CN104674604B - 基于飞行喷射机器人的古籍修复方法 - Google Patents

基于飞行喷射机器人的古籍修复方法 Download PDF

Info

Publication number
CN104674604B
CN104674604B CN201510095897.5A CN201510095897A CN104674604B CN 104674604 B CN104674604 B CN 104674604B CN 201510095897 A CN201510095897 A CN 201510095897A CN 104674604 B CN104674604 B CN 104674604B
Authority
CN
China
Prior art keywords
ancient books
flight
machine people
jetting machine
repaired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510095897.5A
Other languages
English (en)
Other versions
CN104674604A (zh
Inventor
周迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510095897.5A priority Critical patent/CN104674604B/zh
Publication of CN104674604A publication Critical patent/CN104674604A/zh
Application granted granted Critical
Publication of CN104674604B publication Critical patent/CN104674604B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)

Abstract

本发明公开了一种基于飞行喷射机器人的古籍修复方法,具体涉及将飞行喷射系统、CCD机器视觉系统、激光测量校准系统、数字化自动控制系统和高速高精度机器人相结合的技术在古籍修复领域的应用,可以对古籍进行数字化高精度定位修复。其特征在于:1,将古籍页面放在飞行喷射机器人的工作台上;2,利用CCD机器视觉系统,对待修复古籍进行目标检测;3,数学定位;4,利用喷阀对需要修补的位置周围进行胶水高精度定点非接触式喷射;机械手抓取;激光检测。全过程代替人的繁重劳动,节省了大量人力资源,大幅增进了古籍修复的精度和速度,使得古籍修复从传统的手工行业进入高速高精度非接触式自动化领域。

Description

基于飞行喷射机器人的古籍修复方法
技术领域
本发明涉及一种基于飞行喷射机器人的古籍修复方法,具体涉及一种将飞行喷射系统、CCD机器视觉系统、激光测量校准系统、数字化自动控制系统和高速高精度机器人相结合的技术在古籍修复领域的应用,可以对古籍进行数字化高精度定位修复。
背景技术
古籍修复是文物产业的重要环节。在古籍修复作业中,常常需要对其进行观察、清洗、修补、装裱、整理等操作。目前,上述作业基本都是靠人工来完成,不仅工作效率低、工艺复杂,同时也影响了修复质量和精细程度。许多古籍残卷缺损修复面积在10平方毫米以内,依靠人工在放大镜下进行作业难度很高,且质量不能保证稳定。需要一种精密的机器设备来代替人工完成以上作业。而与接触式机器设备不同,飞行喷射的非接触式机器设备由于未与古籍发生接触,不会损害页面,更能保护古籍。
发明内容
本发明的目的是提供一种基于飞行喷射机器人的古籍修复方法,目前的古籍修复方法基本靠人工作业完成,本发明将一种适用于古籍修复的飞行喷射机器人应用于古籍修复,它利用CCD机器视觉系统进行定位,用激光检测系统进行测量校准,结合图像识别算法和运动控制算法进行检测,飞行喷射系统进行喷胶,借助高速高精度运动平台,在古籍修复时进行精密作业,替代人工操作,保证作业质量,提高作业精度。
为了解决背景技术所存在的问题,本发明采用以下技术方案,它的操作步骤为:
第一步,取出需要修复的古籍,拆开装订线,将需要修复的古籍页面放在飞行喷射机器人的工作台上。
第二步,利用CCD机器视觉系统,对待修复古籍进行搜索,在视域中锁定需要修补的目标位置;通过视觉模块中的图像处理软件对目标图像进行处理,得到二维坐标,可以求得由飞行喷射机器人的CCD机器视觉系统坐标原点指向目标中心的空间直线;控制模块发出指令调整激光测距传感器对准该空间直线的方向进行测距,所得到的数据即为目标距离。
第三步,将空间直线以及距离参数合成后进一步换算到底座参考坐标系中,由此得到了目标孔的空间三维坐标,完成定位,运动的坐标数据均以底座为基准参考坐标系。
第四步,利用飞行喷射机器人的压电式喷阀对需要修补的位置周围进行胶水(浆糊)高精度定点非接触式喷射;抓取修补专用的古籍修复纸,将其粘连在喷胶的地方。
第四步,利用激光检测系统,检测修补位置是否已被完整修补。
所述飞行喷射机器人,是由自动控制面板、液晶显示器、CCD机器视觉系统、压电式喷阀、流水线、显示器固定架、机体、工装托架、三轴运动系统、测高传感器、报警灯、悬挂支架、键盘托、工控机箱和激光检测系统组成;机体的上部前侧设置有自动控制面板,且其中部固定连接有显示器固定架,显示器固定架上设置有键盘托,键盘托上设有小键盘和鼠标,小键盘和鼠标分别用数据线与工控机连接,工控机置于工控机箱内;液晶显示器固定连接在显示器固定架上,液晶显示器通过数据线与工控机箱内的工控机相连接,工控机箱固定在机体的最下端;工控机箱的上端面固定连接有工装托架,工装托架通过电源线及数据线与伺服电机连接,CCD机器视觉系统固定于工装托架上;流水线固定连接在机体的两侧面;三轴运动系统固定于工装托架的上方;测高传感器固定连接在机体上,并处于三轴运动系统的右侧及工装托架的上方;激光检测系统固定在机体上;报警灯固定连接在机体的顶部;悬挂支架固定连接在工装托架的上方。
所述CCD机器视觉系统的识别精度为0.01毫米以上的细微待修复古籍的修复目标,可以测量到0.001毫米以上的工件,由以下设备组成:
CCD数字相机,用于拍摄表面图像;
LED光源,用于向所述CCD数字相机的图像采集区域内打光以便实现照明;为了采集尽量大的图像范围和尽量清晰的图像,可采用四组条形光源,将条形光源布设排列为一矩形框,数字相机的图像采集区域正对所述矩形框,分别从四个侧面向采集范围进行均匀打光。
图像采集卡,用于接收和转化数字相机拍摄的图像数据后,将其存入计算机控制系统;
计算机控制系统,连接所述图像采集卡并接收所述图像数据,根据图像数据检测表面缺陷的检测;并且连接所述控制电路并发送驱动指令。
所述压电式喷阀的喷射速度为每秒300次定量喷胶,每滴喷射液体最小量为2纳升。
所述三轴运动系统的X-Y-Z重复定位精度达+/-0.001mm;最大速度达10m/s;最大加速度达100m/s^2。
所述的激光检测系统,带有激光位移和速度传感器,相关信号自动传递给计算机。
所述工控机箱内的工控机上有数据采集卡、运动控制卡及控制软件。
所述工控机内有运动控制卡及图像识别算法和运动控制算法。
所述图像识别算法,在CCD机器视觉的辅助下,可以识别0.01毫米以上的细微待修复古籍的修复目标。
所述示教器采用触摸屏实现。
本发明的工作原理为:在CCD机器视觉的辅助下,系统通过飞行喷射系统和三轴运动系统,对待修复古籍进行精确作业,并配合流水线等装置,实现自动封装作业。为了精确控制喷胶量,还可在生产过程中,利用在机器里的CCD机器视觉系统对喷胶量进行在线测量,根据测量结果和预先设定的喷胶量进行比较,软件会自动计算喷胶量是否在预先设定的正常范围内,如不在预先设定的正常范围内,控制软件会调整喷胶次数来控制喷胶量到预先设定的正常范围内。
本发明具有以下有益效果:将CCD光学镜头跟飞行喷射系统相结合,加上三轴运动平台,对待修复古籍进行精确定位,配合高速高精度的喷胶阀,再辅以激光检测功能,在线校准,能快速实现精确喷胶封装的工艺过程;全过程代替人的繁重劳动,节省了大量人力资源,大幅增进了古籍修复的精度和速度,使得古籍修复从传统的手工行业进入高速高精度非接触式自动化领域。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明的结构示意图。
图2是图1的主视图。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。以下结合附图及实施例,对本发明进行进一步详细说明。
本发明的具体实施方式为:
第一步,取出需要修复的古籍,拆开装订线,将需要修复的古籍页面放在工作台上。
第二步,利用CCD机器视觉系统,对待修复古籍进行搜索,在视域中锁定需要修补的目标位置;建立相应的数学模型,建立古籍修复视觉算法和机器视觉系统,借助该机器视觉系统和算法,利用光学检测仪,检测需要修补的位置。搜索过程中若视觉模块判断拍摄区域内有修复孔,则得到图像,并在视域中分割、锁定目标。通过数学模型对目标图像进行处理,得到目标的二维坐标和距离。光学检测定位精度最高可达1微米。通过视觉模块中的图像处理软件对目标图像进行处理,得到二维坐标,可以求得由飞行喷射机器人的CCD机器视觉系统坐标原点指向目标中心的空间直线。控制模块发出指令调整激光测距传感器对准该空间直线的方向进行测距,所得到的数据即为目标与激光测距传感器之间的距离。
第三步,将空间直线以及距离参数合成后进一步换算到底座参考坐标系中,由此得到了目标孔的空间三维坐标,完成定位,运动的坐标数据均以底座为基准参考坐标系。
第四步,利用飞行喷射机器人的压电式喷阀对需要修补的位置周围进行胶水(浆糊)高精度定点非接触式喷射;抓取修补专用的古籍修复纸,将其粘连在喷胶的地方。所述飞行喷射机器人属于高速高精度机器人,精度最高可达100纳米。采用几何变换技术,在运动中采集并处理图像,进行动态定位。所述压电式喷阀的喷射速度为每秒300次定量喷胶,每滴喷射液体最小量为2纳升。
第四步,利用激光检测系统,检测修补位置是否已被完整修补。
如图1所示,本发明所述具体实施方式采用以下设备:它是由自动控制面板1、液晶显示器2、CCD机器视觉系统3、压电式喷阀4、流水线5、显示器固定架6、机体7、工装托架8、三轴运动系统9、测高传感器10、报警灯11、悬挂支架12、键盘托13、工控机箱14和激光检测系统15组成;机体7的上部前侧设置有自动控制面板1,且其中部固定连接有显示器固定架6,显示器固定架6上设置有键盘托13,键盘托13上设有小键盘和鼠标,小键盘和鼠标分别用数据线与工控机连接,工控机置于工控机箱14内;液晶显示器2固定连接在显示器固定架6上,液晶显示器2通过数据线与工控机箱14内的工控机相连接,工控机箱14固定在机体7的最下端;工控机箱14的上端面固定连接有工装托架8,工装托架8通过电源线及数据线与伺服电机连接,CCD机器视觉系统3与压电式喷阀4连接且固定于工装托架8上;流水线5固定连接在机体7的两侧面;三轴运动系统9固定于工装托架8的上方;测高传感器10固定连接在机体7上,并处于三轴运动系统9的右侧及工装托架8的上方;激光检测系统15固定在机体7上,且处于三轴运动系统9的下方外侧,激光检测系统15的主体于工控机箱14内;报警灯11固定连接在机体7的顶部;悬挂支架12固定连接在工装托架8的上方。
上述实施方式的各装置及构件的组合方式是为了兼顾表达清晰的目的,并不代表所示组合是固定而不可置换的。对于本领域技术人员而言,本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其它的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。以上所述,仅为本发明的较佳实施例,并不用以限制本发明,凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同替换和改进,均应包含在本发明技术方案的保护范围之内。

Claims (3)

1.基于飞行喷射机器人的古籍修复方法,具体涉及到一种基于飞行喷射机器人的古籍修复方法;其特征在于:第一步,取出需要修复的古籍,拆开装订线,将需要修复的古籍页面放在飞行喷射机器人的工作台上;第二步,利用CCD机器视觉系统,对待修复古籍进行搜索,在视域中锁定需要修补的目标位置;通过视觉模块中的图像处理软件对目标图像进行处理,得到二维坐标,可以求得由飞行喷射机器人的CCD机器视觉系统坐标原点指向目标中心的空间直线;控制模块发出指令调整激光测距传感器对准该空间直线的方向进行测距,所得到的数据即为目标距离;第三步,将空间直线以及距离参数合成后进一步换算到底座参考坐标系中,由此得到了目标孔的空间三维坐标,完成定位,运动的坐标数据均以底座为基准参考坐标系;第四步,利用飞行喷射机器人的压电式喷阀对需要修补的位置周围进行胶水高精度定点非接触式喷射;抓取修补专用的古籍修复纸,将其粘连在喷胶的地方;第四步,利用激光检测系统,检测修补位置是否已被完整修补;所述飞行喷射机器人,是由自动控制面板、液晶显示器、CCD机器视觉系统、压电式喷阀、流水线、显示器固定架、机体、工装托架、三轴运动系统、测高传感器、报警灯、悬挂支架、键盘托、工控机箱和激光检测系统组成;机体的上部前侧设置有自动控制面板,且其中部固定连接有显示器固定架,显示器固定架上设置有键盘托,键盘托上设有小键盘和鼠标,小键盘和鼠标分别用数据线与工控机连接,工控机置于工控机箱内;液晶显示器固定连接在显示器固定架上,液晶显示器通过数据线与工控机箱内的工控机相连接,工控机箱固定在机体的最下端;工控机箱的上端面固定连接有工装托架,工装托架通过电源线及数据线与伺服电机连接,CCD机器视觉系统固定于工装托架上;流水线固定连接在机体的两侧面;三轴运动系统固定于工装托架的上方;测高传感器固定连接在机体上,并处于三轴运动系统的右侧及工装托架的上方;激光检测系统固定在机体上;报警灯固定连接在机体的顶部;悬挂支架固定连接在工装托架的上方。
2.根据权利要求1所述的基于飞行喷射机器人的古籍修复方法,其特征在于:在古籍修复过程中将飞行喷射系统、CCD机器视觉系统、激光测量校准系统、数字化自动控制系统和高速高精度机器人相结合,对古籍进行数字化高精度定位修复的方法。
3.根据权利要求1所述的基于飞行喷射机器人的古籍修复方法,其特征在于:精确定位,快速拾放,其中,CCD机器视觉系统结合图像识别算法,可以识别0.01毫米以上的细微待修复古籍;X-Y-Z重复定位精度达±0.001毫米;最大速度达10米/秒;最大加速度达100米/二次方秒;喷射速度为每秒300次的定量喷胶,每滴喷射液体最小量为2纳升。
CN201510095897.5A 2015-03-04 2015-03-04 基于飞行喷射机器人的古籍修复方法 Expired - Fee Related CN104674604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510095897.5A CN104674604B (zh) 2015-03-04 2015-03-04 基于飞行喷射机器人的古籍修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510095897.5A CN104674604B (zh) 2015-03-04 2015-03-04 基于飞行喷射机器人的古籍修复方法

Publications (2)

Publication Number Publication Date
CN104674604A CN104674604A (zh) 2015-06-03
CN104674604B true CN104674604B (zh) 2016-07-13

Family

ID=53310151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510095897.5A Expired - Fee Related CN104674604B (zh) 2015-03-04 2015-03-04 基于飞行喷射机器人的古籍修复方法

Country Status (1)

Country Link
CN (1) CN104674604B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017007195B4 (de) * 2017-07-25 2022-03-17 Guido Becker Verfahren und Vorrichtung zur Papierblattrestaurierung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201141838Y (zh) * 2008-01-25 2008-10-29 天津商业大学 蜂窝纸板粘接缺陷检测系统
CN101571493A (zh) * 2008-04-29 2009-11-04 台达电子工业股份有限公司 光学检测缺陷后的路径规划方法
CN102735689A (zh) * 2012-06-20 2012-10-17 太仓博天网络科技有限公司 一种基于图形模式识别的纸张纸病检测系统
CN202543727U (zh) * 2012-04-07 2012-11-21 郑州枫华实业有限公司 古籍修复多功能修复工作台
CN203231981U (zh) * 2013-01-04 2013-10-09 北京兆维电子(集团)有限责任公司 一种在线纸病检测系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148332B1 (en) * 2000-04-18 2005-11-30 The University of Hong Kong Method of inspecting images to detect defects
US7039485B2 (en) * 2004-03-12 2006-05-02 The Boeing Company Systems and methods enabling automated return to and/or repair of defects with a material placement machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201141838Y (zh) * 2008-01-25 2008-10-29 天津商业大学 蜂窝纸板粘接缺陷检测系统
CN101571493A (zh) * 2008-04-29 2009-11-04 台达电子工业股份有限公司 光学检测缺陷后的路径规划方法
CN202543727U (zh) * 2012-04-07 2012-11-21 郑州枫华实业有限公司 古籍修复多功能修复工作台
CN102735689A (zh) * 2012-06-20 2012-10-17 太仓博天网络科技有限公司 一种基于图形模式识别的纸张纸病检测系统
CN203231981U (zh) * 2013-01-04 2013-10-09 北京兆维电子(集团)有限责任公司 一种在线纸病检测系统

Also Published As

Publication number Publication date
CN104674604A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN101520319B (zh) 复合式三维激光测量系统及测量方法
CN204718970U (zh) 产品外观检测装置
CN107650144A (zh) 一种工业机器人工件坐标系的标定校准系统及其方法
CN103394973B (zh) 数字图像相关法测量高速正交切削过程应变装置及方法
CN105835507B (zh) 一种手机盖板玻璃和液晶屏的贴合方法
CN107121093A (zh) 一种基于主动视觉的齿轮测量装置及测量方法
CN105953771B (zh) 一种主动式经纬仪系统及测量方法
CN107270833A (zh) 一种复杂曲面零件三维测量系统及方法
CN110497187A (zh) 基于视觉引导的太阳花模组装配系统
CN110954024A (zh) 一种连接件视觉测量装置及其测量方法
US20190193268A1 (en) Robotic arm processing system and method, and non-transitory computer-readable storage medium therefor
CN206113866U (zh) 电感六面自动化检测设备
US20220092330A1 (en) Image processing device, work robot, substrate inspection device, and specimen inspection device
CN109684709A (zh) 一种航空发动机叶片修复的自适应定位方法
CN109341532A (zh) 一种面向自动装配的基于结构特征的零件坐标标定方法
CN108489394A (zh) 一种大尺寸薄板金属工件几何质量自动检测装置及方法
CN104677782A (zh) 一种电连接器壳体机器视觉在线检测系统及方法
CN110081821A (zh) 智能化高铁白车身装配质量检测装置及其方法
CN103398669A (zh) 一种用于测量自由曲面的多轴联动视觉检测方法和设备
CN105987917A (zh) 蓝宝石长晶缺陷及表面缺陷光学检测方法和检测系统
CN102818544A (zh) 汽车轮毂螺栓孔节圆中心和中孔中心偏心距在线测量方法
JPH04178506A (ja) ワークの3次元位置計測方法
CN114434036B (zh) 用于大型船舶结构件龙门式机器人焊接的三维视觉系统及运行方法
CN208042989U (zh) 一种大尺寸薄板金属工件几何质量自动检测装置
CN104674604B (zh) 基于飞行喷射机器人的古籍修复方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160713

Termination date: 20190304