CN108489394A - 一种大尺寸薄板金属工件几何质量自动检测装置及方法 - Google Patents

一种大尺寸薄板金属工件几何质量自动检测装置及方法 Download PDF

Info

Publication number
CN108489394A
CN108489394A CN201810345090.6A CN201810345090A CN108489394A CN 108489394 A CN108489394 A CN 108489394A CN 201810345090 A CN201810345090 A CN 201810345090A CN 108489394 A CN108489394 A CN 108489394A
Authority
CN
China
Prior art keywords
workpiece
image
pel
unit
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810345090.6A
Other languages
English (en)
Inventor
邹媛媛
李�杰
岳国栋
蔡尚�
刘景�
郭富成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Jianzhu University
Original Assignee
Shenyang Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Jianzhu University filed Critical Shenyang Jianzhu University
Priority to CN201810345090.6A priority Critical patent/CN108489394A/zh
Publication of CN108489394A publication Critical patent/CN108489394A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/02Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical means for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/24Measuring arrangements characterised by the use of optical means for measuring contours or curvatures

Abstract

本发明涉及一种大尺寸薄板金属工件几何质量自动检测装置及方法,在检测位置采集薄板工件整体图像和距离,并传送给图像处理单元;图像处理单元获得加工孔数量和各个孔中心位置,并识别圆弧和线段图元,确定图元类型及各类型图元数量,并计算工件厚度信息;如果孔的数量、工件厚度以及孔的类型均满足要求,则由局部传感单元采集工件序列图像,传送给图像处理单元;图像处理单元处理局部序列图像,识别获得图元的尺寸信息和位置信息;如果图元的尺寸和位置满足要求,则输出检测结果。本发明采用宏微结合的方式采集获取待测工件原始图像,能够实现对大尺寸工件质量检测,既能保证检测精度,同时可以不受工件尺寸限制,提高了检测范围和检测精度。

Description

一种大尺寸薄板金属工件几何质量自动检测装置及方法
技术领域
[0001] 本发明涉及一种工件几何质量检测技术,具体为一种大尺寸薄板金属工件几何质 量自动检测装置及方法。
背景技术
[0002] 现代制造业越来越趋于“多品种、小批量”的特点,而板材加工领域对生产的柔性 要求也越来越高,生产过程中的工件质量检测非常重要。工件几何质量自动检测装置应用 在金属板材制造生产线中,在生产过程中对工件加工几何质量进行实时检测,当检测到工 件加工质量超差时,及时发出警示信息,避免批量废品的产生,有利于提高生产线的生产效 率和自动化水平。
[0003] 金属板材工件的加工几何质量问题主要包括加工孔尺寸超差、加工位置错误以及 加工孔数量不一致等。传统的检测方法是通过游标卡尺、模板或者是三坐标测量机进行。但 传统测量方式无法测量工件的全部轮廓位置,很难完全满足测量要求,例如对于大尺寸工 件和复杂工件的检测等。
[0004] 相比之下,机器视觉检测技术具有非接触、速度快、精度高、抗干扰能力强等优点, 目前在产品质量检测等领域中得到了广泛的应用,视觉检测技术为解决产品自动化测量提 供了有效的解决方案。但在大尺寸薄板金属工件(平面尺寸大于500mm*500mm的薄板金属工 件)几何质量检测方面,由于测量尺寸大、测量精度要求高等多方面的制约,仍然没有得到 普及,现有检测装置需要超高分辨率数码摄像机实现高精度检测,价格较贵,且检测工件尺 寸受限。
发明内容
[0005] 针对现有技术中机器视觉检测技术没有得到普及且检测工件尺寸受限等不足,本 发明要解决的问题是提供一种检测精度高,检测速度快,制造成本低的大尺寸薄板金属工 件几何质量自动检测装置及方法。
[0006] 为解决上述技术问题,本发明采用的技术方案是:
[0007] 本发明一种大尺寸薄板金属工件几何质量自动检测装置,包括:
[0008] 检测台单元、三维运动执行单元以及传感单元,其中,检测台单元上表面置放待测 薄板工件,三维运动执行单元安装于检测台单元上方,传感单元安装于三维运动执行单元 上,采集待测薄板工件的原始图像,并传输至工控机中。
[0009]三维运动执行单元包括X轴、Y轴、Z轴运动执行机构,其中,X轴运动执行机构包括 两个X轴滑轨,其平行安装于检测台单元的基座上两侧边位置;Y轴运动执行机构包括龙门 架及Y轴滑轨,龙门架的两个支脚滑动安装于x轴滑轨上,龙门架的横梁上水平安装Y轴滑 轨;Z轴运动执行机构以垂直于基座的方向滑动安装于Y轴滑轨中,Z轴运动执行机构底端安 装传感单兀。
[0010]传感单元,包括全局传感单元和局部传感单元,其中,全局传感单元包括全局摄像 机及激光测距传感器,二者以光轴平行的方式安装于z轴运动执行机构底端一侧;局部传感 单元安装于Z轴运动执行机构底端另一侧,包括局部摄像机和附加光源,附加光源为条形光 源,设于摄像机镜头两侧。
[0011] 检测台单元包括背光光源和基座,基座上面两侧边设有滑轨,两滑轨之间为用于 置放待测薄板工件的玻璃台面,背光光源设于检测台单元基座下部,全局摄像机镜头的正 对面位置。
[0012] 所述工控机接收传感单元采集的原始图像进行处理,输出工件几何质量检测结 果;工控机的指令输出端与三维运动执行单元连接。
[0013] 本发明大尺寸薄板金属工件几何质量自动检测装置的检测方法,包括以下步骤:
[0014] 全局传感单元运动到检测位置,分别由全局摄像机采集薄板工件整体图像,由激 光测距传感器测量到工件的距离,并传送给图像处理单元;
[0015] 图像处理单元处理全局图像,获得加工孔数量和各个孔中心位置,并识别圆弧和 线段图元,确定图元类型及各类型图元数量,并计算工件厚度信息;
[0016] 检测孔的数量是否满足要求;
[0017] 检测工件厚度是否满足要求;
[0018] 基于图元信息检测孔的类型是否满足要求;
[0019]如果孔的数量、工件厚度以及基于图元信息检测孔的类型均满足要求,则由局部 传感单元采集工件序列图像,并传送给图像处理单元;
[0020] 图像处理单元处理局部序列图像,识别获得图元的尺寸信息和位置信息;
[0021] 检测图元的尺寸和位置是否满足要求;
[0022] 如果图元的尺寸和位置满足要求,则输出检测结果。
[0023] 对全局摄像机采集的工件图像进行处理包括以下步骤:
[0024]对全局传感单元采集的原始图像,进行图像矫正,以矫正图像的倾斜或畸变;
[0025]依据图像灰度信息,分割获得感兴趣区域,以去除千扰区域;
[0026]对感兴趣区域图像进行阈值分割,计算得到孔的数量和各个孔的中心位置;
[0027]基于亚像素边缘提取算法提取孔的边缘闭合轮廓特征;
[0028]分割各闭合轮廓特征,得到圆弧和线段基本图元;
[0029]计算每个闭合轮廓中直线图元和圆弧图元的数量,识别并记录各孔的类型。
[0030]对局部摄像机采集的工件序列图像进行处理包括以下步骤:
[0031]基于每帧图像上的纹理信息,拼接序列图像;
[0032]拼接后的图像,基于亚像素边缘提取算法提取孔的边缘闭合轮廓特征;
[0033]分割各闭合轮廓特征,得到圆弧和线段基本图元;
[0034]识别各闭合轮廓特征的图元尺寸和图元位置信息。
[0035]如果检测孔的数量、板厚、加工孔类型或各图元的尺寸和位置不满足要求,则输出 检测结果为不合格。
[0036]本发明具有以下有益效果及优点:
[0037] 1 •本发明采用宏微结合的方式采集获取待测工件原始图像,能够实现对大尺寸工 件质量检测,既能保证检测精度,同时可以不受工件尺寸限制。
[0038] 2.本发明提出的检测装置极大地提高了检测范围和检测精度,保证检测结果的可 靠性;由于不需要超高精度数码相机,降低了制造成本。 >
[0039] 3 •本发明能够实现大尺寸薄板金属工件几何质量的自动、在线检测,有助于提高 大尺寸薄板金属工件的生产效率。
附图说明
[0040] 图1为本发明装置组成示意图;
[0041] 图2为本发明装置三维结构示意图;
[0042] 图3为本发明中全局传感单元结构示意图;
[0043]图4为本发明中检测台单元结构示意图;
[0044]图5为本发明方法总流程图;
[0045] 图6为本发明方法中对全局摄像机采集的工件图像进行处理的流程图;
[0046] 图7为本发明方法中对局部摄像机采集的工件序列图像进行处理的流程图。
[0047] 其中,1为传感单元,2为工控机,3为图像处理单元,4为参数设置及控制单元,5为 上位机,6为龙门架,7为基座,8为背光光源,9为检测台单元,10为Z轴运动执行机构,11为Y 轴运动执行机构,12为X轴运动执行机构,13为三维运动执行单元,14为局部传感单元,15为 全局传感单元,16为全局摄像机,17为及激光测距传感器,18为检测玻璃台面,I9为待测薄 板工件。
具体实施方式
[0048]下面结合说明书附图对本发明作进一步阐述。
[0049] 如图1〜2所示,本发明一种大尺寸薄板金属工件几何质量自动检测装置,包括:检 测台单元9、三维运动执行单元13以及传感单元1,其中,检测台单元9上表面置放待测薄板 工件19,三维运动执行单元13安装于检测台单元9上方,传感单元1安装于三维运动执行单 元13上,采集待测薄板工件19的原始图像,并传输至工控机2中。
[0050] 工控机接收传感单元1采集的原始图像进行处理,输出工件几何质量检测结果;工 控机的指令输出端与三维运动执行单元(13)连接。
[0051]如图2所示,三维运动执行单元13包括X轴、Y轴、Z轴运动执行机构,其中,X轴运动 执行机构12包括两个X轴滑轨,平行安装于检测台单元9的基座7上的两侧边位置;Y轴运动 执行机构11包括龙门架6及Y轴滑轨,龙门架6的两个支脚滑动安装于X轴滑轨上,龙门架6的 横梁上水平安装Y轴滑轨;Z轴运动执行机构10以垂直于基座6的方向滑动安装于Y轴滑轨 中,Z轴运动执行机构10的底端安装传感单元1。
[0052] 传感单元1,包括全局传感单元15和局部传感单元14,其中,全局传感单元15包括 全局摄像机16及激光测距传感器17,二者以光轴平行的方式安装于Z轴运动执行机构10底 端一侧;局部传感单元14安装于Z轴运动执行机构10底端另一侧,包括局部摄像机和附加光 源,附加光源为条形光源,设于摄像机镜头两侧。
[0053]如图3所示,检测台单元9包括背光光源8和基座7,基座7上面两侧边设有滑轨,两 滑轨之间为用于置放待测薄板工件的玻璃台面,背光光源8设于检测台单元基座7下部,摄 像机镜头的正对面位置。
[0054]如图1所示,工控机2包括图像处理单元3和参数设置及控制单元4,其中图像处理 单元3与参数设置及控制单元4的控制输出端连接,接收传感单元1采集的原始图像进行处 理,得到工件几何质量信息,主要包括工件板厚信息、几何轮廓信息等,并和加工标准做对 比,并向参数设置及控制单元4输出工件几何质量检测结果;参数设置及控制单元4分别与 传感单元1、图像处理单元3、三维运动执行单元13进行通讯连接,对传感单元1、图像处理单 元3及三维运动执行单元13的各参数进行设置。
[0055] 参数设置及控制单元还与上位机进行通讯连接。
[0056] 本实施例中,图像处理单元3和参数设置及控制单元4,为由CPU处理器通过运行工 控机软件生成的功能模块。三维运动执行单元13,将传感单元1移动至检测位置。检测台单 元9中的背光光源8为全局传感单元15提供辅助照明,基座7和三维运动执行单元13中的龙 门架6均起到支撑的作用,可以保证三维运动执行单元13运动的稳定性。
[0057] 传感单元1采用宏、微结合的方式采集获取待测工件原始图像,分别通过全局传感 单元15采集工件的整体图像,通过局部传感单元14采集工件的局部序列图像。
[0058] 本实施例中,三维运动执行单元13中的X轴运动执行机构12、Y轴运动执行机构11 以及Z轴运动执行机构10,依据工件尺寸选用合适行程的同步齿形带直线机器人作为执行 机构。X轴运动执行机构12包括主动轴和从动轴,安装于基座两侧,Y轴运动执行机构11和Z 轴运动执行机构10安装于龙门架6上。全局传感单元15和局部传感单元14固定安装在坚直 方向的Z轴运动执行机构10末端的两个检测位,由Z轴实现不同检测高度位置的切换,位于 局部图像检测位置的相机在X轴和Y轴方向上能够进行匀速运动,以实现序列局部图像的采 集。
[0059] 如图3所示,全局传感单元15由全局摄像机16及激光测距传感器17组成,其中全局 摄像机能够拍摄工件整体图像,本实施例中选用500万像素工业相机作为全局摄像机。激光 测距传感器能够检测工件厚度。
[0060] 如图4所示,背光光源8设于检测台单元基座7内,位于全局摄像机16镜头的正对面 位置,本实施例中选用LED光带,基座检测台面为耐磨玻璃台面18。
[0061] 本发明的工作过程如下:
[0062]将待检测大尺寸金属板材工件即待测薄板工件19置于检测玻璃台面18上,首先由 参数设置及控制单元4控制背光光源11照亮整个待测薄板工件19区域,再控制Z轴运动执行 机构10运动使得其末端安装的全局传感单元15运动到全局检测位,由全局摄像机16在背光 光源8照明条件下采集一幅金属板材工件整体图像;
[0063] 其次,控制Z轴运动执行机构10运动到局部检测位,控制X、Y轴运动执行机构12、11 运动到金属板材边缘起点位置,控制背光光源8关闭,控制局部传感单元14中附加光源的条 光照亮金属板材工件局部区域,局部传感单元14在X轴和Y轴方向上能够进行匀速运动,以 实现序列局部图像的采集,直至采集完成整个工件平面,并将所采集的图像通过 Cameralink线缆或网线传送给图像处理单元3,由图像处理单元3对采集到的金属板材工件 原始图像进行处理,对几何质量进行检测;
[0064]参数设置与控制单元4对传感单元1及图像处理单元3的各参数进行设置,并分别 与传感单元1、图像处理单元3及上位机5进行通讯连接。
[0065] 本发明中,平面尺寸大于500ram*500mm的薄板金属工件为大尺寸薄板金属工件。
[0066]如图5所示,为本发明提出的大尺寸薄板金属工件几何质量方法进行工件几何质 量检测时的工作流程示意图,该方法包括以下步骤:
[0067] 全局传感单元运动到检测位置,分别由全局摄像机采集薄板工件整体图像,由激 光测距传感器测量到工件的距离,并传送给图像处理单元;
[0068] 图像处理单元处理全局图像,获得加工孔数量和各个孔中心位置,并识别圆弧和 线段等图元,确定图元类型及各类型图元数量,并计算工件厚度信息;
[0069] 检测孔的数量是否满足要求;
[0070] 检测工件厚度是否满足要求;
[0071] 基于图元信息检测孔的类型是否满足要求;
[0072]如果孔的数量、工件厚度以及基于图元信息检测孔的类型均满足要求,则由局部 摄像机采集工件序列图像,并传送给图像处理单元;
[0073]图像处理单元处理局部序列图像,识别获得图元的尺寸信息和位置信息;
[0074] 检测图元的尺寸和位置是否满足要求;
[0075] 输出检测结果。
[0076]如图6所示,为本发明方法中对全局摄像机采集的工件图像进行处理的流程图,所 述的图像处理单元处理全局图像,包括以下步骤:
[0077]在步骤1〇1,采集薄板金属工件原始图像;步骤102进行图像矫正,以矫正图像的倾 斜或畸变,调整图像使得图像中工件的底边处于水平位置;
[0078]步骤1〇3依据图像灰度信息,分割获得感兴趣区域,以去除干扰区域,提取出工件 所在区域;
[0079]步骤104对感兴趣区域图像进行阈值分割,由于采用背光光源,依据阈值分割可以 提取出工件上的孔,计算得到孔的数量和各个孔的中心位置;
[0080]步骤105基于亚像素边缘提取算法提取孔的边缘闭合轮廓特征,本实施例中采用 canny算子提取孔的边缘;
[0081]步骤106分割各闭合轮廓为基本图元,每一个闭合轮廓可以分割为线段和!„个圆 弧;
[0082]步骤107计算每个闭合轮廓中线段图元和圆弧图元的数量,识别并记录各孔的类 型。
[0083]如图7所示,为本发明方法中对局部摄像机采集的工件图像进行处理的流程图,所 述的图像处理单元处理序列局部图像,包括以下步骤:
[0084]在步骤201,采集薄板金属工件序列局部原始图像;
[0085]在步骤202,基于纹理信息,拼接序列图像,以获取工件整体图像;
[0086]步骤2〇3,对拼接后的图像,基于亚像素边缘提取算法提取孔的边缘闭合轮廓; [0087]步骤204,分割各闭合轮廓为基本图元;
[0088]步骤205,识别组成各闭合轮廓的图元尺寸和图元位置信息。
[0089]判断工件几何质量,如果检测孔的数量、板厚、加工孔类型、各图元的尺寸和位置 都满足要求,则输出检测结果合格,否则,则输出检测结果不合格。完成薄板金属工件的几 何质量识别与判定,最终实现自动检测。
[0090]本发明采用宏、微结合的方式采集获取待测工件原始图像,能够实现对大尺寸工 件质量检测,既能保证检测精度,同时可以不受工件尺寸限制。

Claims (9)

1. 一种大尺寸薄板金属工件几何质量自动检测装置,其特征在于包括: 检测台单元、三维运动执行单元以及传感单元,其中,检测台单元上表面置放待测薄板 工件,三维运动执行单元安装于检测台单元上方,传感单元安装于三维运动执行单元上,米 集待测薄板工件(19)的原始图像,并传输至工控机中。 _
2. 根据权利要求1所述的大尺寸薄板金属工件几何质量自动检测装置,其特征在于:三 维运动执行单元(13)包括X轴、Y轴、Z轴运动执行机构,其中,X轴(12)运动执行机构包括两 个X轴滑轨,其平行安装于检测台单元的基座上两侧边位置;Y轴(12)运动执行机构包括龙 门架及Y轴滑轨,龙门架的两个支脚滑动安装于X轴滑轨上,龙门架的横梁上水平安装Y轴滑 轨;Z轴运动执行机构以垂直于基座的方向滑动安装于Y轴滑轨中,Z轴运动执行机构底端安 装传感单元。
3. 根据权利要求1所述的大尺寸薄板金属工件几何质量自动检测装置,其特征在于:传 感单元(1),包括全局传感单元(15)和局部传感单元(14),其中,全局传感单元(15)包括全 局摄像机(16)及激光测距传感器(17),二者以光轴平行的方式安装于Z轴运动执行机构底 端一侧;局部传感单元(14)安装于Z轴运动执行机构底端另一侧,包括局部摄像机和附加光 源,附加光源为条形光源,设于摄像机镜头两侧。
4. 根据权利要求1所述的大尺寸薄板金属工件几何质量自动检测装置,其特征在于:检 测台单元(9)包括背光光源(8)和基座(7),基座(7)上面两侧边设有滑轨,两滑轨之间为用 于置放待测薄板工件的玻璃台面,背光光源(8)设于检测台单元基座(7)下部,全局摄像机 镜头的正对面位置。
5. 根据权利要求1所述的大尺寸薄板金属工件几何质量自动检测装置,其特征在于:所 述工控机接收传感单元⑴采集的原始图像进行处理,输出工件几何质量检测结果;工控机 的指令输出端与三维运动执行单元(13)连接。
6. 根据权利要求1所述的大尺寸薄板金属工件几何质量自动检测装置的检测方法,其 特征在于包括以下步骤: 全局传感单元运动到检测位置,分别由全局摄像机米集薄板工件整体图像,由激光测 距传感器测量到工件的距离,并传送给图像处理单元; 图像处理单元处理全局图像,获得加工孔数量和各个孔中心位置,并识别圆弧和线段 图元,确定图元类型及各类型图元数量,并计算工件厚度信息; 检测孔的数量是否满足要求; 检测工件厚度是否满足要求; 基于图元信息检测孔的类型是否满足要求; 如果孔的数量、工件厚度以及基于图元信息检测孔的类型均满足要求,则由局部传感 单元采集工件序列图像,并传送给图像处理单元; 图像处理单元处理局部序列图像,识别获得图元的尺寸信息和位置信息; 检测图元的尺寸和位置是否满足要求; 如果图元的尺寸和位置满足要求,则输出检测结果。
7.根据权利要求6所述的大尺寸薄板金属工件几何质量自动检测装置的检测方法,其 特征在于对全局摄像机采集的工件图像进行处理包括以下步骤: 对全局传感单元采集的原始图像,进行图像矫正,以矫正图像的倾斜或畸变; 依据图像灰度信息,分割获得感兴趣区域,以去除干扰区域; 对感兴趣区域图像进行阈值分割,计算得到孔的数量和各个孔的中心位置; 基于亚像素边缘提取算法提取孔的边缘闭合轮廓特征; 分割各闭合轮廓特征,得到圆弧和线段基本图元; 计算每个闭合轮廓中直线图元和圆弧图元的数量,识别并记录各孔的类型。
8.根据权利要求6所述的大尺寸薄板金属工件几何质量自动检测装置的检测方法,其 特征在于对局部摄像机采集的工件序列图像进行处理包括以下步骤: 基于每帧图像上的纹理信息,拼接序列图像; 拼接后的图像,基于亚像素边缘提取算法提取孔的边缘闭合轮廓特征; 分割各闭合轮廓特征,得到圆弧和线段基本图元; 识别各闭合轮廓特征的图元尺寸和图元位置信息。
9.根据权利要求7所述的大尺寸薄板金属工件几何质量自动检测装置的检测方法,其 特征在于:如果检测孔的数量、板厚、加工孔类型或各图元的尺寸和位置不满足要求,则输 出检测结果为不合格。
CN201810345090.6A 2018-04-17 2018-04-17 一种大尺寸薄板金属工件几何质量自动检测装置及方法 Pending CN108489394A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810345090.6A CN108489394A (zh) 2018-04-17 2018-04-17 一种大尺寸薄板金属工件几何质量自动检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810345090.6A CN108489394A (zh) 2018-04-17 2018-04-17 一种大尺寸薄板金属工件几何质量自动检测装置及方法

Publications (1)

Publication Number Publication Date
CN108489394A true CN108489394A (zh) 2018-09-04

Family

ID=63312533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810345090.6A Pending CN108489394A (zh) 2018-04-17 2018-04-17 一种大尺寸薄板金属工件几何质量自动检测装置及方法

Country Status (1)

Country Link
CN (1) CN108489394A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357630A (zh) * 2018-10-30 2019-02-19 南京工业大学 一种多类型工件批量视觉测量系统及方法
CN109405755A (zh) * 2018-12-13 2019-03-01 西安交通大学 一种大尺寸管板孔径和节距测量装置与测量方法
CN109612390A (zh) * 2018-12-17 2019-04-12 江南大学 基于机器视觉的大尺寸工件自动测量系统
CN110345877A (zh) * 2019-07-03 2019-10-18 西安交通大学 一种管板孔径和节距测量方法
CN110425978A (zh) * 2019-07-31 2019-11-08 合肥康普曼数字技术有限公司 一种电池托盘的质量检测系统及其方法
CN111609811A (zh) * 2020-04-29 2020-09-01 北京机科国创轻量化科学研究院有限公司 一种基于机器视觉的大尺寸板材成形在线测量系统与方法
CN112254655A (zh) * 2020-11-11 2021-01-22 北京平恒智能科技有限公司 一种超大尺寸高精度二维平面测量设备
CN113160162A (zh) * 2021-04-14 2021-07-23 深圳远荣智能制造股份有限公司 应用于工件的孔识别方法、孔识别装置和孔处理设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201107639Y (zh) * 2007-11-30 2008-08-27 华南理工大学 应用机器视觉的大型在制工件几何测量装置
CN201266076Y (zh) * 2008-06-27 2009-07-01 东南大学 基于机器视觉的大尺寸零件测量装置
CN203163682U (zh) * 2013-01-28 2013-08-28 东莞市嘉腾仪器仪表有限公司 一种全自动龙门式影像测量仪
CN104390591A (zh) * 2014-11-27 2015-03-04 上海江南长兴造船有限责任公司 大型曲面板测量中圆形标记物的精确定位方法
CN105269403A (zh) * 2015-11-27 2016-01-27 广东工业大学 一种检测系统及检测方法
CN107121093A (zh) * 2017-06-13 2017-09-01 电子科技大学 一种基于主动视觉的齿轮测量装置及测量方法
CN107538487A (zh) * 2017-02-16 2018-01-05 北京卫星环境工程研究所 用于大尺寸复杂形面的机器人自动测量方法及系统
CN208042989U (zh) * 2018-04-17 2018-11-02 沈阳建筑大学 一种大尺寸薄板金属工件几何质量自动检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201107639Y (zh) * 2007-11-30 2008-08-27 华南理工大学 应用机器视觉的大型在制工件几何测量装置
CN201266076Y (zh) * 2008-06-27 2009-07-01 东南大学 基于机器视觉的大尺寸零件测量装置
CN203163682U (zh) * 2013-01-28 2013-08-28 东莞市嘉腾仪器仪表有限公司 一种全自动龙门式影像测量仪
CN104390591A (zh) * 2014-11-27 2015-03-04 上海江南长兴造船有限责任公司 大型曲面板测量中圆形标记物的精确定位方法
CN105269403A (zh) * 2015-11-27 2016-01-27 广东工业大学 一种检测系统及检测方法
CN107538487A (zh) * 2017-02-16 2018-01-05 北京卫星环境工程研究所 用于大尺寸复杂形面的机器人自动测量方法及系统
CN107121093A (zh) * 2017-06-13 2017-09-01 电子科技大学 一种基于主动视觉的齿轮测量装置及测量方法
CN208042989U (zh) * 2018-04-17 2018-11-02 沈阳建筑大学 一种大尺寸薄板金属工件几何质量自动检测装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357630A (zh) * 2018-10-30 2019-02-19 南京工业大学 一种多类型工件批量视觉测量系统及方法
CN109405755A (zh) * 2018-12-13 2019-03-01 西安交通大学 一种大尺寸管板孔径和节距测量装置与测量方法
CN109612390A (zh) * 2018-12-17 2019-04-12 江南大学 基于机器视觉的大尺寸工件自动测量系统
CN110345877A (zh) * 2019-07-03 2019-10-18 西安交通大学 一种管板孔径和节距测量方法
CN110425978A (zh) * 2019-07-31 2019-11-08 合肥康普曼数字技术有限公司 一种电池托盘的质量检测系统及其方法
CN111609811A (zh) * 2020-04-29 2020-09-01 北京机科国创轻量化科学研究院有限公司 一种基于机器视觉的大尺寸板材成形在线测量系统与方法
CN112254655A (zh) * 2020-11-11 2021-01-22 北京平恒智能科技有限公司 一种超大尺寸高精度二维平面测量设备
CN113160162A (zh) * 2021-04-14 2021-07-23 深圳远荣智能制造股份有限公司 应用于工件的孔识别方法、孔识别装置和孔处理设备

Similar Documents

Publication Publication Date Title
CN108489394A (zh) 一种大尺寸薄板金属工件几何质量自动检测装置及方法
CN105784716B (zh) 摩擦片质量检验系统
CN101526484B (zh) 基于嵌入式机器视觉的轴承缺陷检测方法
CN103712555B (zh) 汽车大梁装配孔视觉在线测量系统及其方法
CN110017773B (zh) 一种基于机器视觉的包裹体积测量方法
CN103630544B (zh) 一种视觉在线检测系统
CN104551865A (zh) 影像量测系统及方法
CN106017350A (zh) 基于机器视觉的中小模数齿轮快速检测装置及检测方法
CN208042989U (zh) 一种大尺寸薄板金属工件几何质量自动检测装置
CN106052586A (zh) 基于机器视觉的石材大板表面轮廓尺寸获取系统及方法
CN109405755B (zh) 一种大尺寸管板孔径和节距测量装置与测量方法
CN203758470U (zh) 一种用于手机屏蔽罩的平面度检测装置
CN105973898A (zh) 一种智能终端触摸屏保护盖板的检测装置
CN107345789A (zh) 一种pcb板孔位检测装置及方法
CN105424721A (zh) 一种金属应变计缺陷自动检测系统
CN206281468U (zh) 一种柱状物体垂直度的非接触式检测装置
CN107101576A (zh) 一种零件综合检测方法及系统
CN205333535U (zh) 一种金属应变计缺陷自动检测系统
CN103091332B (zh) 一种基于机器视觉的u型粉管的检测方法及其检测系统
CN110567976A (zh) 基于机器视觉的手机盖板丝印缺陷检测装置及检测方法
CN109813718A (zh) 一种led芯片模组缺陷检测装置及方法
CN207649542U (zh) 一种多量程大尺寸高精度视觉测量机构
CN205720023U (zh) 摩擦片质量检验系统
CN204389406U (zh) 蓝宝石长晶缺陷及表面缺陷光学检测系统
CN209589005U (zh) 直线度检测设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904

RJ01 Rejection of invention patent application after publication