CN104673951A - 利用钒钛两相烧结矿进行高炉冶炼的方法 - Google Patents

利用钒钛两相烧结矿进行高炉冶炼的方法 Download PDF

Info

Publication number
CN104673951A
CN104673951A CN201510124351.8A CN201510124351A CN104673951A CN 104673951 A CN104673951 A CN 104673951A CN 201510124351 A CN201510124351 A CN 201510124351A CN 104673951 A CN104673951 A CN 104673951A
Authority
CN
China
Prior art keywords
vanadium
blast
titanium
agglomerate
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510124351.8A
Other languages
English (en)
Other versions
CN104673951B (zh
Inventor
林文康
石军
陆高峰
邹仕华
毛建林
张志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Xichang Steel and Vanadium Co Ltd
Original Assignee
Pangang Group Xichang Steel and Vanadium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Xichang Steel and Vanadium Co Ltd filed Critical Pangang Group Xichang Steel and Vanadium Co Ltd
Priority to CN201510124351.8A priority Critical patent/CN104673951B/zh
Publication of CN104673951A publication Critical patent/CN104673951A/zh
Application granted granted Critical
Publication of CN104673951B publication Critical patent/CN104673951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于钢铁冶金技术领域,具体涉及一种利用钒钛两相烧结矿进行高炉冶炼的方法。利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,其高炉炉料结构为:钒钛两相烧结矿70-100wt%、钒钛球团矿0-30wt%、普通铁矿0-10wt%;其中,普通铁矿为不含钒钛的铁矿石。本发明提供了一种利用钒钛两相烧结矿进行高炉冶炼的方法,该方法成本低廉;利用钒钛两相烧结矿供高炉冶炼钒钛磁铁矿,可实现优化高炉炉料结构,提高高炉炉料的透气性,改善高炉冶炼技术经济指标。

Description

利用钒钛两相烧结矿进行高炉冶炼的方法
技术领域
本发明属于钢铁冶金技术领域,具体涉及一种利用钒钛两相烧结矿进行高炉冶炼的方法。
背景技术
攀西钒钛磁铁矿TiO2含量高,SiO2含量低,在烧结过程中由于液相量不足,烧结矿难以达到很好的粘结,且生成了不利于烧结矿固结的CaO·TiO2相,致使钒钛烧结矿的脆性大,强度差,成品率低,粉化率高。试验研究表明:钒钛磁铁精矿适合生产低碱度(CaO/SiO2<1.0倍)或高碱度(CaO/SiO2>2.0倍)的烧结矿,碱度在1.1~2.0倍之间的烧结矿强度差,粉末多,易于粉化。可见,采用攀西钒钛磁铁矿制备烧结料时在高炉冶炼过程中TiO2的过还原、产生了粘渣、查铁难分、铁损失高等特殊的难题;因此,攻克攀西钒钛磁铁矿烧结和高炉冶炼技术难关是提高攀西地区整个钢铁生产的关键环节之一。
攀钢集团西昌钢钒公司原设计高炉炉料结构为25%球团矿+5%块矿+70%烧结矿,保证高炉入炉矿石TFe品位达到51.5%,但2014年西昌钢钒3#高炉投产后,由于市场条件的变化,入炉矿石TFe品位仅49.5%左右,吨铁矿石消耗增加,2台360m2烧结机保供3座1750m3高炉生产,烧结矿产量出现明显不足,高炉高产时球团配比超过30%,高炉冶炼普通烧结工艺生产的钒钛烧结矿,技术经济指标不理想,生铁成本高。
申请号为201010132382.5专利公开了一种钒钛磁铁矿高炉冶炼方法,具体为:钒钛磁铁矿占高炉入炉含铁炉料的30-60%,炉料中烧结矿占40-65%,球团矿占30-50%,块矿占5-10%;烧结矿、球团矿、高炉炉渣的二元碱度CaO/SiO2分别控制在1.6-2.5、0.6-1.0,1.05-1.20之间,高炉渣中MgO含量控制在7.5-9.0%,采用加二批矿料和三批焦碳及采取发展中心的装料操作,将氧化锰矿或烧结锰矿粉和萤石参入喷吹煤中,并随煤粉喷吹到高炉内,使炉渣中MnO、渣中CaF2含量控制在1.0-4.5%、0.50-2.0%之间,高炉富氧率控制在2.0-4.0%。
发明内容
本发明提供了一种利用钒钛两相烧结矿进行高炉冶炼的方法,该方法成本低廉;利用钒钛两相烧结矿供高炉冶炼钒钛磁铁矿,可实现优化高炉炉料结构,提高高炉炉料的透气性,改善高炉冶炼技术经济指标。
本发明的技术方案:
本发明提供一种利用钒钛两相烧结矿进行高炉冶炼的方法,其高炉炉料结构为:钒钛两相烧结矿70-100%、钒钛球团矿0-30%、普通铁矿0-10%;其中,普通铁矿为不含钒钛的铁矿石,以上各组分的含量为质量百分含量。
进一步,上述利用钒钛两相烧结矿进行高炉冶炼的方法中,造渣制度为:高炉渣中MgO含量控制在9-12%,TiO2含量控制在18-26%;二元碱度CaO/SiO2控制在1.00-1.05倍,三元碱度((CaO+MgO)/SiO2)控制在1.2-1.5倍。
进一步,上述利用钒钛两相烧结矿进行高炉冶炼的方法中,装料制度、炉缸热制度分别为:
装料制度:采用矿、焦均等料线,料线1.2-2.2米,矿石批重16-48t,焦炭负荷2.5-5.5t/t,矿石平台1-9环,焦炭平台2-9环,焦炭外环比矿石外环大0.5-3°,焦炭中环与矿石内环等角,矿石外环比内环大0-10°,焦炭内环比矿石内环小1-10°;
炉缸热制度:开炉初期控制生铁中[Ti]在0.10-0.40%,[Si]在0.10-0.30%,[Si]+[Ti]在0.20-0.7%。
上述利用钒钛两相烧结矿进行高炉冶炼的方法中,所述钒钛两相烧结矿中TFe 47-52%,二元碱度CaO/SiO2控制在1.6-2.5倍,三元碱度((CaO+MgO)/SiO2)在2.0-3.5倍,MgO含量2.0-4.0%,TiO2含量6.0-9.0%,并且所述钒钛两相烧结矿的转鼓强度为70-76%,烧结矿成品率76-85%。
上述利用钒钛两相烧结矿进行高炉冶炼的方法中,所述钒钛两相烧结矿由下述质量配比的物料烧结而成:钒钛磁铁精矿50-75%、普通铁矿5-30%、熔剂8-15%、燃料3-5%;烧结方法为:将钒钛磁铁精矿、普通铁矿、熔剂和燃料混合得混合料,控制混合料水份为6.5-8.0%,然后将混合料于1200-1350℃下烧结即可;其中,钒钛磁铁精矿、普通铁矿、熔剂和燃料统称为新料。
上述利用钒钛两相烧结矿进行高炉冶炼的方法中,所述钒钛两相烧结矿的物料中除新料外,还包括返矿和厂内循环物料,返矿的质量占新料总量的20-45%,厂内循环物料的质量占新料总量的2-5%;所述厂内循环物料指钢铁厂内回收的粉尘和小颗粒含铁废弃物中的至少一种。
进一步,所述钒钛两相烧结矿中,所述钒钛磁铁精矿成份满足TFe 40-60%,TiO2含量0-15%;所述熔剂为占新料质量3-8%的石灰石和占新料质量3-7%的生石灰的混合物;所述燃料为焦粉、无烟煤或兰炭中的至少一种。
更优选的,所述钒钛两相烧结矿中,高碱度相占新料的50-80%,低碱度相占新料的20-50%;其中,低碱度相指CaO/SiO2<1倍,高碱度相指CaO/SiO2>2倍。
上述利用钒钛两相烧结矿进行高炉冶炼的方法中,所述钒钛球团矿的物料结构为97-99%钒钛精矿、1-3%膨润土;并且钒钛球团矿中TFe 49-56%,TiO2含量6-11%,二元碱度CaO/SiO2控制在0.2-0.6倍。
进一步,上述利用钒钛两相烧结矿进行高炉冶炼的方法中,将所述高炉炉料与燃料分批次由高炉顶部加入到高炉,高炉综合入炉TFe品位为45-52%。
优选的,本发明上述方法中,所述普通铁矿的铁含量20-60%。
本发明的有益效果:
本发明提高了高炉冶炼原料中钒钛矿的比例,降低了炼铁成本,又有利于高炉稳定顺行。本发明在保证钒钛烧结矿综合碱度不变的前提下,提高钒钛烧结矿强度1-2%和成品率1-5%,提高烧结机利用系数1-10%,大幅提高烧结矿产量1-15%,降低吨烧结矿能耗3-10kg标煤;提高高炉冶炼原料中3-10%钒钛烧结矿比例,降低炼铁成本,改善高炉原料冶金性能,又有利于高炉稳定顺行。
攀西钒钛磁铁矿TiO2含量高,SiO2含量低,采用普通的烧结工艺,在烧结过程中由于液相量不足,烧结矿难以达到很好的粘结,且生成了不利于烧结矿固结的CaO·TiO2相,致使钒钛烧结矿的脆性大,强度差,成品率低,粉化率高,高炉冶炼钒钛烧结矿成本高。两相钒钛烧结矿强度和冶金性能优于普通工艺生产的烧结矿,同时两相钒钛烧结矿的加工费低于球团矿的加工费,因此高炉冶炼两相钒钛烧结矿,既可以大幅提高钒钛矿使用比例,又可以优化技术经济指标。
具体实施方式
本发明提供一种利用钒钛两相烧结矿进行高炉冶炼的方法,其高炉炉料结构为:钒钛两相烧结矿70-100%、钒钛球团矿0-30%、普通铁矿0-10%;其中,普通铁矿为不含钒钛的铁矿石,以上各组分的含量为质量百分含量。
进一步,上述利用钒钛两相烧结矿进行高炉冶炼的方法中,造渣制度为:高炉渣中MgO含量控制在9-12%,TiO2含量控制在18-26%;二元碱度CaO/SiO2控制在1.00-1.05倍,三元碱度((CaO+MgO)/SiO2)控制在1.2-1.5倍。
进一步,上述利用钒钛两相烧结矿进行高炉冶炼的方法中,装料制度、炉缸热制度分别为:
装料制度:采用矿、焦均等料线,料线1.2-2.2米,矿石批重16-48t,焦炭负荷2.5-5.5t/t,矿石平台1-9环,焦炭平台2-9环,焦炭外环比矿石外环大0.5-3°,焦炭中环与矿石内环等角,矿石外环比内环大0-10°,焦炭内环比矿石内环小1-10°;
炉缸热制度:开炉初期控制生铁中[Ti]在0.10-0.40%,[Si]在0.10-0.30%,[Si]+[Ti]在0.20-0.7%。
上述利用钒钛两相烧结矿进行高炉冶炼的方法中,所述钒钛两相烧结矿中TFe 47-52%,二元碱度CaO/SiO2控制在1.6-2.5倍,三元碱度((CaO+MgO)/SiO2)在2.0-3.5倍,MgO含量2.0-4.0%,TiO2含量6.0-9.0%,并且所述钒钛两相烧结矿的转鼓强度为70-76%,烧结矿成品率76-85%。
上述利用钒钛两相烧结矿进行高炉冶炼的方法中,所述钒钛两相烧结矿由下述质量配比的物料烧结而成:钒钛磁铁精矿50-75%、普通铁矿5-30%、熔剂8-15%、燃料3-5%;烧结方法为:将钒钛磁铁精矿、普通铁矿、熔剂和燃料混合得混合料,控制混合料水份为6.5-8.0%,然后将混合料于1200-1350℃下烧结即可;其中,钒钛磁铁精矿、普通铁矿、熔剂和燃料统称为新料。
上述利用钒钛两相烧结矿进行高炉冶炼的方法中,所述钒钛两相烧结矿的物料中除新料外,还包括返矿和厂内循环物料,返矿的质量占新料总量的20-45%,厂内循环物料的质量占新料总量的2-5%;所述厂内循环物料指钢铁厂内回收的粉尘(除尘灰)和小颗粒含铁废弃物,可能是一种或几种物料的混合物;返矿为烧结整粒返矿和高炉沟下筛下物,即烧结矿在破碎、运输、贮存过程中产生的细粒级矿,一般为<3-5mm;这部分矿经筛下后又返回烧结重新烧结,故称为返矿,厂内循环物料和返矿的配比不包含在烧结新料总配比内,称外配。
本发明上述方法中,所述普通铁矿的铁含量20-60%,为原生块状铁矿。
本发明中,无特殊说明,所涉及的百分含量均为质量百分含量。
本发明要求钒钛磁铁矿占高炉入炉含铁炉料(以下各组分为质量百分含量)的60-100%,炉料中烧结矿占70-100%,球团矿占0-30%,块矿占0-10%。高炉炉渣的TiO2含量18-26%,三元碱度((CaO+MgO)/SiO2)控制在1.2-1.50倍之间,高炉渣中MgO含量控制在9-12%。
生产自然碱度(CaO/SiO2<0.5倍)的烧结矿主要靠Fe2O3再结晶的晶桥连接,没有高熔点性脆的钙钛矿,其主要矿物是钛磁铁矿、钛赤铁矿、硅酸盐相,因此烧结矿结构比较致密,强度好,但垂直烧结速度低,生产率低;高碱度烧结矿(CaO/SiO2>2.0倍)主要靠增加铁酸钙含量,增加了液相烧结矿固结,其主要矿物是钛磁铁矿、钛赤铁矿、硅酸盐相、铁酸钙、硅酸二钙、硅酸三钙,因而强度高,粉末少,同时垂直烧结速度高,烧结矿成品率和烧结机利用系数高。本发明将烧结原料中的一部分细粒级钒钛精矿与膨润土混合,使用圆盘造球机造球,制成3-8mm的生球按一定比例加入烧结混合料中,形成酸性钒钛球团矿,其氧化固结方式为铁氧化物物相的晶间固结;而剩余部分的烧结原料中普通粉矿(相对于高钛型磁铁精矿而言)比例大幅上升,熔剂及燃料相对比例提高,形成高碱度物料,其烧结时的固结方式为渣相(低熔点物相熔化粘结)固结,因此取名为“钒钛两相烧结”。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1 制备钒钛两相烧结矿
烧结矿原料含有如下质量配比的组分:钒钛磁铁精矿50-75%、普通铁块矿5-30%、熔剂8-15%、燃料3-5%;配料时外配返矿20-45%;其中,钒钛磁铁精矿成份TFe40-60%,TiO2含量0-15%;所述烧结矿中TFe 47-52%,三元碱度((CaO+MgO)/SiO2)在2.0-3.5倍,MgO含量2.0-4.0%,TiO2含量6.0-9.0%;所述烧结矿中低碱度相(CaO/SiO2<1.0倍)占烧结矿物料(扣除返矿)的20-50%,高碱度相(CaO/SiO2>2倍)占烧结矿物料(扣除返矿)的50-80%;
烧结矿的制备:将上述钒钛磁铁精矿50-75%、普通铁矿5-30%、熔剂8-15%、燃料3-5%;此外,烧结制钒钛两相烧结矿时除上述物料(新料)还添加返矿和厂内循环物料,返矿的质量占新料总量的20-45%,厂内循环物料的质量占新料总量的2-5%;控制混合料水份6.5-8%,经烧结机上点火后,控制烧结矿温度1200-1350℃下烧结制得两相钒钛烧结矿;烧结矿烧结矿转鼓强度(ISO)为70-76%,烧结矿成品率76-85%。
其中,熔剂为石灰石+生石灰的复配物,石灰石的质量占新料总量的3-8%,生石灰的质量占新料总量的3-7%;燃料为焦粉+无烟煤+兰炭,可以是其中一种,或两种,或三种,总质量百分比为3-5%。
实施例2 制备钒钛球团矿
物料结构为97-99%钒钛精矿、1-3%膨润土,钒钛球团矿中TFe 49-56%,TiO2含量6.0-11.0%;球团矿粒度8-20mm;采用链篦机回转窑生产工艺制备钒钛球团矿。
实施例3 利用钒钛两相烧结矿高炉冶炼的方法
高炉炉料结构:实施例1制得的钒钛两相烧结矿100%,与燃料分批次由高炉顶部加入到高炉;高炉综合入炉TFe品位为45-52%;
装料制度:采用矿、焦均等料线,料线1.2-2.2米,矿石批重16-48t,焦炭负荷2.5-5.5t/t,矿石平台1-9环,焦炭平台2-9环,焦炭外环比矿石外环大0.5-3°,焦炭中环与矿石内环等角,矿石外环比内环大0-10°,焦炭内环比矿石内环小1-10°;
炉缸热制度:控制生铁中[Ti]在0.10-0.40%之间,[Si]在0.10-0.30%之间,[Si]+[Ti]在0.20-0.7%之间;
造渣制度:高炉渣中MgO含量控制在9-12%,TiO2含量控制在18-26%;二元碱度CaO/SiO2控制在1.00-1.05倍,三元碱度((CaO+MgO)/SiO2)控制在1.2-1.5倍。
实施例4-5利用钒钛两相烧结矿高炉冶炼的方法
高炉炉料结构:实施例1制得的钒钛两相烧结矿、实施例2制得的钒钛球团矿以及普通铁块矿的配比如表1所示,表1中各原料均为质量百分比;高炉炉料与燃料分批次由高炉顶部加入到高炉;高炉综合入炉TFe品位为45-52%;其中,普通铁矿的铁含量20-60%,原生块状铁矿。装料制度、炉缸热制度、造渣制度同实施例3。
表1 实施例3-5的原料配比(质量百分比%)
钒钛两相烧结矿 钒钛球团矿 普通铁块矿
实施例3 100 0 0
实施例4 70 25 5
实施例5 80 10 10

Claims (10)

1.利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,高炉炉料结构为:钒钛两相烧结矿70-100%、钒钛球团矿0-30%、普通铁矿0-10%;其中,普通铁矿为不含钒钛的铁矿石,以上各组分的含量为质量百分含量。
2.根据权利要求1所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,高炉冶炼方法中的造渣制度为:高炉渣中MgO含量控制在9-12%,TiO2含量控制在18-26%;二元碱度CaO/SiO2控制在1.00-1.05倍,三元碱度((CaO+MgO)/SiO2)控制在1.2-1.5倍。
3.根据权利要求1或2所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,高炉冶炼方法中的装料制度和炉缸热制度分别为:
装料制度:采用矿、焦均等料线,料线1.2-2.2米,矿石批重16-48t,焦炭负荷2.5-5.5t/t,矿石平台1-9环,焦炭平台2-9环,焦炭外环比矿石外环大0.5-3°,焦炭中环与矿石内环等角,矿石外环比内环大0-10°,焦炭内环比矿石内环小1-10°;
炉缸热制度:开炉初期控制生铁中[Ti]在0.10-0.40%,[Si]在0.10-0.30%,[Si]+[Ti]在0.20-0.7%。
4.根据权利要求1~3任一项所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,所述钒钛两相烧结矿满足:TFe 47-52%,三元碱度((CaO+MgO)/SiO2)2.0-3.5倍,MgO含量2.0-4.0%,TiO2含量6.0-9.0%,二元碱度CaO/SiO21.6-2.5倍;并且所述钒钛两相烧结矿的转鼓强度为70-76%,烧结矿成品率为76-85%。
5.根据权利要求1~4任一项所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,所述钒钛两相烧结矿由下述质量配比的物料烧结而成:钒钛磁铁精矿50-75%、普通铁矿5-30%、熔剂8-15%、燃料3-5%;烧结方法为:将钒钛磁铁精矿、普通铁矿、熔剂、和燃料混合得混合料,控制混合料水份为6.5-8.0%,然后将混合料于1200-1350℃下烧结即可;其中,钒钛磁铁精矿、普通铁矿、熔剂和燃料统称为新料。
6.根据权利要求5所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,所述钒钛两相烧结矿的物料中除新料外,还包括返矿和厂内循环物料,返矿的质量占新料总量的20-45%,厂内循环物料的质量占新料总量的2-5%;所述厂内循环物料指钢铁厂内回收的粉尘和小颗粒含铁废弃物中的至少一种;优选的,所述钒钛磁铁精矿成份满足TFe 40-60%,TiO2含量0-15%;所述熔剂为占新料质量3-8%的石灰石和占新料质量3-7%的生石灰的混合物;所述燃料为焦粉、无烟煤或兰炭中的至少一种。
7.根据权利要求4或5所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,所述钒钛两相烧结矿中,高碱度相占新料的50-80%,低碱度相占新料的20-50%;其中,低碱度相指CaO/SiO2<1倍,高碱度相指CaO/SiO2>2倍。
8.根据权利要求1~7任一项所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,所述钒钛球团矿的物料结构为97-99%钒钛精矿、1-3%膨润土;并且钒钛球团矿中TFe49-56%,TiO2含量6-11%,二元碱度CaO/SiO2控制在0.2-0.6倍。
9.根据权利要求1~8任一项所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,高炉冶炼方法包括:将所述高炉炉料与燃料分批次由高炉顶部加入到高炉,高炉综合入炉TFe的品位为45-52%。
10.根据权利要求1~9任一项所述的利用钒钛两相烧结矿进行高炉冶炼的方法,其特征在于,所述普通铁矿的铁含量20-60%。
CN201510124351.8A 2015-03-20 2015-03-20 利用钒钛两相烧结矿进行高炉冶炼的方法 Active CN104673951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510124351.8A CN104673951B (zh) 2015-03-20 2015-03-20 利用钒钛两相烧结矿进行高炉冶炼的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510124351.8A CN104673951B (zh) 2015-03-20 2015-03-20 利用钒钛两相烧结矿进行高炉冶炼的方法

Publications (2)

Publication Number Publication Date
CN104673951A true CN104673951A (zh) 2015-06-03
CN104673951B CN104673951B (zh) 2016-09-07

Family

ID=53309533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510124351.8A Active CN104673951B (zh) 2015-03-20 2015-03-20 利用钒钛两相烧结矿进行高炉冶炼的方法

Country Status (1)

Country Link
CN (1) CN104673951B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894314A (zh) * 2015-06-30 2015-09-09 攀钢集团西昌钢钒有限公司 高炉冶炼天然磁铁矿转钒钛烧结矿冶炼快速达产的方法
CN105420430A (zh) * 2015-11-26 2016-03-23 攀钢集团攀枝花钢钒有限公司 一种钒钛磁铁矿高炉炉料结构及高炉冶炼方法
CN105524673A (zh) * 2015-12-24 2016-04-27 四川德胜集团钒钛有限公司 一种烧结燃料及其使用方法
CN105969980A (zh) * 2016-07-26 2016-09-28 攀钢集团攀枝花钢铁研究院有限公司 一种提高钒钛烧结矿成品率的烧结方法
CN106148613A (zh) * 2016-08-08 2016-11-23 攀钢集团西昌钢钒有限公司 调节炉底炉缸侵蚀情况的钒钛磁铁矿高炉冶炼方法
CN106636506A (zh) * 2016-11-24 2017-05-10 攀枝花市徳铭再生资源开发有限公司 钒钛磁铁矿的高炉冶炼方法
CN107012320A (zh) * 2016-01-27 2017-08-04 鞍钢股份有限公司 一种铁矿球团及其制备方法
CN107099631A (zh) * 2017-06-07 2017-08-29 攀钢集团攀枝花钢铁研究院有限公司 一种铬型钒钛磁铁矿高炉冶炼炉料及其高炉冶炼方法
CN107151717A (zh) * 2017-06-07 2017-09-12 攀钢集团攀枝花钢铁研究院有限公司 一种高铬高钛型钒钛磁铁矿高炉炼铁炉料及其高炉冶炼方法
CN108546791A (zh) * 2018-04-18 2018-09-18 攀钢集团攀枝花钢钒有限公司 钒钛磁铁矿高炉冶炼快速复风方法
CN108950115A (zh) * 2018-09-20 2018-12-07 攀钢集团攀枝花钢铁研究院有限公司 一种钒钛磁铁矿的高炉冶炼方法
CN108950111A (zh) * 2018-08-13 2018-12-07 攀枝花市立宇矿业有限公司 高品位钒钛磁铁矿高炉冶炼方法
CN111304390A (zh) * 2020-03-19 2020-06-19 武钢集团昆明钢铁股份有限公司 一种改善高钛渣性能的方法
CN113265497A (zh) * 2021-04-07 2021-08-17 河钢股份有限公司承德分公司 一种提高中钛渣冶炼高炉利用系数的方法
CN114058751A (zh) * 2020-06-12 2022-02-18 武钢集团昆明钢铁股份有限公司 一种高炉中钛渣的强化冶炼方法
CN114959151A (zh) * 2022-06-16 2022-08-30 浙江工贸职业技术学院 钒钛矿与含铁粉尘耦合还原工艺
CN115627307A (zh) * 2022-11-09 2023-01-20 四川德胜集团钒钛有限公司 一种高比例球团矿的钒钛磁铁矿高炉冶炼方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638698A (zh) * 2009-08-21 2010-02-03 攀钢集团攀枝花钢铁研究院有限公司 一种高炉冶炼钒钛磁铁矿的方法
CN101775451A (zh) * 2010-03-26 2010-07-14 中南大学 一种钒钛磁铁矿高炉冶炼方法
CN102505060A (zh) * 2011-12-31 2012-06-20 四川省达州钢铁集团有限责任公司 一种冶炼钒钛矿的方法和冶炼系统
CN103725812A (zh) * 2013-11-27 2014-04-16 攀钢集团西昌钢钒有限公司 提高钒钛磁铁矿高炉综合入炉品位的高炉炉料及方法
CN103981310A (zh) * 2014-05-22 2014-08-13 攀钢集团攀枝花钢铁研究院有限公司 一种高炉冶炼钒钛磁铁矿的方法
CN104060007A (zh) * 2013-06-14 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种钒钛磁铁矿高炉冶炼的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638698A (zh) * 2009-08-21 2010-02-03 攀钢集团攀枝花钢铁研究院有限公司 一种高炉冶炼钒钛磁铁矿的方法
CN101775451A (zh) * 2010-03-26 2010-07-14 中南大学 一种钒钛磁铁矿高炉冶炼方法
CN102505060A (zh) * 2011-12-31 2012-06-20 四川省达州钢铁集团有限责任公司 一种冶炼钒钛矿的方法和冶炼系统
CN104060007A (zh) * 2013-06-14 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种钒钛磁铁矿高炉冶炼的方法
CN103725812A (zh) * 2013-11-27 2014-04-16 攀钢集团西昌钢钒有限公司 提高钒钛磁铁矿高炉综合入炉品位的高炉炉料及方法
CN103981310A (zh) * 2014-05-22 2014-08-13 攀钢集团攀枝花钢铁研究院有限公司 一种高炉冶炼钒钛磁铁矿的方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894314A (zh) * 2015-06-30 2015-09-09 攀钢集团西昌钢钒有限公司 高炉冶炼天然磁铁矿转钒钛烧结矿冶炼快速达产的方法
CN105420430A (zh) * 2015-11-26 2016-03-23 攀钢集团攀枝花钢钒有限公司 一种钒钛磁铁矿高炉炉料结构及高炉冶炼方法
CN105524673A (zh) * 2015-12-24 2016-04-27 四川德胜集团钒钛有限公司 一种烧结燃料及其使用方法
CN107012320A (zh) * 2016-01-27 2017-08-04 鞍钢股份有限公司 一种铁矿球团及其制备方法
CN105969980A (zh) * 2016-07-26 2016-09-28 攀钢集团攀枝花钢铁研究院有限公司 一种提高钒钛烧结矿成品率的烧结方法
CN106148613A (zh) * 2016-08-08 2016-11-23 攀钢集团西昌钢钒有限公司 调节炉底炉缸侵蚀情况的钒钛磁铁矿高炉冶炼方法
CN106636506A (zh) * 2016-11-24 2017-05-10 攀枝花市徳铭再生资源开发有限公司 钒钛磁铁矿的高炉冶炼方法
CN107151717A (zh) * 2017-06-07 2017-09-12 攀钢集团攀枝花钢铁研究院有限公司 一种高铬高钛型钒钛磁铁矿高炉炼铁炉料及其高炉冶炼方法
CN107099631A (zh) * 2017-06-07 2017-08-29 攀钢集团攀枝花钢铁研究院有限公司 一种铬型钒钛磁铁矿高炉冶炼炉料及其高炉冶炼方法
CN108546791A (zh) * 2018-04-18 2018-09-18 攀钢集团攀枝花钢钒有限公司 钒钛磁铁矿高炉冶炼快速复风方法
CN108950111A (zh) * 2018-08-13 2018-12-07 攀枝花市立宇矿业有限公司 高品位钒钛磁铁矿高炉冶炼方法
CN108950115A (zh) * 2018-09-20 2018-12-07 攀钢集团攀枝花钢铁研究院有限公司 一种钒钛磁铁矿的高炉冶炼方法
CN111304390A (zh) * 2020-03-19 2020-06-19 武钢集团昆明钢铁股份有限公司 一种改善高钛渣性能的方法
CN114058751A (zh) * 2020-06-12 2022-02-18 武钢集团昆明钢铁股份有限公司 一种高炉中钛渣的强化冶炼方法
CN114058751B (zh) * 2020-06-12 2022-11-01 武钢集团昆明钢铁股份有限公司 一种高炉中钛渣的强化冶炼方法
CN113265497A (zh) * 2021-04-07 2021-08-17 河钢股份有限公司承德分公司 一种提高中钛渣冶炼高炉利用系数的方法
CN114959151A (zh) * 2022-06-16 2022-08-30 浙江工贸职业技术学院 钒钛矿与含铁粉尘耦合还原工艺
CN114959151B (zh) * 2022-06-16 2023-06-23 浙江工贸职业技术学院 钒钛矿与含铁粉尘耦合还原工艺
CN115627307A (zh) * 2022-11-09 2023-01-20 四川德胜集团钒钛有限公司 一种高比例球团矿的钒钛磁铁矿高炉冶炼方法

Also Published As

Publication number Publication date
CN104673951B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN104673951B (zh) 利用钒钛两相烧结矿进行高炉冶炼的方法
CN104480299B (zh) 一种含铬型钒钛磁铁精矿配加弃渣制备烧结矿的方法
CN100529120C (zh) 高铬型钒钛磁铁矿的烧结方法
CN102242251B (zh) 一种碱性钒钛球团矿及其制备方法
CN100507013C (zh) 利用铬矿粉和煤直接生产铬铁合金的方法
CN101532083B (zh) 一种铁矿石烧结熔剂分加方法及装置
CN104862436B (zh) 一种大型高炉封炉配料方法
CN101476001B (zh) 高炉冶炼中钛渣的方法
CN102443693A (zh) 高品位高钛型钒钛磁铁精矿的烧结方法
CN111910072A (zh) 以钢渣作为部分原料的预还原熔剂性球团制备、使用方法
CN103981310A (zh) 一种高炉冶炼钒钛磁铁矿的方法
CN104372127A (zh) 一种提高高炉护炉效率的方法
CN113604660A (zh) 一种除尘灰微粒化回收利用工艺方法
CN109355494B (zh) 一种可提高抗粉化性能的含有含铬型钒钛磁铁矿的球团及其制备方法
CN107488784A (zh) 一种高炉炼铁用高碱度球团矿及其生产方法
US20090169413A1 (en) Process for Recycling of Steel Industry Iron Bearing By-Products, Pellet Obtained in that Process and Use Thereof
CN102787188A (zh) 高硅钒钛磁铁矿精粉熔炼含钒生铁工艺
CN104120207A (zh) 一种以锡尾铁精矿和高有害元素贫杂矿配矿生产生铁的方法
CN102191348B (zh) 一种氧化球团法生产高品位镍及不锈钢的工艺方法和装置
CN102199677B (zh) 一种回收利用转炉钢渣的方法
CN103343180B (zh) 一种转炉炼钢合成造渣剂的制备方法
CN101921909B (zh) 控制烧结矿中氧化亚铁含量的方法
CN102337444A (zh) 提钒尾渣熔炼钒铬锰合金生铁工艺
CN106755667A (zh) 钒钛磁铁矿冶炼用煤粉添加剂及其应用
CN107043836A (zh) 一种高炉炼铁的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant