CN104679920B - Waveguide device microwave gas discharge method for numerical simulation - Google Patents
Waveguide device microwave gas discharge method for numerical simulation Download PDFInfo
- Publication number
- CN104679920B CN104679920B CN201310617785.2A CN201310617785A CN104679920B CN 104679920 B CN104679920 B CN 104679920B CN 201310617785 A CN201310617785 A CN 201310617785A CN 104679920 B CN104679920 B CN 104679920B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- msup
- mtr
- mtd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004088 simulation Methods 0.000 title claims abstract description 25
- 239000011159 matrix material Substances 0.000 claims abstract description 25
- 230000005684 electric field Effects 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims abstract description 13
- 230000003595 spectral effect Effects 0.000 claims abstract description 9
- 238000005315 distribution function Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000005672 electromagnetic field Effects 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 abstract description 13
- 238000013461 design Methods 0.000 abstract description 12
- 238000004458 analytical method Methods 0.000 abstract description 7
- 239000012530 fluid Substances 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 5
- 238000002474 experimental method Methods 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 24
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种波导器件微波气体放电数值模拟方法,该方法建立了波导结构中微波气体放电的流体模型,针对气体击穿过程中电子密度、电子流体速度和平均电子能量进行了精确的数值分析,可得到不同几何外形的复杂结构波导器件中气体放电情况下不同观察点处的电场强度与电子密度随时间变化的规律。本发明以时域谱元法为基础,可以实现任意复杂结构波导器件的建模;生成的质量矩阵为块对角矩阵可以直接得到逆矩阵,大大降低了计算时间;同时采用数值模拟的方法可以避免通过反复实验获得波导器件的内部电场分布与电子密度,得到击穿阈值,缩短设计周期,节约设计成本,非常适用于实现对带有不连续结构的复杂波导器件的有效的仿真设计与数值模拟。
The invention discloses a microwave gas discharge numerical simulation method of a waveguide device. The method establishes a fluid model of a microwave gas discharge in a waveguide structure, and performs accurate numerical simulations of electron density, electron fluid velocity and average electron energy in the process of gas breakdown. Through the analysis, the law of electric field intensity and electron density at different observation points with time can be obtained in the case of gas discharge in complex structure waveguide devices with different geometric shapes. Based on the time-domain spectral element method, the present invention can realize the modeling of waveguide devices with arbitrary complex structures; the generated mass matrix is a block diagonal matrix, and the inverse matrix can be directly obtained, which greatly reduces the calculation time; at the same time, the method of numerical simulation can Avoid repeated experiments to obtain the internal electric field distribution and electron density of waveguide devices, obtain the breakdown threshold, shorten the design cycle, and save design costs. It is very suitable for effective simulation design and numerical simulation of complex waveguide devices with discontinuous structures .
Description
技术领域technical field
本发明属于涉及多物理场的电磁特性仿真技术,特别是一种分析波导结构微波器件气体放电击穿的新型数值仿真方法。The invention belongs to the simulation technology of electromagnetic characteristics involving multiple physical fields, in particular to a novel numerical simulation method for analyzing gas discharge breakdown of waveguide structure microwave devices.
背景技术Background technique
随着空间技术的日新月异,电子设备的电路集成度越来越高,微波器件的工作频率不断提高;同时伴随高功率脉冲发生器技术的不断成熟,其输出功率可达到几十Gw的数量级。对不同气体填充的空间波导结构的微波器件微波击穿与气体放电现象的数值分析与计算机模拟日趋受到科研机构的重视,是当前的空间技术与高功率脉冲领域热点难题之一。对该问题的研究有助于微波器件的设计与防护,具有较高的应用价值与现实意义。目前采用数值方法仿真分析该类问题具有成本最小化、设计最优化、周期缩短化等优点,日趋成为产前设计与预测模拟的重要手段。在采用数值方法仿真分析这一类涉及多物理场、复杂的非线性问题时,如何高效地进行快速全波分析和关键设计阈值的准确求取至关重要。相较于实验手段周期长,成本高,采用数值方法预测面临着求解对象结构复杂,高度非线性,解决计算时间较长,计算精度不高问题等难点。With the rapid development of space technology, the circuit integration of electronic equipment is getting higher and higher, and the operating frequency of microwave devices is constantly increasing; at the same time, with the continuous maturity of high-power pulse generator technology, its output power can reach the order of tens of Gw. The numerical analysis and computer simulation of the microwave breakdown and gas discharge phenomena of microwave devices with different gas-filled space waveguide structures are increasingly valued by scientific research institutions, and it is one of the hot problems in the field of space technology and high-power pulses. The research on this problem is helpful to the design and protection of microwave devices, and has high application value and practical significance. At present, the simulation analysis of such problems by numerical methods has the advantages of cost minimization, design optimization, cycle shortening, etc., and has become an important means of pre-production design and predictive simulation. When using numerical methods to simulate and analyze this type of multi-physics and complex nonlinear problems, how to efficiently perform fast full-wave analysis and accurately obtain key design thresholds is very important. Compared with the long period and high cost of experimental methods, the prediction by numerical methods faces difficulties such as complex structure of the solution object, high nonlinearity, long calculation time and low calculation accuracy.
目前对微波击穿与气体放电分析手段主要是采用微分方程类方法中的时域有限差分法,如文献1.Yee,Jick H.,et al,″Propagation of intense microwave pulses inair and in a waveguide,″IEEE Transactions on Antennas and Propagation,39.9(1991),pp:1421-1427.和有限体积分法,如文献2.Adnane Hamiaz,et al,“Finite VolumeTime Domain modelling of microwave breakdown and plasma formation in ametallic aperture,”Computer Physics Communications 183(2012),pp:1634–1640.上述已发表文献均用于分析简单结构的二维气体放电问题,虽然可以给出简单问题的电场与电子密度的数值分布与预测,但是有模型简单,精确度不高,计算时间较长等缺点。时域谱元法采用六面体单元离散网格,可以很好地逼近待求解目标的外形结构,所生成的质量矩阵为对角阵,求逆过程简单,计算时间较短,在分析微波击穿气体放电这一类多物理场、非线性问题方面具有较大的优势。目前尚未有采用时域谱元法进行波导结构气体放电现象仿真的文献报道。At present, the analysis method of microwave breakdown and gas discharge mainly adopts the time-domain finite difference method in the differential equation method, such as literature 1. Yee, Jick H., et al, "Propagation of intense microwave pulses in air and in a waveguide, "IEEE Transactions on Antennas and Propagation, 39.9 (1991), pp:1421-1427. and finite volume integration method, such as literature 2. Adnane Hamiaz, et al," Finite VolumeTime Domain modeling of microwave breakdown and plasma formation in metallic aperture, "Computer Physics Communications 183(2012), pp:1634–1640. The above-mentioned published documents are all used to analyze the two-dimensional gas discharge problem with simple structure. Although the numerical distribution and prediction of the electric field and electron density of the simple problem can be given, but There are disadvantages such as simple model, low accuracy and long calculation time. The time-domain spectral element method uses a hexahedral unit discrete grid, which can well approximate the shape and structure of the target to be solved. The generated mass matrix is a diagonal matrix. The inversion process is simple and the calculation time is short. When analyzing microwave breakdown gas It has great advantages in multiphysics and nonlinear problems such as electric discharge. At present, there are no literature reports on the simulation of gas discharge phenomena in waveguide structures using the time-domain spectral element method.
发明内容Contents of the invention
本发明的目的在于提供一种基于时域谱元法的对波导结构的复杂微波器件中气体击穿现象进行仿真的数值方法,该方法考虑了波导器件内气态介质与强电磁脉冲的相互作用,主要包括雪崩电离、电子分子碰撞、电子离子复合效应,电子分子附着效应,能够模拟简化波导器件中的放电物理过程,同时,大大缩短研制周期,降低研发成本,利用本发明可适用于各类波导器件中的击穿现象的阈值分析与仿真模拟。The object of the present invention is to provide a numerical method for simulating the gas breakdown phenomenon in a complex microwave device with a waveguide structure based on the time-domain spectral element method. This method considers the interaction between the gaseous medium and the strong electromagnetic pulse in the waveguide device, It mainly includes avalanche ionization, electron-molecular collision, electron-ion recombination effect, and electron-molecular attachment effect, which can simulate and simplify the discharge physical process in waveguide devices. At the same time, it greatly shortens the development cycle and reduces research and development costs. The invention can be applied to various waveguides Threshold analysis and simulation of breakdown phenomena in devices.
实现本发明目的的技术方案为:The technical scheme that realizes the object of the present invention is:
第一步,利用Ansys软件建立待分析器件的几何剖分模型,根据复杂波导结构的几何尺寸,用计算机辅助设计工具进行建模,采用基于GLL基函数的六面体单元对目标模型进行剖分,得到目标的几何信息并且设置激励源的位置信息以及施加激励源;The first step is to use Ansys software to establish the geometric dissection model of the device to be analyzed. According to the geometric dimensions of the complex waveguide structure, use computer-aided design tools to model, and use the hexahedron element based on the GLL basis function to dissect the target model to obtain The geometric information of the target and set the position information of the excitation source and apply the excitation source;
第二步,通过给定的大气压强,给出数值模拟的初始状态,设定波导器件内电子密度的初始值;In the second step, the initial state of the numerical simulation is given through the given atmospheric pressure, and the initial value of the electron density in the waveguide device is set;
第三步,根据第一步中得到的待分析器件的几何信息以及第二步中设定的初始状态,采用时域谱元法建立描述非线性气体放电现象的微分方程组,即将选定的GLL基函数对未知的电场、磁场、电子密度、电子速度及平均电子能量五个未知变量近似展开,然后分别代入由麦克斯韦方程组与电子流体力学方程组构成的偏微分方程组,最后选择GLL基函数作为加权函数,通过伽辽金测试,使在加权平均意义下各微分方程的余量为零,由此将连续的微分方程组转换为矩阵方程组,得到空间内各GLL点的未知量信息;In the third step, according to the geometric information of the device to be analyzed obtained in the first step and the initial state set in the second step, a set of differential equations describing the nonlinear gas discharge phenomenon is established by using the time-domain spectral element method, and the selected The GLL basis function approximates the five unknown variables of the unknown electric field, magnetic field, electron density, electron velocity, and average electron energy, and then substitutes them into the partial differential equations composed of Maxwell's equations and electron hydrodynamic equations, and finally selects the GLL basis The function is used as a weighting function, through the Galerkin test, so that the margin of each differential equation is zero in the sense of weighted average, thereby converting the continuous differential equations into a matrix equation, and obtaining the unknown information of each GLL point in the space ;
第四步,根据第三步所得的矩阵方程组,采用中心差分方法,依次计算每一时刻,空间内各节点的磁场强度、电子速度、电场强度、电子密度、平均电子能量,得到不同位置处上述变量随时间变化的规律;In the fourth step, according to the matrix equations obtained in the third step, the central difference method is used to calculate the magnetic field strength, electron velocity, electric field strength, electron density, and average electron energy of each node in the space at each moment, and obtain the The regularity of the above variables over time;
第五步,根据第四步得到的平均电子能量,更新电离参数,重复步骤三至步骤四,直至达到预设的计算时间为止;The fifth step is to update the ionization parameters according to the average electron energy obtained in the fourth step, and repeat steps 3 to 4 until the preset calculation time is reached;
第六步,输出每一个时刻计算得到的电磁场值与电子密度,得到波导器件中电磁场与电子密度随时间变化的规律,由此可计算出各种电磁特性参数,完成对波导器件微波气体放电现象的分析过程。The sixth step is to output the electromagnetic field value and electron density calculated at each moment, and obtain the time-varying law of the electromagnetic field and electron density in the waveguide device. From this, various electromagnetic characteristic parameters can be calculated, and the microwave gas discharge phenomenon of the waveguide device can be completed. analysis process.
本发明与现有技术相比,其显著优点为:Compared with the prior art, the present invention has the remarkable advantages of:
(1)建立了波导器件中微波击穿气体放电的流体模型,对气体放电中波导器件内部各个结点的电磁场与电子密度、电子速度、平均电子能量进行了数值模拟计算,可定量的给出任意待求点处的未知变量,采用本发明的波导器件微波气体放电数值模拟方法,可以避免通过反复实验获得波导器件的气体击穿阈值,缩短设计周期,节约设计成本,实现对带有不连续结构的复杂波导器件的有效的防护模拟与产前设计;(1) The fluid model of microwave breakdown gas discharge in the waveguide device was established, and the numerical simulation calculation was carried out for the electromagnetic field, electron density, electron velocity, and average electron energy of each node inside the waveguide device in the gas discharge, which can be given quantitatively For the unknown variable at any point to be sought, using the waveguide device microwave gas discharge numerical simulation method of the present invention can avoid obtaining the gas breakdown threshold of the waveguide device through repeated experiments, shorten the design cycle, save design costs, and realize Effective protection simulation and pre-production design of complex waveguide devices with structures;
(2)本发明提出的一种波导器件微波气体放电数值模拟方法,以时域谱元法为基础,采用六面体剖分单元可以对任意复杂结构波导器件的建模从而实现三维复杂结构几何信息的建模与离散;同时利用谱元法生成的质量矩阵为块对角矩阵可以直接求逆,大大降低了计算时间,降低了计算成本,缩短了设计周期;(2) A numerical simulation method for microwave gas discharge of a waveguide device proposed by the present invention is based on the time-domain spectral element method, and the hexahedron subdivision unit can be used to model waveguide devices with any complex structure, so as to realize the geometric information of three-dimensional complex structures Modeling and discretization; at the same time, the mass matrix generated by the spectral element method can be directly inverted as a block diagonal matrix, which greatly reduces the calculation time, reduces the calculation cost, and shortens the design cycle;
(3)本发明提出的波导器件微波气体放电数值模型中,考虑了波导器件内气态介质与强电磁脉冲的相互作用,主要包括雪崩电离、电子分子碰撞、电子离子复合效应,电子分子附着效应,能够模拟简化波导器件中的放电物理过程,采用了改进的电子能量分布函数求解方法,在每一个时间步,根据所求得的平均电子能量,更新各点的电离参数,解决了麦克斯韦方程与电子流体力学方程的强耦合问题,确保了电离参数更新的准确性,提高了流体模型的精确度。(3) In the microwave gas discharge numerical model of the waveguide device proposed by the present invention, the interaction between the gaseous medium in the waveguide device and the strong electromagnetic pulse is considered, mainly including avalanche ionization, electron-molecular collision, electron-ion recombination effect, and electron-molecular adhesion effect. It can simulate the discharge physical process in the simplified waveguide device, and adopts the improved electron energy distribution function solution method. At each time step, according to the obtained average electron energy, the ionization parameters of each point are updated, and the Maxwell equation and the electron are solved. The strong coupling of fluid mechanics equations ensures the accuracy of ionization parameter updates and improves the accuracy of fluid models.
附图说明Description of drawings
图1是带缝隙波导结构剖面示意图。Figure 1 is a schematic cross-sectional view of a waveguide structure with a slot.
图2是第一对方锥中点处观察点电场强度随时间变化规律图。Fig. 2 is a diagram showing the change of electric field intensity with time at the observation point at the midpoint of the first square cone.
图3是第一对方锥中点处观察点电子密度随时间变化规律图。Fig. 3 is a graph showing the change of electron density with time at the observed point at the midpoint of the first square cone.
图4是本发明的流程图。Fig. 4 is a flowchart of the present invention.
具体实施方式detailed description
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
本发明提出了一种波导器件微波气体放电数值模拟方法。下面结合附图,以图1所示带缝隙波导结构器件为例,对本发明的具体步骤作进一步详细描述。The invention provides a numerical simulation method for microwave gas discharge of a waveguide device. The specific steps of the present invention will be further described in detail below in conjunction with the accompanying drawings, taking the device with a waveguide structure with a slot shown in FIG. 1 as an example.
参见图1所示带缝隙波导结构剖面示意图,模型几何尺寸如下:采用BJ-100波导模型,内部填充氩气,压强为3.9Torr,波导长边a=22.86mm,波导短边b=10.16mm,波导总长l=27.45mm,谐振元件中心距离为9.15mm,放电电极为一对长方体方针,边长a1=1.0mm;膜片宽度m=8.0mm,高度b=10.16mm,厚度为1.0mm,中间缝隙高度h1=1.0mm。根据本发明分析图1所示带缝隙波导结构的微波气体放电数值模拟方法,其具体操作步骤如下:See Figure 1 for a schematic cross-sectional view of the waveguide structure with slots. The geometric dimensions of the model are as follows: BJ-100 waveguide model is used, the interior is filled with argon gas, the pressure is 3.9Torr, the long side of the waveguide a=22.86mm, the short side of the waveguide b=10.16mm, The total length of the waveguide l=27.45mm, the center distance of the resonant element is 9.15mm, the discharge electrodes are a pair of cuboids, the side length a1=1.0mm; the diaphragm width m=8.0mm, the height b=10.16mm, the thickness is 1.0mm, the middle The gap height h1=1.0mm. Analyzing the microwave gas discharge numerical simulation method of band slot waveguide structure shown in Fig. 1 according to the present invention, its specific operation steps are as follows:
第一步,根据图1所示带缝隙波导结构的几何尺寸,利用Ansys软件对其进行建模,采用基于GLL基函数的六面体单元对带缝隙波导结构进行剖分,即得到带缝隙波导结构的未知量个数以及节点的坐标信息,对于带缝隙波导结构的边界信息,可依据带缝隙波导结构和尺寸,将四面矩形波导波导壁设为理想金属,传输方向两面设为吸收边界条件来处理,并且设置激励源的位置信息;In the first step, according to the geometric dimensions of the waveguide structure with slots shown in Figure 1, the Ansys software is used to model it, and the hexahedral element based on the GLL basis function is used to divide the waveguide structure with slots, that is, the waveguide structure with slots is obtained The number of unknown quantities and the coordinate information of the nodes, as for the boundary information of the waveguide structure with slot, can be dealt with by setting the four-sided rectangular waveguide wall as ideal metal and the two sides of the transmission direction as absorbing boundary conditions according to the structure and size of the waveguide with slot. And set the location information of the excitation source;
第二步,根据给定的工作环境的大气压强,给出数值模拟的初始状态,设定波导器件内电子密度的初始值为106m-3;In the second step, according to the atmospheric pressure of the given working environment, the initial state of the numerical simulation is given, and the initial value of the electron density in the waveguide device is set to 10 6 m -3 ;
第三步,根据带缝隙波导结构的几何信息以及第二步中设定的初始状态,采用时域谱元法建立描述非线性气体放电现象的微分方程组,即将选定的GLL基函数对未知的电场、磁场、电子密度、电子速度及平均电子能量五个未知变量近似展开,然后分别代入由麦克斯韦方程组与电子流体力学方程组构成的偏微分方程组,最后选择GLL基函数作为加权函数,通过伽辽金测试,使在加权平均意义下方程的余量为零,由此将连续的微分方程组转换为矩阵方程组,如式(1)所示:In the third step, according to the geometric information of the waveguide structure with slots and the initial state set in the second step, the time-domain spectral element method is used to establish the differential equations describing the nonlinear gas discharge phenomenon, that is, the selected GLL basis function is unknown The five unknown variables of electric field, magnetic field, electron density, electron velocity and average electron energy are approximately expanded, and then respectively substituted into the partial differential equations composed of Maxwell's equations and electron hydrodynamic equations. Finally, the GLL basis function is selected as the weighting function. Through the Galerkin test, the margin of the equation in the sense of weighted average is zero, thus converting the continuous differential equations into matrix equations, as shown in formula (1):
其中,T表示质量矩阵,S表示刚度矩阵,质量矩阵与刚度矩阵的下标分别与展开基与测试基相对应。R和F表示边界积分矩阵和源矢量矩阵,νi、νa、νc和Ql为电离参数分别表示电离率、附着率、碰撞率与能量损失率;Among them, T represents the mass matrix, S represents the stiffness matrix, and the subscripts of the mass matrix and the stiffness matrix correspond to the expansion basis and the test basis respectively. R and F represent boundary integral matrix and source vector matrix, and ν i , ν a , ν c and Q l are ionization parameters representing ionization rate, attachment rate, collision rate and energy loss rate, respectively;
第四步,根据第三步所得的矩阵方程组,采用中心差分方法,依次计算每一时刻,空间内各节点的磁场强度H、电子速度u、电场强度E、电子密度n、平均电子能量得到不同位置处上述变量随时间变化的规律。各变量每一时间步迭代的显示格式如下式(2)所示:The fourth step is to calculate the magnetic field strength H, electron velocity u, electric field strength E, electron density n, and average electron energy of each node in the space at each moment using the central difference method based on the matrix equations obtained in the third step The law of the above variables changing with time at different positions is obtained. The display format of each time step iteration of each variable is shown in the following formula (2):
其中,Δt表示时间步长,上标k表示时间步数;Among them, Δt represents the time step, and the superscript k represents the number of time steps;
第五步,根据第四步得到的平均电子能量,更新电离参数:The fifth step is to update the ionization parameters according to the average electron energy obtained in the fourth step:
1、根据下式(3)得到电离率:1. Obtain the ionization rate according to the following formula (3):
式中νi为电离率,Ngas为气体数密度,me为电子质量,εe为电子能量,σi电离截面积,f(εe)为电子能量分布函数;where ν i is the ionization rate, N gas is the gas number density, m e is the electron mass, ε e is the electron energy, σ i is the ionization cross-sectional area, and f(ε e ) is the electron energy distribution function;
2、求解上式中积分项所需的电子能量分布函数表示为平均电子能量的函数:2. The electron energy distribution function required to solve the integral term in the above formula is expressed as the average electron energy The function:
其中 ξ1=3/(2χ),ξ2=5/(2χ),χ取6.5对应氩气填充的情况, in ξ 1 = 3/(2χ), ξ 2 = 5/(2χ), χ = 6.5 corresponds to the case of argon filling,
3、根据上述电离参数与平均电子能量的函数关系式以及第四步算得的平均电子能量值,采用插值的方法,得到更新后空间内各个位置点的电离参数,代入进行下一循环的迭代运算,重复步骤三至步骤四,直至达到预设的计算时间为止;3. According to the above-mentioned functional relationship between the ionization parameters and the average electron energy and the average electron energy value calculated in the fourth step, use the interpolation method to obtain the ionization parameters of each position point in the updated space, and substitute them for the iterative calculation of the next cycle , repeat steps 3 to 4 until the preset calculation time is reached;
第六步,输出每一个时刻计算得到的电场值与电子密度,得到带缝隙波导结构器件中电场强度与电子密度随时间变化的规律。The sixth step is to output the calculated electric field value and electron density at each moment, and obtain the time-varying law of electric field strength and electron density in the device with a waveguide structure with a gap.
根据本发明所述方法对带缝隙波导结构器件进行仿真,第一对方锥中点处观察点电场强度和电子密度随时间变化规律见图2和图3所示。从图中可知,在一对方锥的中点处,场强激增,达到气体击穿的场强阈值时,电子浓度呈指数增长,随着电子浓度的增长,方锥中心处生成等离子体,使入射电场产生衰减,当电子浓度由106m-3增长到2.12×1019m-3趋于稳定,最终生成等离子体的电子浓度为2.12×1019m-3。仿真结果可以很好地解释带缝隙的复杂波导结构微波气体击穿后,电子浓度激增,入射电场衰减等一系列物理现象,同时完整的给出波导器件中电子密度在电场强度达到阈值场强后呈指数激增的变化趋势,可以定量的给出观察点处的未知变量的变化规律,对于波导结构微波器件的设计与防护具有较高的指导意义。According to the method of the present invention, the device with a waveguide structure with a slot is simulated, and the electric field intensity and electron density at the observation point at the midpoint of the first square cone change with time as shown in Fig. 2 and Fig. 3 . It can be seen from the figure that at the midpoint of a pair of square cones, the field strength increases sharply, and when the field strength threshold of gas breakdown is reached, the electron concentration increases exponentially. With the increase of electron concentration, plasma is generated at the center of the square cone, making The incident electric field attenuates, and when the electron concentration increases from 10 6 m -3 to 2.12×10 19 m -3 it tends to be stable, and finally the electron concentration of the generated plasma is 2.12×10 19 m -3 . The simulation results can well explain a series of physical phenomena such as the surge in electron concentration and the attenuation of the incident electric field after the microwave gas breakdown of the complex waveguide structure with gaps. The changing trend of exponential increase can quantitatively give the changing law of unknown variables at the observation point, which has high guiding significance for the design and protection of waveguide structure microwave devices.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310617785.2A CN104679920B (en) | 2013-11-27 | 2013-11-27 | Waveguide device microwave gas discharge method for numerical simulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310617785.2A CN104679920B (en) | 2013-11-27 | 2013-11-27 | Waveguide device microwave gas discharge method for numerical simulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104679920A CN104679920A (en) | 2015-06-03 |
CN104679920B true CN104679920B (en) | 2017-12-12 |
Family
ID=53314960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310617785.2A Active CN104679920B (en) | 2013-11-27 | 2013-11-27 | Waveguide device microwave gas discharge method for numerical simulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104679920B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107729608B (en) * | 2017-09-13 | 2021-05-14 | 南京理工大学 | Numerical simulation method of short-gap gas discharge based on time-domain spectral element method |
CN108491250B (en) * | 2018-04-13 | 2021-09-17 | 中国人民解放军陆军装甲兵学院 | Self-adaptive intelligent agent communication method and system for reliability simulation of complex system |
CN109902331B (en) * | 2018-12-14 | 2022-10-04 | 中国人民解放军战略支援部队信息工程大学 | High-power microwave electron density analysis method based on negative ion desorption process |
CN111931324B (en) * | 2020-05-01 | 2023-04-21 | 南京理工大学 | Numerical simulation method for analyzing phase frequency characteristics in high-power microwave gas breakdown process |
CN114141114A (en) * | 2021-11-29 | 2022-03-04 | 南京工业大学 | High-voltage gas discharge virtual simulation experiment system |
CN115688475B (en) * | 2022-11-17 | 2023-06-30 | 南京理工大学 | An Efficient Prediction Method for Low Pressure Discharge Threshold of Payload Microwave Devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277850B1 (en) * | 2003-04-02 | 2007-10-02 | At&T Corp. | System and method of word graph matrix decomposition |
CN102567780A (en) * | 2011-12-29 | 2012-07-11 | 西安空间无线电技术研究所 | Space microwave component low pressure discharge value simulation method |
-
2013
- 2013-11-27 CN CN201310617785.2A patent/CN104679920B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277850B1 (en) * | 2003-04-02 | 2007-10-02 | At&T Corp. | System and method of word graph matrix decomposition |
CN102567780A (en) * | 2011-12-29 | 2012-07-11 | 西安空间无线电技术研究所 | Space microwave component low pressure discharge value simulation method |
Non-Patent Citations (3)
Title |
---|
二维波导时域有限元方法分析;刘梅林等;《2005全国微波毫米波会议论文集(第三册)》;20060227;第1549-1552页 * |
微波混频器电路的时域谱元法仿真;盛亦军等;《2013年全国微波毫米波会议论文集》;20130521;第257-260页 * |
有限周期频率选择面的电磁特性分析;樊振宏等;《电波科学学报》;20090815;第724-728页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104679920A (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104679920B (en) | Waveguide device microwave gas discharge method for numerical simulation | |
CN109255170B (en) | Arc voltage gradient modeling method based on magnetohydrodynamics simulation | |
CN103970717B (en) | Unconditional stability FDTD method based on Associated Hermite orthogonal function | |
CN106446470B (en) | A kind of non-uniform dielectric finite difference frequency domain method of efficient parallel | |
CN111931324B (en) | Numerical simulation method for analyzing phase frequency characteristics in high-power microwave gas breakdown process | |
CN107729608B (en) | Numerical simulation method of short-gap gas discharge based on time-domain spectral element method | |
CN103412988B (en) | 3 D electromagnetic field simulation method based on phase shift reduced-order model periodic structure | |
CN104951580A (en) | Unconditional stability and conditional stability mixed time domain spectral element electromagnetic analyzing method | |
Ning et al. | Numerical simulation of finite amplitude standing waves in acoustic resonators using finite volume method | |
CN107577857A (en) | A 3D Finite Element Simulation Method Based on Thermal Radiation Boundary Conditions | |
CN105825015A (en) | FDTD (Finite-Difference Time-Domain) method for magnetized plasma | |
CN110096799A (en) | A kind of emulation mode of the 3 D electromagnetic fuel factor based on domain decomposition method | |
CN104752245A (en) | Method of analyzing numerical value of influences on performance of field effect transistor amplifier by high-power pulses | |
CN108090296B (en) | Waveguide full-wave analysis method based on high-order symplectic compact scheme | |
CN107515955A (en) | Time domain finite element method based on EB continuous-discontinuous Galerkin mixture | |
Gong et al. | An energy-preserving wavelet collocation method for general multi-symplectic formulations of Hamiltonian PDEs | |
CN113868863A (en) | Statistical electromagnetic DGTD (differential gradient time division) calculation method for uncertain structure target | |
Mirzavand et al. | Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches | |
CN115688475B (en) | An Efficient Prediction Method for Low Pressure Discharge Threshold of Payload Microwave Devices | |
CN103474737B (en) | Millimeter wave E-plane filter and membrane modeling method based on support vector machine for membrane modeling | |
CN103684640B (en) | A kind of emulation mode of large-scale complex UWB channel | |
CN107229762A (en) | A kind of microwave circuit characteristic analysis method of the model containing Semiconductor Physics | |
CN105808796A (en) | PIN diode reconfigurable antenna performance evaluation method under action of high power electromagnetic pulse | |
Baboolal | Finite-difference modeling of solitons induced by a density hump in a plasma multi-fluid | |
Ma et al. | Modeling of Electromagnetic-Thermal Effect of Dielectric Filled Waveguide with Finite Element Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |