CN104699898A - Simulation method of electric power system based on compression and division of frequency-related network equivalence - Google Patents

Simulation method of electric power system based on compression and division of frequency-related network equivalence Download PDF

Info

Publication number
CN104699898A
CN104699898A CN201510097332.0A CN201510097332A CN104699898A CN 104699898 A CN104699898 A CN 104699898A CN 201510097332 A CN201510097332 A CN 201510097332A CN 104699898 A CN104699898 A CN 104699898A
Authority
CN
China
Prior art keywords
msub
mrow
mtd
msup
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510097332.0A
Other languages
Chinese (zh)
Other versions
CN104699898B (en
Inventor
吴文传
张伯明
孙宏斌
胡一中
郭庆来
王彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510097332.0A priority Critical patent/CN104699898B/en
Publication of CN104699898A publication Critical patent/CN104699898A/en
Application granted granted Critical
Publication of CN104699898B publication Critical patent/CN104699898B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention relates to a simulation method of an electric power system based on the compression and the division of frequency-related network equivalence, and belongs to the technical field of the dispatching automation of electric power systems and the simulation of electric grids. The simulation method comprises the following steps: firstly, removing the redundancy of frequency-related network equivalence in a mathematical model through compression processing so as to decrease the whole calculated amount; making frequency-related networks equivalent by sub-block processing, and establishing a plurality of subblocks so as to realize parallel computation. The simulation method can effectively solve the problem that when the frequency-related network equivalence is applied to the electromagnetic transient simulation of the electric power system, the calculated amount of single frequency-related network equivalence module is too large. Through the adoption of the simulation method disclosed by the invention, the simulation velocity of the electric power system can be obviously accelerated, and the practice effect of engineering is satisfied.

Description

Power system simulation method based on compression and block frequency correlation network equivalence
Technical Field
The invention relates to a power system simulation method based on compression and block frequency correlation network equivalence, and belongs to the technical field of power system dispatching automation and power grid simulation.
Background
Power system simulation is one of the important methods for studying transient characteristics of power systems. According to different dynamic processes to be investigated, power system simulation can be divided into electromagnetic transient simulation, electromechanical transient simulation and medium-and long-term dynamic simulation. The electromagnetic transient simulation has the highest precision and is mainly used for researching microsecond-level transient processes of network elements of the power system, such as lightning processes, wave processes, direct-current commutation failure processes and the like. However, the high accuracy is at the cost of large calculation amount, and the electromagnetic transient simulation is not suitable for directly simulating a large-scale power system due to the large calculation amount. Usually, for the whole large system, the network elements of the concerned part (referring to the part which is expected to know the transient process in detail) are reserved, and the network elements of other parts are represented by network equivalence, and then electromagnetic simulation is carried out, so that the purpose of reducing the calculation amount is achieved.
The traditional network equivalence is represented by a norton equivalence model, as shown in fig. 1. The right box is the concerned part of the network; the left-hand box is the network equivalent using the Norton equivalent model, i.e. a Norton equivalent current IabcAnd a Norton equivalent node admittance matrix YabcTo represent the network equivalence of other partial network elements.
The node admittance matrix in the norton equivalent circuit is formed at the fundamental frequency, and therefore can only represent the fundamental frequency characteristics of the network element. In order to accurately represent the Frequency characteristics of the Network element at each Frequency, a Frequency Dependent Network Equivalence (FDNE) is introduced to represent the Network equivalence of other partial Network elements.
FDNE-based network equivalent methods are shown in fig. 2. The right box is the concerned part of the network; the left box is the FDNE-based network equivalent, i.e. a Norton equivalent current IabcAnd an FDNE as the network equivalent of the other part.
The essence of FDNE is a node admittance matrix as a function of frequency. The mathematical model for an N dimensional FDNE is:
where, s is j2 pi f, f is frequency, j is an imaginary unit, the same applies below;
any element in FDNE is represented as a frequency domain function:
<math> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>d</mi> <mo>+</mo> <mi>sh</mi> <mo>,</mo> </mrow> </math>
wherein the pole { aiAnd the residue { c }iEither both are real numbers or occur in complex conjugate pairs, respectively, the constant term d and the first term h being real numbers and n being the number of poles.
In engineering use, the first order term h is typically taken to be 0, and each element of the FDNE uses a common set of poles aiAn N × N dimensional FDNE matrix Y(s) can be expressed as:
the above equation is written in the form of a transfer function:
Y(s)=C(sE-A)-1B+D,
wherein E is an identity matrix having the same dimension as the matrix A,
A=diag(A1 … Ak … An),
Ak=diag((ak ak … ak)(1×N)),
B=diag(B1 … Bk … Bn),
Bk=diag((1 1 … 1)(1×N)),
C=[R1 … Rk … Rn],
fig. 3 is a block matrix diagram of the FDNE mathematical expression. (excluding D)
The mathematical model of the FDNE can be applied to an electromagnetic transient simulation program of the power system. At each time step of the simulation, the amount of computation O required by an FDNE module is (measured by the number of floating-point number multiplications)
O=2nN2+N2+2nN。
The computational load of one FDNE module is large compared to other power system component modules, and is briefly described as follows. N in the above formula is the number of poles of FDNE, and in engineering application, in order to ensure simulation accuracy, the value is usually 50-100; in the above formula, N is the dimension of FDNE, and is a three-phase model, so N takes the values of 3,6,9,12 and the like. Therefore, in practical use, the calculation amount of one FDNE module can reach 104The calculation amount of a conventional power system element module is generally 103The order of magnitude is less.
When the FDNE directly described above is applied to electromagnetic transient simulation of a power system, the calculation amount of a single FDNE module is too large, and the overall simulation efficiency is affected. And there is currently no solution to this problem.
Disclosure of Invention
The invention aims to provide a power system simulation method based on compression and partitioning frequency-dependent network equivalence.
The invention provides a power system simulation method based on frequency-dependent network equivalence, which comprises the following steps:
(1) the mathematical model of the equivalent of the frequency-dependent network for power system simulation, y(s), is:
where N is the dimension of y(s), s j2 pi f, f is the network frequency, j is the imaginary unit, { a }iIs a pole, { ciD is a constant term, and n is the number of poles;
(2) compressing the equivalent mathematical model of the frequency correlation network in the step (1), wherein the specific process is as follows:
(2-1) rewriting the above Y(s) into the form of the following formula:
Y(s)=C(sE-A)-1B+D,
wherein A ═ diag (A)1 … Ak … An),Ak=diag((ak ak … ak)(1×N)),
B=diag(B1 … Bk … Bn),Bk=diag((1 1 … 1)(1×N)),
C=[R1 … Rk … Rn],
E is a unit matrix, and the dimension of E is the same as that of the matrix A;
(2-2) solving the above-mentioned C ═ R1 … Rk … Rn]The rank of each sub-matrix block in (1) is as follows:
to RkPerforming singular value decomposition to make Rk=UΣVT
Wherein Σ is diag (σ)12,…,σN),σ1≥σ2≥…≥σN≥0,σ1,σ2,...,σNIs RkN singular values of (U ═1,u2,...,uN) And V ═ V (V)1,v2,...,vN)TAre each RkThe left and right singular phasors of (a),
setting a judgment threshold lambda, and determining a matrix R by using the judgment threshold lambdakI.e. the parameter r is incremented from 1 until the following holds:
<math> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mi>&lambda;</mi> <mo>&lt;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mi>r</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mrow> </math>
then the matrix R is determinedkIs r;
(2-3) Pair matrix RkCompressing, which comprises the following steps: for matrix RkIs judged, if r satisfies the following condition,then R in the matrix CkA in matrix AkAnd B in matrix BkAre respectively compressed into R'k、A'kAnd B'k
R'k=(u1,u2,...,ur),
A'k=diag((ak ak … ak)(1×r)),
B'k=(v1,v2,...,vr)T
If r satisfies the following condition,then R in matrix CkA in matrix AkAnd B in matrix BkKeeping the same;
(2-4) traversing all sub-matrix blocks R in the matrix CkRepeating the steps (2-2) and (2-3) to realize the compression of the equivalent mathematical model of the frequency correlation network;
(3) partitioning the equivalent mathematical model of the frequency correlation network in the step (1), wherein the specific process is as follows:
dividing the mathematical model Y(s) of the frequency-dependent network equivalent into a plurality of parts according to the following modes:
<math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mn>1</mn> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>mk</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
(4) and (3) applying the mathematical model of the frequency-dependent network equivalent after the compression processing in the step (2) and the blocking processing in the step (3) to the simulation calculation of the power system.
The power system simulation method based on the frequency-dependent network equivalence provided by the invention has the advantages that the method can effectively solve the problem of overlarge calculated amount of a single frequency-dependent network equivalence module when the frequency-dependent network equivalence is applied to power system electromagnetic transient simulation, the calculated amount of a frequency-dependent network equivalence mathematical model is reduced in a compression processing process in the method, the frequency-dependent network equivalence mathematical model is divided into a plurality of blocks for parallel calculation in a blocking processing process, the power system simulation speed is finally obviously accelerated, and the engineering practice effect is satisfactory.
Drawings
FIG. 1 is a schematic diagram of a conventional network equivalence method using a Noton equivalence model.
Fig. 2 is a schematic diagram of an existing network equivalence method based on frequency-dependent network equivalence.
FIG. 3 is a schematic diagram of an equivalent mathematical model of a frequency-dependent network involved in the method of the present invention.
FIG. 4 is a diagram of a mathematical model of the equivalent of the frequency-dependent network after compression in the method of the present invention.
Fig. 5 is a block diagram of the equivalent of the frequency dependent network in the method of the present invention.
Detailed Description
The invention provides a power system simulation method based on frequency-dependent network equivalence, which comprises the following steps:
(1) the mathematical model of the equivalent of the frequency-dependent network for power system simulation Y(s) is
Where N is the dimension of y(s), s j2 pi f, f is the network frequency, j is the imaginary unit, { a }iIs a pole, { ciD is a constant term, and n is the number of poles; all elements of Y(s) have the same poles, and the residue and constant terms are different.
(2) Compressing the equivalent mathematical model of the frequency correlation network in the step (1), wherein the specific process is as follows:
(2-1) rewriting the above Y(s) into the form of the following formula:
Y(s)=C(sE-A)-1B+D,
wherein A ═ diag (A)1 … Ak … An),Ak=diag((ak ak … ak)(1×N)),
B=diag(B1 … Bk … Bn),Bk=diag((1 1 … 1)(1×N)),
C=[R1 … Rk … Rn],
E is a unit matrix, and the dimension of E is the same as that of the matrix A; as shown in fig. 3.
(2-2) solving the above-mentioned C ═ R1 … Rk … Rn]The rank of each sub-matrix block in (1) is as follows:
to RkPerforming singular value decomposition to make Rk=UΣVT
Wherein Σ is diag (σ)12,…,σN),σ1≥σ2≥…≥σN≥0,σ1,σ2,...,σNIs RkN singular values of (U ═1,u2,...,uN) And V ═ V (V)1,v2,...,vN)TAre each RkThe left and right singular phasors of (a),
a decision threshold lambda is set, which is usually chosen to be 0.9999 and can be adjusted according to the required accuracy. Determining a matrix R using a decision threshold lambdakI.e. the parameter r is incremented from 1 until the following holds:
<math> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mi>&lambda;</mi> <mo>&lt;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mi>r</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mrow> </math>
then the matrix R is determinedkIs r;
(2-3) Pair matrix RkCompressing, which comprises the following steps: for matrix RkIs judged, if r satisfies the following condition,then R in the matrix CkA in matrix AkAnd B in matrix BkAre respectively compressed into R'k、A'kAnd B'k
R'k=(u1,u2,...,ur),
A'k=diag((ak ak … ak)(1×r)),
B'k=(v1,v2,...,vr)T
The compressed frequency-dependent network equivalent mathematical model is shown in FIG. 4, for RkCan reduce the amount of computation to OReduction of=2N2+2N-4rN with almost no loss of precision;
if r satisfies the following condition,then R in matrix CkA in matrix AkAnd B in matrix BkKeeping the same;
(2-4) traversing all sub-matrix blocks R in the matrix CkRepeating the steps (2-2) and (2-3) to realize the compression of the equivalent mathematical model of the frequency correlation network;
(3) partitioning the equivalent mathematical model of the frequency correlation network in the step (1), wherein the specific process is as follows:
dividing the mathematical model Y(s) of the frequency-dependent network equivalent into a plurality of parts according to the following modes:
<math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mn>1</mn> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>mk</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
since the inherent physical meaning of the frequency-dependent network equivalence is admittance, and the mathematical addition of admittance is equivalent to physical parallel connection, according to the above formula, the frequency-dependent network equivalence can be established into a plurality of parallel-connected parts, as shown in fig. 5, which is an embodiment of the present invention, the frequency-dependent network equivalence is divided into two parts, the calculation amount of each part is about half of that of the original frequency-dependent network equivalence module, and in actual application, the number of sub-modules can be determined according to needs.
(4) And (3) applying the mathematical model of the frequency-dependent network equivalent after the compression processing in the step (2) and the blocking processing in the step (3) to the simulation calculation of the power system.

Claims (1)

1. A power system simulation method based on frequency-dependent network equivalence is characterized by comprising the following steps:
(1) the mathematical model of the equivalent of the frequency-dependent network for power system simulation, y(s), is:
where N is the dimension of y(s), s j2 pi f, f is the network frequency, j is the imaginary unit, { a }iIs a poleDot, { ciD is a constant term, and n is the number of poles;
(2) compressing the equivalent mathematical model of the frequency correlation network in the step (1), wherein the specific process is as follows:
(2-1) rewriting the above Y(s) into the form of the following formula:
Y(s)=C(sE-A)-1B+D,
wherein, <math> <mrow> <mi>A</mi> <mo>=</mo> <mi>diag</mi> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>A</mi> <mi>k</mi> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>A</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>A</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>diag</mi> <msub> <mfenced open='(' close=')'> <mrow> <mo>(</mo> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mi>k</mi> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mi>k</mi> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>a</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mrow> </mfenced> <mrow> <mo>(</mo> <mn>1</mn> <mo>&times;</mo> <mi>N</mi> <mo>)</mo> </mrow> </msub> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>B</mi> <mo>=</mo> <mi>diag</mi> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>B</mi> <mi>k</mi> </msub> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <msub> <mi>B</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>diag</mi> <msub> <mfenced open='(' close=')'> <mrow> <mo>(</mo> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mfenced> <mrow> <mo>(</mo> <mn>1</mn> <mo>&times;</mo> <mi>N</mi> <mo>)</mo> </mrow> </msub> <mo>)</mo> <mo>,</mo> </mrow> </math>
e is a unit matrix, and the dimension of E is the same as that of the matrix A;
(2-2) solving the above-mentioned C ═ R1 … Rk … Rn]The rank of each sub-matrix block in (1) is as follows:
to RkPerforming singular value decomposition to make Rk=UΣVT
Wherein Σ is diag (σ)12,…,σN),σ1≥σ2≥…≥σN≥0,σ1,σ2,...,σNIs RkN singular values of (U ═1,u2,...,uN) And V ═ V (V)1,v2,...,vN)TAre each RkThe left and right singular phasors of (a),
setting a judgment threshold lambda, and determining a matrix R by using the judgment threshold lambdakI.e. the parameter r is incremented from 1 until the following holds:
<math> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>&lt;</mo> <mi>&lambda;</mi> <mo>&lt;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mi>r</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>&sigma;</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <msub> <mi>&sigma;</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mrow> </math>
then the matrix R is determinedkIs r;
(2-3) Pair matrix RkCompressing, which comprises the following steps: for matrix RkIs judged, if r satisfies the following condition,then R in the matrix CkA in matrix AkAnd B in matrix BkAre respectively compressed into R'k、A'kAnd B'k
R'k=(u1,u2,...,ur),
A'k=diag((ak ak…ak)(1×r)),
B'k=(v1,v2,...,vr)T
If r satisfies the following condition,then R in matrix CkA in matrix AkAnd B in matrix BkKeeping the same;
(2-4) traversing all sub-matrix blocks R in the matrix CkRepeating the steps (2-2) and (2-3) to realize the compression of the equivalent mathematical model of the frequency correlation network;
(3) partitioning the equivalent mathematical model of the frequency correlation network in the step (1), wherein the specific process is as follows:
dividing the mathematical model Y(s) of the frequency-dependent network equivalent into a plurality of parts according to the following modes:
<math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mo>-</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mn>1</mn> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>mk</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>c</mi> <mi>i</mi> </msub> <mrow> <mi>s</mi> <mo>-</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
(4) and (3) applying the mathematical model of the frequency-dependent network equivalent after the compression processing in the step (2) and the blocking processing in the step (3) to the simulation calculation of the power system.
CN201510097332.0A 2015-03-05 2015-03-05 Simulating method for electric power system based on compression and piecemeal frequency dependent network equivalence Active CN104699898B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510097332.0A CN104699898B (en) 2015-03-05 2015-03-05 Simulating method for electric power system based on compression and piecemeal frequency dependent network equivalence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510097332.0A CN104699898B (en) 2015-03-05 2015-03-05 Simulating method for electric power system based on compression and piecemeal frequency dependent network equivalence

Publications (2)

Publication Number Publication Date
CN104699898A true CN104699898A (en) 2015-06-10
CN104699898B CN104699898B (en) 2018-02-27

Family

ID=53347014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510097332.0A Active CN104699898B (en) 2015-03-05 2015-03-05 Simulating method for electric power system based on compression and piecemeal frequency dependent network equivalence

Country Status (1)

Country Link
CN (1) CN104699898B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436980A (en) * 2017-07-27 2017-12-05 中国电力科学研究院 A kind of application process of network wideband equivalence in electromagnetic transient simulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938022A (en) * 2012-11-02 2013-02-20 南方电网科学研究院有限责任公司 Perturbation method-based passivity correction method for frequency correlation network equivalence
CN103106328A (en) * 2012-11-02 2013-05-15 南方电网科学研究院有限责任公司 Frequency correlation network equivalence generation method based on integral vector fitting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938022A (en) * 2012-11-02 2013-02-20 南方电网科学研究院有限责任公司 Perturbation method-based passivity correction method for frequency correlation network equivalence
CN103106328A (en) * 2012-11-02 2013-05-15 南方电网科学研究院有限责任公司 Frequency correlation network equivalence generation method based on integral vector fitting method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BJORN GUSTAVSEN 等: "A Robust Approach for System Identification in the Frequency Domain", 《IEEE TRANSACTIONS ON POWER DELIVERY》 *
BJORN GUSTAVSEN: "Computer Code for Rational Approximation of Frequency Dependent Admittance Matrices", 《IEEE TRANSACTIONS ON POWER DELIVERY》 *
YI ZHANG 等: "Development and Analysis of Applicability of a Hybrid Transient Simulation Platform Combining TSA and EMT Elements", 《IEEE TRANSACTIONS ON POWER SYSTEMS》 *
张怡 等: "电磁–机电暂态混合仿真中的频率相关网络等值", 《中国电机工程学报》 *
胡一中 等: "采用频率相关网络等值的RTDS-TSA异构混合仿真平台开发", 《电力系统自动化》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107436980A (en) * 2017-07-27 2017-12-05 中国电力科学研究院 A kind of application process of network wideband equivalence in electromagnetic transient simulation
CN107436980B (en) * 2017-07-27 2020-07-10 中国电力科学研究院 Application method of network broadband equivalence in electromagnetic transient simulation

Also Published As

Publication number Publication date
CN104699898B (en) 2018-02-27

Similar Documents

Publication Publication Date Title
CN106372339B (en) The multi-rate simulating method and device of power electronics electric system
CN104111405B (en) A kind of low-frequency oscillation of electric power system source location method based on damping torque analytic process
CN105510711A (en) Empirical mode decomposition-based improved harmonic analysis method
CN103676646A (en) Method for estimating state of networked control system with random uncertainty and delay of distributed sensors
Yang et al. Dynamic reduction of large power system in PSS/E
CN103400303A (en) Static equivalence method for external network based on internal network routine Ward equivalent circuit
CN104810826A (en) Bidirectional iteration parallel probability load flow calculation method combining Latin hypercube sampling
CN105552938A (en) Voltage sag evaluation method for three-phase asymmetrical power distribution network
CN103106328A (en) Frequency correlation network equivalence generation method based on integral vector fitting method
CN110783968A (en) Alternating current-direct current power grid fragile line analysis method and system
CN106532743A (en) Method for obtaining low-frequency oscillation safety control quantity of interconnected system based on oscillation energy
CN108649597B (en) Fault migration method and analysis method for influence of fault on HVDC commutation failure
CN111339624B (en) PSASP and EMTP/ATP-based short-circuit current direct-current component calculation method
CN104615479A (en) Equivalent method for electromagnetic and electromechanical transient hybrid simulation electromagnetic side system
CN114638077A (en) Electromagnetic transient simulation method and device for power distribution network
US20210057912A1 (en) Electromechanical transient simulation method for power system based on direct linear algorithm
CN109149566B (en) Modeling method of simulation model for predicting lowest frequency point under high-power deficiency
CN102854422B (en) Three-phase unsymmetrical fault analyzing method for transformer branch
CN104699898A (en) Simulation method of electric power system based on compression and division of frequency-related network equivalence
CN102709911A (en) Method for designing interface with harmonic characteristic hybrid simulation function
CN106528934A (en) Frequency-related network equivalence passivity correction method
US20230185973A1 (en) A high-efficiency simulation method of 3d wind field based on delay effect
CN104865843B (en) Method for uniformly processing hybrid simulation faults of power system
CN104240039B (en) Power system fault analyzing method taking uncertainty influence into consideration
CN103995199A (en) Method for detecting interaction degree of DFACTS devices in power distribution system based on singular value decomposition method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant