CN104699895B - A kind of method for calculating filmatic bearing bushing creep stress - Google Patents

A kind of method for calculating filmatic bearing bushing creep stress Download PDF

Info

Publication number
CN104699895B
CN104699895B CN201510049757.4A CN201510049757A CN104699895B CN 104699895 B CN104699895 B CN 104699895B CN 201510049757 A CN201510049757 A CN 201510049757A CN 104699895 B CN104699895 B CN 104699895B
Authority
CN
China
Prior art keywords
mrow
msup
msub
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510049757.4A
Other languages
Chinese (zh)
Other versions
CN104699895A (en
Inventor
王建梅
孟凡宁
梁宜楠
苗克军
张笑天
张亚南
李璞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN201510049757.4A priority Critical patent/CN104699895B/en
Publication of CN104699895A publication Critical patent/CN104699895A/en
Application granted granted Critical
Publication of CN104699895B publication Critical patent/CN104699895B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

A kind of method for calculating filmatic bearing bushing creep stress, belong to filmatic bearing design field, based on multidimensional steady state creep basic theory, with reference to thick cyclinder plane stress analytic method, derive creep stress calculation formula of the filmatic bearing bushing in the case where bearing oil film pressure, according to this computational methods, only it is to be understood that the external diameter of filmatic bearing bushing and internal diameter and suffered non-uniform load, you can try to achieve the creep stress value of arbitrfary point on filmatic bearing bushing section.The method have the advantages that the actual loading situation of filmatic bearing bushing has been taken into full account, with higher accuracy, simplicity and practicality.

Description

A kind of method for calculating filmatic bearing bushing creep stress
Technical field:
The invention belongs to filmatic bearing design field, and in particular to a kind of calculating filmatic bearing bushing creep stress Method.
Technical background:
Filmatic bearing is widely used in the key equipments such as steel, mine, metallurgy, electric power, space flight, aviation, with friction system Number is small, the advantages of low, rigidity is high is lost.Its most weak part is exactly bushing babbit, and babbit creep is its failure A kind of form.In the course of the work, babbit bears oil film pressure to filmatic bearing for a long time, is contacted with oil film so that Pasteur closes When golden temperature reaches 65 DEG C or so, microcreep can be produced, the greasy property and life-span to filmatic bearing produce what be can not ignore Negative effect.For the theoretical calculation of creep stress, conventional method is confined to the situation that part bears uniform load, but oil film Bearing insert inwall bears the effect of non-homogeneous oil film pressure, using conventional method calculate its creep stress obviously can not meet will Ask.
The content of the invention
It is an object of the invention to provide a kind of method for calculating filmatic bearing bushing creep stress.Based on steady under multaxial stress The basic theory of state creep, with reference to the computational methods of thick cyclinder plane problem, derives filmatic bearing bushing creep stress Computational methods.
What the present invention was realized in:As shown in figure 1, selection bushing inner boundary axially bears cutting for maximum oil film pressure Face, its external boundary is fixed by bearing block 3, and inner boundary supporting region 4 bears the effect of Radial Rotation Error oil film pressure 5.It is compacted in stable state In the change stage, influence of the temperature to creep is not considered, interception section is in plane stress state.
The invention is characterised in that calculation procedure is as follows:
1st, creep stress component is calculated:
Radial Rotation Error oil film pressure is suffered by bushing:
In formula, θ is any point radial pressure and horizontal line angle, a in inner boundary supporting region 4mFor coefficient correlation, m and n are Integer and m≤n.
According to geometry and load characteristic, choosing stress function is:
In formula, Am, Bm, CmAnd DmFor unknown parameter
A≤r≤b, a are bushing inside radius, and b is bushing outer radius
The creep stress component of filmatic bearing bushing is obtained by the derivative of stress function:
In formula, σr、σθ、τRespectively radial stress, circumferential stress and shear stress, its concrete form is:
2nd, creep strain component is calculated:
Multidimensional steady state creep stress analysis:Equivalent stress and equivalent creep are respectively defined as to the stress point under multaxial stress Amount and creep strain component, based on Norton steady state creep formula, obtaining steady state creep plane stress strain stress relation is:
In formula, εr、εθ、γRespectively radial strain, circumferential strain and shear strain
For equivalent creep stress
For equivalent creep strain
Creep stress weight expression (4) is substituted into stress-strain relation (5), creep strain weight expression is obtained:
3rd, creeping displacement component is calculated:
Geometric equation is:
Creep strain weight expression (6) is substituted into geometric equation (7), and to radial strain and the expression of circumferential strain Formula is integrated, and obtaining creeping displacement weight expression is:
In formula, urFor radial displacement
vθTo be circumferentially displaced
f1(θ)、f2(r) with ∫ f1(θ) d θ are integral constant
4th, the boundary condition of filmatic bearing bushing computation model:
5th, the unknown parameter of creep stress component is determined:
In the shear strain expression formula that formula (8) is substituted into geometric equation (7), according to boundary condition (9), creep stress is obtained The equation group of component unknown parameter:
Wherein, the unknown parameter of creep stress component is:
By the unknown parameter back substitution of creep stress component in plane into creep stress weight expression and according to section Stress state, obtains the creep stress component of filmatic bearing bushing:
In formula, σzFor axial stress.
It can be seen from above-mentioned calculation procedure, only it is to be understood that the external diameter b and internal diameter a of filmatic bearing bushing with it is suffered non-homogeneous Load, you can the creep stress component value of arbitrfary point on filmatic bearing bushing section is tried to achieve, using fourth strength theory Obtain equivalent creep stress:
Advantage of the present invention and good effect are the actual loading situations for taking into full account filmatic bearing bushing, are filmatic bearing lining The structure design of set provides more accurately design method.
Brief description of the drawings:
Fig. 1 filmatic bearing bushing creep stress computation model diagrams
Gained bushing creep stress distribution diagram in Fig. 2 examples
Bushing creep stress distribution diagram obtained by FInite Element in Fig. 3 examples
Contrast diagram of the invention with FEM calculation acquired results during r=110mm in Fig. 4 examples
Contrast diagram of the invention with FEM calculation acquired results during θ=90 ° in Fig. 5 examples
In figure:1-bushing inner boundary, 2-bushing external boundary, 3-bearing block, 4-inner boundary supporting region, 5-oil film pressure Power, 6-bushing.
Specific implementation method:
Example of the present invention is:The internal diameter of certain filmatic bearing bushing is a=110mm, and external diameter is b= 128mm, the oil film pressure for selecting bushing stress maximum cross-section under certain operating mode is:
In formula, Poil(θ) unit is MPa, 30 °≤θ≤150 °
bmFor oil film pressure parameter, wherein b1=-0.1503, b2=-0.07025, b3=-0.0364, b4=-0.01809, b5=-0.007537, b6=-0.002128
The creep stress calculation formula provided according to the present invention, calculation procedure is as follows:
1st, creep stress component is calculated:
According to geometry and load characteristic, choosing stress function is:
Substitution formula (3), the creep stress weight expression obtained under this example is:
2nd, creep strain component is calculated:
Creep stress component is substituted into formula (5), creep strain component is obtained:
3rd, creeping displacement component is calculated:
Creep strain component is substituted into formula (8), creeping displacement component is obtained:
4 list this boundary condition:
ur(r,θ+2π)-ur(r, θ)=0, vθ(r,θ+2π)-vθ(r, θ)=0
5th, the unknown parameter of creep stress component is determined:
By boundary condition, the equation group of creep stress component unknown parameter is obtained:
The unknown parameter for obtaining creep stress component is:
By a=110mm, b=128mm, b1=-0.1503, b2=-0.07025, b3=-0.0364, b4=-0.01809, b5=-0.007537, b6=-0.002128 substitutes into the unknown parameter of above-mentioned creep stress component, then substitutes into formula (12), obtains This bearing is under this operating mode, and the creep stress component of stress maximum cross-section is:
σz=0
In formula, Mrn, Nrn, KrnAnd HrnIt is the parameter of Radial creep stress, Mθn, Nθn, Kθn, and HθnIt is circumferential creep stress Parameter, n be 1~6 positive integer, above-mentioned value be following table shown in.
n 1 2 3 4 5 6
Mrn 0.066 -9.520×1010 -1.120×1015 -1.069×1019 -7.778×1022 -3.579×1026
Nrn -5.397× 106 1.430×107 1.369×1011 1.174×1015 7.997×1018 3.527×1022
Krn 1469.840 3.404×10-6 1.549×10-10 5.965×10-15 1.771×10-19 3.335×10-24
Hrn -1.017×10-10 -6.382×10-15 -2.798×10-19 -8.897×10-24 -1.748×10-28
Mθn -0.066 9.520×1010 1.120×1015 1.069×1019 7.778×1022 3.579×1026
Nθn 5.397×106 -4.768×106 -6.845×1010 -7.041×1014 -5.332×1018 -2.519×1022
Kθn 6.911×10-6 -3.404×10-6 1.549×10-10 -5.965×10-15 -1.771×10-19 -3.335×10-24
Hθn 3.052×10-10 1.276×10-14 4.663×10-19 1.335×10-23 2.448×10-28
According to above-mentioned result of calculation, the equivalent creep stress distribution map of bushing can be obtained, as shown in Figure 2.Utilize ANSYS Finite element software sets up two dimensional model, using implicit creep algorithm, and selecting unit solution ability is strong and supports implicit creep algorithm PLANE183 units, solve the equivalent creep stress cloud atlas of bushing supporting region as shown in figure 3, selection bushing r=110mm and θ= 90 ° of corresponding two positions, the application method and equivalent creep stress Comparative result such as Fig. 4 and Fig. 5 institutes obtained by finite element method Show.
Contrasted from Fig. 2 and Fig. 3, the application method is identical with the creep stress distribution situation of finite element method.By Fig. 4 Understood with Fig. 5, the application method is coincide with finite element method acquired results, and worst error occurs in r=110mm, θ=90 ° Position, the creep stress that the application method is tried to achieve in this position is 0.09088MPa, and the creep stress that FInite Element is tried to achieve is 0.09443MPa, its relative error is only 3.9%, shows that the creep stress that the application method is calculated is accurate, disclosure satisfy that work The actual demand of journey.
By above-mentioned calculating, as long as the application method determines the external diameter of filmatic bearing bushing, internal diameter and suffered oil film The situation of pressure, you can try to achieve the creep stress of the section every bit.The application method has taken into full account filmatic bearing bushing institute The non-uniform load situation received, is set out with loading, and calculating obtains its creep stress, only considers to bear compared to conventional method Even load, the present invention more meets reality.Meanwhile, the application method calculates simple, saves the time.

Claims (1)

1. a kind of method for calculating filmatic bearing bushing creep stress, it is characterised in that calculation procedure is as follows:
(1) creep stress component, is calculated:
Radial Rotation Error oil film pressure is suffered by bushing:
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>a</mi> <mi>m</mi> </msub> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula, θ is the interior any point radial pressure of inner boundary supporting region (4) and horizontal line angle, amFor coefficient correlation, m and n are whole Number and m≤n;
According to geometry and load characteristic, choosing stress function is:
<mrow> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <msup> <mi>r</mi> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>C</mi> <mi>m</mi> </msub> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
In formula, Am, Bm, CmAnd DmFor unknown parameter
A≤r≤b, a are bushing inside radius, and b is bushing outer radius
The creep stress component of filmatic bearing bushing is obtained by the derivative of stress function:
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>&amp;theta;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mo>&amp;part;</mo> <mn>2</mn> </msup> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;phi;</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula, σr、σθ、τRespectively radial stress, circumferential stress and shear stress, its concrete form is:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <mo>-</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>-</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>3</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> <mi>sin</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
(2) creep strain component, is calculated:
Multidimensional steady state creep stress analysis:By equivalent stress and equivalent creep be respectively defined as the components of stress under multaxial stress and Creep strain component, based on Norton steady state creep formula, obtaining steady state creep plane stress strain stress relation is:
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;OverBar;</mo> </mover> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;OverBar;</mo> </mover> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;OverBar;</mo> </mover> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
In formula, εr、εθ、γRespectively radial strain, circumferential strain and shear strain
For equivalent creep stress
For equivalent creep strain
Creep stress weight expression (4) is substituted into stress-strain relation (5), creep strain weight expression is obtained:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>r</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mn>2</mn> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mo>(</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>-</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>)</mo> <mo>&amp;rsqb;</mo> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mn>2</mn> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mo>(</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>5</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>5</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>3</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>)</mo> <mo>&amp;rsqb;</mo> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mn>3</mn> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mfrac> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>)</mo> <mo>&amp;rsqb;</mo> <mi>sin</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
(3) creeping displacement component, is calculated:
Geometric equation is:
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>r</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>v</mi> <mi>&amp;theta;</mi> </msub> </mrow> <mrow> <mi>r</mi> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>u</mi> <mi>r</mi> </msub> <mi>r</mi> </mfrac> <mo>,</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>v</mi> <mi>&amp;theta;</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>r</mi> </msub> </mrow> <mrow> <mi>r</mi> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>v</mi> <mi>&amp;theta;</mi> </msub> <mi>r</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Creep strain weight expression (6) is substituted into geometric equation (7), and the expression formula of radial strain and circumferential strain is accumulated Point, obtaining creeping displacement weight expression is:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>r</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <mfrac> <mi>&amp;epsiv;</mi> <mrow> <mn>2</mn> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mr</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mr</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>)</mo> <mo>&amp;rsqb;</mo> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> <mo>+</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mn>2</mn> <mover> <mi>&amp;sigma;</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mo>(</mo> <mn>8</mn> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mr</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mn>8</mn> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mr</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>)</mo> <mo>&amp;rsqb;</mo> <mi>sin</mi> <mi>m</mi> <mi>&amp;theta;</mi> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>&amp;Integral;</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
In formula, urFor radial displacement
vθTo be circumferentially displaced
f1(θ)、f2(r) with ∫ f1(θ) d θ are integral constant
(4), the boundary condition of filmatic bearing bushing computation model:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>r</mi> <mo>=</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>a</mi> <mi>m</mi> </msub> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> <mo>,</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mi>r</mi> <mo>=</mo> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>r</mi> <mo>=</mo> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>&amp;theta;</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>r</mi> <mo>=</mo> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;theta;</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>u</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mi>&amp;theta;</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;theta;</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mi>&amp;theta;</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
(5) unknown parameter of creep stress component, is determined:
In the shear strain expression formula that formula (8) is substituted into geometric equation (7), according to boundary condition (9), creep stress component is obtained The equation group of unknown parameter:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msub> <mi>a</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mb</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mb</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>8</mn> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mb</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mn>8</mn> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>b</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mn>3</mn> <msup> <mi>mb</mi> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Wherein, the unknown parameter of creep stress component is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>A</mi> <mi>m</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>&amp;lsqb;</mo> <mo>-</mo> <mn>5</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mi>m</mi> <mo>-</mo> <mn>3</mn> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>a</mi> <mi>m</mi> </msub> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mn>15</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>15</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mn>9</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>8</mn> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mn>9</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>B</mi> <mi>m</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>&amp;lsqb;</mo> <mn>15</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mi>m</mi> <mo>-</mo> <mn>9</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mn>16</mn> <mo>+</mo> <mn>9</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>a</mi> <mi>m</mi> </msub> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>+</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mn>15</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>15</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mn>9</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>8</mn> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mn>9</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mo>&amp;lsqb;</mo> <mn>5</mn> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>3</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mi>m</mi> <mo>&amp;rsqb;</mo> <msub> <mi>a</mi> <mi>m</mi> </msub> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mn>15</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>15</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mn>9</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>8</mn> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mn>9</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>D</mi> <mi>m</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mo>&amp;lsqb;</mo> <mo>-</mo> <mn>15</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <mi>m</mi> <mo>-</mo> <mn>9</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>16</mn> <mo>+</mo> <mn>9</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>a</mi> <mi>m</mi> </msub> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mn>15</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>15</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mn>9</mn> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>8</mn> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mn>9</mn> <msup> <mi>a</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
By the unknown parameter back substitution of creep stress component in plane stress into creep stress weight expression and according to section State, obtains the creep stress component of filmatic bearing bushing:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <mo>-</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>-</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mi>n</mi> </munderover> <mo>&amp;lsqb;</mo> <msub> <mi>A</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>3</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mi>m</mi> </msup> <mo>+</mo> <msub> <mi>B</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>3</mn> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>D</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> <mi>cos</mi> <mi>m</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In formula, σzFor axial stress.
CN201510049757.4A 2015-01-30 2015-01-30 A kind of method for calculating filmatic bearing bushing creep stress Active CN104699895B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510049757.4A CN104699895B (en) 2015-01-30 2015-01-30 A kind of method for calculating filmatic bearing bushing creep stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510049757.4A CN104699895B (en) 2015-01-30 2015-01-30 A kind of method for calculating filmatic bearing bushing creep stress

Publications (2)

Publication Number Publication Date
CN104699895A CN104699895A (en) 2015-06-10
CN104699895B true CN104699895B (en) 2017-09-26

Family

ID=53347011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510049757.4A Active CN104699895B (en) 2015-01-30 2015-01-30 A kind of method for calculating filmatic bearing bushing creep stress

Country Status (1)

Country Link
CN (1) CN104699895B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621012A (en) * 2012-03-31 2012-08-01 重庆大学 Multifunctional true triaxial rock creepmeter
CN103678927A (en) * 2013-12-20 2014-03-26 中国石油天然气集团公司 Thermal production well casing tubular column total strain calculating method
CN103761365A (en) * 2013-12-28 2014-04-30 合肥通用机械研究院 High-temperature pressure vessel creep fatigue strength design method based on service life

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685882B2 (en) * 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
US8214182B2 (en) * 2009-05-12 2012-07-03 GM Global Technology Operations LLC Methods of predicting residual stresses and distortion in quenched aluminum castings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621012A (en) * 2012-03-31 2012-08-01 重庆大学 Multifunctional true triaxial rock creepmeter
CN103678927A (en) * 2013-12-20 2014-03-26 中国石油天然气集团公司 Thermal production well casing tubular column total strain calculating method
CN103761365A (en) * 2013-12-28 2014-04-30 合肥通用机械研究院 High-temperature pressure vessel creep fatigue strength design method based on service life

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Creep analysis with a stress range dependent constitutive model;K Naumenko, et al.;《Archive of Applied Mechanics》;20091231;第79卷(第6期);第619-630页 *
Stress analytical solution for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform distributed pressure;Wu Qingliang;《Journal of Central South University》;20141231;第21卷(第5期);第2074-2082页 *
新型轧机无锥套油膜轴承衬套设计;黎林等;《太原科技大学学报》;20080830;第29卷(第4期);第288-290页 *
油膜轴承巴氏合金蠕变寿命研究;薛亚文等;《太原科技大学学报》;20131231;第34卷;第31-35页 *

Also Published As

Publication number Publication date
CN104699895A (en) 2015-06-10

Similar Documents

Publication Publication Date Title
Zhang et al. Investigation of static and dynamic seal performances of a rubber O-ring
Wang et al. Experimental research on film pressure distribution of water-lubricated rubber bearing with multiaxial grooves
CN103823940A (en) Static-pressure turntable dynamic response computing method based on overall dynamical model
CN110096784B (en) Rapid calculation and design method of radial sliding bearing with axial pressure difference
CN105138814A (en) Method for analyzing limit pretension force of angular contact ball bearing under fixed-position pretension of high-speed electric spindle
Fan et al. Dynamic buckling of cylindrical shells with arbitrary axisymmetric thickness variation under time dependent external pressure
CN104699895B (en) A kind of method for calculating filmatic bearing bushing creep stress
CN102141464A (en) Construction method for establishing turbulence model with Reynolds time-mean method
CN107766644A (en) A kind of design method of thermoplasticity fiberglass reinforced flexible pipe
CN104091021A (en) Method for calculating bearing capacity of oil pad when oil pad inclines
CN106991200A (en) A kind of sliding bearing end cap installs gap width design method
CN104392077A (en) Wind turbine shrink disk and determination method of transmitting torque of wind turbine shrink disk
You et al. Deformations and stresses in annular disks made of functionally graded materials subjected to internal and/or external pressure
Nowald et al. Influence of circumferential grooves on the non-linear oscillations of turbocharger rotors in floating ring bearings
CN104237037A (en) Material elastoplasticity parameter instrumented indentation testing method based on Berkovich indentation
CN103674521B (en) A kind of compensator verification method based on divided working status design
Sharma et al. Creep transition in non homogeneous thick-walled circular cylinder under internal and external pressure
CN103678775B (en) A kind of delivery pipe analysis for dynamic strength method
CN104933219A (en) Method for acquiring full flow state simulation parameters of water lubricated thrust bearing
Arya Large strain creep analysis of composite thick-walled anisotropic cylinders
LI et al. Research on test methods for special vehicle handling and stability based on dynamics simulation
Błażejewski et al. A new approach to the buckling resistance assessment of pressurized spherical shells
Tran et al. Resistance of Door Opening in Towers for Wind Turbines
Dunaevsky et al. Clarification of a semi-empirical approach in Piston ring-cylinder bore conformability prediction
赵建华 et al. Indeterminate mechanics model of bearing capacity of constant pressure oil pockets in hydrostatic slide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Jianmei

Inventor after: Meng Fanning

Inventor after: Liang Yinan

Inventor after: Miao Kejun

Inventor after: Zhang Xiaotian

Inventor after: Zhang Yanan

Inventor after: Li Pu

Inventor before: Miao Kejun

Inventor before: Wang Jianmei

Inventor before: Zhang Xiaotian

Inventor before: Zhang Yanan

Inventor before: Li Pu

GR01 Patent grant
GR01 Patent grant