图;
图8示出了根据本发明的反射腔体的入口形状为圆形;
图9示出了根据本发明的反射腔体的入口形状为矩形(包含方形);
图10示出了根据本发明的反射腔体的入口形状为三角形;
图11示出了根据本发明的反射腔体的入口形状为六边形;
图12示出了根据本发明的又一种反射腔体结构;
图13示出了根据本发明的腔体沿盘片轨道的分布;
图14至19示出了几种全像储存盘片的架构图;
图20(a)-(c)示出了根据本发明的盘片制作方法的第一实施例;其中,图20(a)示出了由光学储存材料构成的矩形长条;图20(b)示出了长条集束;图20(c)示出了经横切形成的具有反射腔体的光盘片;
图21(a)-(g)示出了根据本发明的盘片制作方法的第二实施例。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
为解决现有技术中在记录信息时盘片上记录材料的总曝光范围超过信息储存实际所需范围这一技术问题,本发明提出了一种新的全像储存盘片结构,其中在盘片中加入低折射率区域或者反射材质以形成其入口面积相当于讯号通过所需最小聚焦区域大小(奈奎斯特孔径)的腔体,使得光线入射盘片后只会被限制在该腔体范围内,从而限制写入光的扩散面积,降低曝光损耗,增加全像储存材料的利用率,提高盘片的储存容量。
图3和图4示出了根据本发明在盘片中创造的反射结构,使光线入射盘片后只会被限定在特定范围内,因此曝光区域将会被限制于特定范围之内并且进行充分的干涉,不论是对于同轴架构或是角度多功架构而言,都能够使得盘片利用率得到大幅提升。该反射结构可以为反射腔体的形式。
考虑到材料最佳利用率和盘片的巡轨方向,该腔体的入口形状可以为扇形,如图5所示,其中切向上的两个侧壁是以盘片中心为圆心的圆弧。
考虑到大量制造的成本问题,腔体的入口形状可以为圆形(如图8所示)、矩形(包含方形)(如图9所示)、三角形(如图10所示)或者六边形(如图11所示)等形状,且在形成时采取这些形状的最密堆积。腔体的入口形状也可以是梯形、L形或鸢形等其它形状。
该腔体的一个方向上的两面侧壁可以是相对平行的,另一个方向上的两面侧壁可以是相对倾斜的,使得该腔体的内部宽度比腔体入口窄。此外,该腔体的开口方向可以是垂直于盘面(轴向)向上或向下的,以构成正面写入反射腔体或者背面写入反射腔体,并且正面写入的反射腔体与背面写入的反射腔体在平行于盘片的一个方向上是交错分布的,亦即,腔体的开口方向在平行于盘片的一个方向上是交错分布的。图6示出了切向方向上两面侧壁相对倾斜的反射腔体结构,其中图6(a)为垂直于盘片切向的剖视图,图6(b)为垂直于盘片径向的剖视图。图7示出了径向方向上两面侧壁相对倾斜的反射腔体结构,其中图7(a)为垂直于盘片切向的剖视图,图7(b)为垂直于盘片径向的剖视图。
或者,该腔体的至少一侧壁与该储存盘片的法向量之间具有一夹角,且其夹角角度可以在±45°之间。
或者,该腔体的切向和径向上的侧壁可以均垂直于盘片表面,使得制造上最为容易,如图12所示。
考虑到盘片循轨的特性,该腔体可以是沿着轨道分布的,如图13所示,其中腔体入口为矩形。同样地,该矩形可以替换为梯形、圆形、鸢形、三角形、L形、或六边形等其它形状。
考虑到制作工艺和循轨的可能性,该轨道不一定要是同心圆的分布,也可以是螺旋状的分布。
优选地,该腔体可以填满盘片面积的一半以上。
该反射腔体的最小孔径需要确保所有的信息能够被重建。举例来说,虽然奈奎斯特孔径为最小的信息通过孔径,理论上腔体的最小孔径为奈奎斯特孔径。但是如果采用RLL编码,腔体还能够进一步地在讯号中RLL编码的方向上缩小孔径达Bx×By。另一方面,如果输入讯号为二阶强度或相位编码信息,其光场分布在物镜聚焦面上的分布为轴对称,因此还能够进一步缩小腔体的孔径达1/2倍Bx×By
另外,由于在将全像记录材料塑形成特定的腔体时,该腔体的侧壁需要能够将所有的讯号反射至腔体中以进行干涉,如果腔体侧壁不是平坦的镜面,则读取时需要使用参考光的共轭光进行读取;如果腔体的侧壁为平坦镜面,则使用参考光便可以进行读取。因此,该腔体的侧壁最少需要提供反射能力,如果腔体侧壁不镀上任何材质,则要求可以借助腔壁本身的全反射产生反射作用,在这种情况下,全反射条件会限制入射讯号的角度。如果腔体的侧壁为反射材质或具有反射镀膜,则任何角度入射的讯号光或参考光都可以被反射至腔体中进行干涉,因此,最佳化设计应该在腔体侧壁使用反射材质或镀上反射镀膜。
目前全像储存架构的设计包含穿透式架构与反射式架构,其差别在于盘片中是否存在一个反射面平行于盘片表面,相较于穿透式架构,反射式架构能够减少光学组件的使用。在本发明应用于反射式架构时,腔体的底面亦可以使用反射材质或镀上反射镀膜;也可以使腔体的底面为可穿透的,但是在盘片的其它层上使用反射材质或镀上反射镀膜。
图14至19示出了几种全像储存盘片的架构图,上述的本发明的储存材料结构可以用于图14至19中的全像图层(Hologram Layer)。实际上,上述的本发明的储存材料结构可以用于所有的全像储存盘片中的储存材料结构,而不受限于此些列举之架构。
如前所述,可以规范出反射腔体所需的最大孔径与最小孔径,其具体示例如下。
范例一:可见光波长可以解析的最小分辨率0.2μm进行讯号输入,物镜焦距为4mm,光波在介质中的波长为0.4μm,由此可得在物镜的聚焦平面上需要Dv=8mm的孔径才能让讯号通过系统,如果取2倍之奈奎斯特孔径宽度,可以获得孔径面积最大约需为2.56cm2
范例二:如果物镜的入射讯号为纯粹无调制的平面波,则该光分布最窄处即为绕射极限的聚焦光点大小,即Dv=1/2λ,以波长0.4μm为例,可以获得孔径面积最小约需为0.25μm2
下面描述根据本发明的全像储存盘片的制作方法。
图20示出了根据本发明的盘片制作方法的第一实施例。其中,图20(a)示出了由光学储存材料构成的矩形长条,其表面经由处理涂布上(镀上)反射材料;将该矩形长条集结成束,使用胶体将其固形,如图20(b)所示;最后将其进行横切,从而构成具有反射腔体的光盘片,即记录层(储存材料层),如图20(c)所示。然后,将盘片的正反两面进行抛光,再将由此形成的记录层与盘片的其它层进行组合,从而完成盘片的制作,参见图14至图19。
图21示出了根据本发明的盘片制作方法的第二实施例。其中,如图21(a)所示,将压模置于反射材质上方,反射材质受热以便于压铸成形;在低真空的环境下进行压铸,以减低空气残留,如图21(b)所示;在高真空环境下进行脱模,以利于残存的空气产生压力将反射腔体推出,如图21(c)所示;在高真空环境下将尚未固化的感光材料原料液体注入反射腔体,以确保最少的空气残留,如图21(d)所示;在一般气压环境下使储存材料固化,如图21(e)所示,其中由于收缩所产生的形变效应使得反射腔体入口处的储存材料不平整;使用磨平抛光或者其它抛光方式使储存材料达到平整状态,如图21(f)所示;最终成形记录层(储存材料层),如图21(g)所示;再将由此形成的记录层与盘片之其它层组合,即完成盘片之制作,参见图14至图19。
以上所述仅是本发明的实施方式,应该指出对于本领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (21)

1.一种超高容量全像储存盘片,其特征在于,所述盘片的储存材料中存在多个其侧壁具有反射能力的腔体。
2.如权利要求1所述的全像储存盘片,其中,所述腔体的入口孔径的面积介于0.1μm2至24 mm2之间。
3.如权利要求1所述的全像储存盘片,其中,所述腔体的入口形状为扇形,并且切向方向上的两个侧壁是以盘片中心为圆心的圆弧。
4.如权利要求1所述的全像储存盘片,其中,所述腔体是沿着光盘的轨道分布的。
5.如权利要求1所述的全像储存盘片,其中,所述腔体填满50%至99.9%的盘片面积。
6.如权利要求1所述的全像储存盘片,其中,所述盘片中存在与盘片表面平行的穿透基板。
7.如权利要求1所述的全像储存盘片,其中,所述盘片中存在与盘片表面平行的反射层。
8.如权利要求1所述的全像储存盘片,其中,所述腔体的至少一侧壁与该储存盘片的法向量之间具有一夹角。
9.如权利要求9所述的全像储存盘片,其中该夹角介于-45度至45度之间。
10.如权利要求1所述的全像储存盘片,其中,所述腔体的其中一个方向上的两面侧壁的倾斜角度为                                                ,所述腔体的另一个方向上的两面侧壁倾斜,使得所述腔体的内部宽度较腔体入口窄。
11.如权利要求1所述的全像储存盘片,其中,在所述储存材料中,所述腔体中的一些的开口垂直于盘片表面朝上,所述腔体中的一些的开口垂直于盘片表面朝下。
12.如权利要求11所述的全像储存盘片,其中,所述腔体的开口方向在平行于盘片表面的其中一个方向上呈交错分布。
13.如权利要求1所述的全像储存盘片,其中,所述腔体的侧壁借助反射材料形成反射。
14.如权利要求1所述的全像储存盘片,其中,所述腔体的侧壁借助全反射效应形成反射。
15.如权利要求1所述的全像储存盘片,其中,所述盘片中的储存材料层是由集结成束的反射腔体经横切而形成的。
16.如权利要求1所述的全像储存盘片,其中,所述盘片中的储存材料层中的反射腔体是使用模具压铸而形成的。
17.一种超高容量全像储存盘片的制造方法,其特征在于包括以下步骤:
在由光学储存材料构成的长条的表面上涂布或镀上反射材料;
将所述长条集结成束并固形,形成长条集束;
将所述集束横切,形成具有反射腔体的记录层;
将所述记录层与盘片的其它层组合。
18.如权利要求17所述的制造方法,其特征在于,在步骤(4)之前,还包括将记录层的正反两面抛光的步骤。
19.一种超高容量全像储存盘片的制造方法,其特征在于包括以下步骤:
将压模置于反射材料上方;
在低真空环境下进行压铸;
在高真空环境下进行脱模;
在高真空环境下将尚未固化的感光材料原料液体注入反射腔体;
在一般气压环境下使感光材料固化,形成记录层;
将所述记录层与盘片的其它层组合。
20.如权利要求19所述的制造方法,其特征在于,在步骤(1)中还包括对反射材质进行加热的步骤。
21.如权利要求19所述的制造方法,其特征在于,在步骤(6)之前,还包括将记录层的正反两面进行平整处理的步骤。
CN201410827175.XA 2014-12-26 2014-12-26 一种全像储存盘片构造 Active CN104700851B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410827175.XA CN104700851B (zh) 2014-12-26 2014-12-26 一种全像储存盘片构造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410827175.XA CN104700851B (zh) 2014-12-26 2014-12-26 一种全像储存盘片构造

Publications (2)

Publication Number Publication Date
CN104700851A true CN104700851A (zh) 2015-06-10
CN104700851B CN104700851B (zh) 2018-03-09

Family

ID=53347900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410827175.XA Active CN104700851B (zh) 2014-12-26 2014-12-26 一种全像储存盘片构造

Country Status (1)

Country Link
CN (1) CN104700851B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214144A (zh) * 1996-03-19 1999-04-14 应用全息技术公共有限公司 光学数据存储盘
CN1627404A (zh) * 2003-12-08 2005-06-15 日本胜利株式会社 光记录介质
TW200604658A (en) * 2004-07-20 2006-02-01 Univ Nat Central Direct-type back light module
JP2006119332A (ja) * 2004-10-21 2006-05-11 Sony Corp ホログラム記録媒体、再生装置
CN101465140A (zh) * 2007-12-21 2009-06-24 汤姆森特许公司 全息记录介质及用于该介质的拾取器
CN101529513A (zh) * 2006-09-14 2009-09-09 索尼株式会社 光盘设备、焦点位置控制方法和记录介质
CN101615400A (zh) * 2008-06-25 2009-12-30 索尼株式会社 驱动设备和轨道跳跃方法
CN101859575A (zh) * 2009-04-10 2010-10-13 索尼光领公司 光斑位置控制设备和光斑位置控制方法
CN102576551A (zh) * 2009-10-07 2012-07-11 索尼公司 光学记录介质及记录方法
CN103069488A (zh) * 2010-08-19 2013-04-24 索尼公司 光记录介质和光记录介质的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214144A (zh) * 1996-03-19 1999-04-14 应用全息技术公共有限公司 光学数据存储盘
CN1627404A (zh) * 2003-12-08 2005-06-15 日本胜利株式会社 光记录介质
TW200604658A (en) * 2004-07-20 2006-02-01 Univ Nat Central Direct-type back light module
JP2006119332A (ja) * 2004-10-21 2006-05-11 Sony Corp ホログラム記録媒体、再生装置
CN101529513A (zh) * 2006-09-14 2009-09-09 索尼株式会社 光盘设备、焦点位置控制方法和记录介质
CN101465140A (zh) * 2007-12-21 2009-06-24 汤姆森特许公司 全息记录介质及用于该介质的拾取器
CN101615400A (zh) * 2008-06-25 2009-12-30 索尼株式会社 驱动设备和轨道跳跃方法
CN101859575A (zh) * 2009-04-10 2010-10-13 索尼光领公司 光斑位置控制设备和光斑位置控制方法
CN102576551A (zh) * 2009-10-07 2012-07-11 索尼公司 光学记录介质及记录方法
CN103069488A (zh) * 2010-08-19 2013-04-24 索尼公司 光记录介质和光记录介质的制造方法

Also Published As

Publication number Publication date
CN104700851B (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
CN1248203C (zh) 全息照相术光信息记录再现装置
JP4833569B2 (ja) 反射防止構造を有する光学レンズ
CN100501845C (zh) 光头装置、使用该装置的光信息装置及光盘记录器
KR100741980B1 (ko) 다초점 렌즈
JP5236321B2 (ja) ホログラム記録再生装置
US20130308435A1 (en) Optical information recording medium, and method of manufacturing the same
CN100516940C (zh) 棱镜的制造方法、棱镜、光拾取器和液晶投影器
JPH10188322A (ja) 光ヘッド
US20090021811A1 (en) Optical information recording apparatus
CN104700851A (zh) 超高容量全像储存盘片构造
US6801492B2 (en) Solid immersion mirror type objective lens and optical pickup device adopting the same
JP2003315526A (ja) 回折光学素子及びその製造方法
CN102737664A (zh) 基于光子筛的蓝光光学头
CN1981334A (zh) 拾光器
CN101131834A (zh) 光学拾取装置
CN1971318A (zh) 超分辨位相板
US20050007930A1 (en) Optical information recording apparatus
US7126905B2 (en) Information recording medium and information recording/reproducing apparatus to increase recording density
CN101441878A (zh) 物镜
TWI383389B (zh) 光學拾取頭及資訊處理裝置
CN101131484A (zh) 球面像差补偿元件、其制造方法及光学拾取装置
CN100426394C (zh) 用于光盘记录/再现装置的光学系统
TWI530943B (zh) 全像儲存層、應用其的全像碟片以及其製造方法
TWI493543B (zh) 可在遠場模態和近場模態間變換之物鏡
JP2004022157A (ja) 光ディスク及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 266111 Shandong city of Qingdao province high tech Zone Songyuan Road No. 17 Qingdao Industrial Technology Research Institute A District 217 building A1

Patentee after: Qingdao Tai Gu photoelectric project Technology Co., Ltd.

Address before: 266111 Shandong Shandong Qingdao high tech Industrial Development Zone entrepreneurship center 115-B room

Patentee before: Qingdao Tai Gu photoelectric project Technology Co., Ltd.

CP02 Change in the address of a patent holder