CN104671774A - 抗co干扰乙醇传感材料、制备方法及气敏传感元件 - Google Patents

抗co干扰乙醇传感材料、制备方法及气敏传感元件 Download PDF

Info

Publication number
CN104671774A
CN104671774A CN201510101152.5A CN201510101152A CN104671774A CN 104671774 A CN104671774 A CN 104671774A CN 201510101152 A CN201510101152 A CN 201510101152A CN 104671774 A CN104671774 A CN 104671774A
Authority
CN
China
Prior art keywords
ethanol
powder
sensing material
nano
disturbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510101152.5A
Other languages
English (en)
Other versions
CN104671774B (zh
Inventor
朱联烽
张嫦月
王孟云
姚有为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen International Graduate School of Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201510101152.5A priority Critical patent/CN104671774B/zh
Publication of CN104671774A publication Critical patent/CN104671774A/zh
Application granted granted Critical
Publication of CN104671774B publication Critical patent/CN104671774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及抗CO干扰乙醇传感材料、制备方法及采用该传感材料的气敏传感元件,按质量计,该乙醇传感材料由0.1%~0.5%的La2O3粉体和99.9%~99.5%的Sb掺杂SnO2纳米粉体混合制成,所述Sb掺杂SnO2纳米粉体中Sb/Sn摩尔比为0.05~0.1%。该制备方法包括:按上述Sb/Sn摩尔比配制氯化锡乙醇溶液和含锑的盐酸溶液,将含锑的盐酸溶液逐滴加入氯化锡乙醇溶液中,搅拌混合后,加入螯合剂,再滴加氨水至pH值达到9.0,取沉淀产物,清洗、烘干、烧结后,制得Sb掺杂SnO2纳米粉体,然后按上述比例与La2O3粉体研磨混合,即制得最终产物。该传感材料初始电阻较小,对乙醇的响应远高于CO。

Description

抗CO干扰乙醇传感材料、制备方法及气敏传感元件
技术领域
本发明涉及气敏传感材料及制备方法,更具体地说,涉及一种抗CO(一氧化碳)干扰乙醇传感材料及其制备方法,以及抗CO干扰气敏传感元件,属于金属氧化物半导体气敏传感元件技术领域。
背景技术
在酒品质量管理、食品和生物制药工业、酒后驾驶呼吸分析等领域,通常会涉及酒精气氛浓度测试过程。目前检测酒精气氛浓度的方法较多,例如红外光学法、电化学电位法、电阻型监控法等等。在多种检测方法中,电阻型监控法的应用相对简单,成本低廉。电阻型监控法主要涉及一种半导体金属氧化物的气敏传感元件,此类型的元件在空气中呈高电阻态,当气氛中出现乙醇气体时,其电阻会减小,并且减小程度与乙醇气体浓度成一定正向关系。当乙醇气氛消除后,传感元件的电阻态会增大并恢复至初始状态。这一过程是可逆的。由于其具有成本低、制造工艺简单、可小型化等优势,拥有巨大的应用潜力。
目前常用的金属氧化物半导体气敏材料有氧化铟、氧化锡、氧化铁、氧化钨、氧化铜和氧化锌等半导体氧化物的单质或复合氧化物。专利CN 1024948C中,采用等离子增强型化学气相沉积法,以五羰基铁作为蒸发源,将氧化铁沉积到叉指电极上,制备出酒敏气体传感元件。专利CN 102645453 B中,采用铜盐和钨盐的混合物在400~800℃高温下烧结,获得良好的钨酸铜酒精敏感元件。金属氧化物半导体材料对常见的有毒、有害气体具有较高的灵敏度,但缺点也比较多,比如:对特定气体的选择性差、化学稳定性差、工作温度高等等。选择性差是传感元件在酒精浓度检测方面的致命问题。比如酒后驾驶呼吸分析应用,可能会受到汽车尾气、一氧化碳、二手烟气等气体干扰,从而影响检测结果。
关于增加金属氧化物半导体的酒精传感选择性,掺杂是最常用的方法。气氛中的气体通常会在金属氧化物表面发生选择性吸附反应(J.H.Lunsford,Angew Chem,Int Ed Engl 34(1995)970;C.T.H.Au,H.;Lai,S.Y.;Ng,C.F.,Appl Catal,A 159(1997)133.)。在一些催化剂领域研究结果表明,乙醇在酸性氧化物的表面主要发生脱水反应,而在碱性氧化物的表面则以脱氢反应为主(T.Jinkawa,G.Sakai,J.Tamaki,N.Miura,N.Yamazoe,J.Mole.Catal.A155(2000)193-200)。催化剂研究领域的结果给出一种思路,通过酸碱掺杂调控可以控制乙醇的反应路径,从而影响气敏材料对酒精传感的选择性。
通过酸碱催化调控增强金属氧化物半导体的研究已经在氧化镧(La2O3)掺杂的SnO2纳米棒、纳米线中得到验证。中科院物理所王太宏小组(S.Shi;Y.Liu;Y.Chen;J.Zhang;Y.Wang;T.Wang,Sens.Actua.B 140(2009),426-431.)利用水热法制备出SnO2纳米棒,再混合硝酸镧800℃烧结3小时,获得镧掺杂的SnO2纳米棒。所获敏感材料对100ppm乙醇的响应高达213,而未掺杂的原始材料对100ppm乙醇响应只有45.1。首尔大学Lee小组(N.Van Hieu;H.R.Kim;B.K.Ju;J.H.Lee,Sens.Actua.B 133(2008),228-234),用化学气相沉积法制备SnO2纳米线,浸润硝酸镧后600℃烧结1小时,所获材料对100ppm酒精响应灵敏度高达57.3,而未掺杂的纳米线的灵敏度仅为10.5。
通过镧掺杂的方法,可以很好地提高氧化锡对乙醇气体的感应灵敏度,但这种办法也存在缺点,即在掺杂后材料的电阻发生急剧地增大,使最终元器件的空气中稳定初始电阻非常高,通常高达上百兆欧姆。这种高电阻态不利于传感执行器电路的设计和元器件批量制备的一致性,原因是其电阻值过大而产生的大分布范围,造成元器件初始参数不一致。另外,过大的初始电阻,容易造成监控噪音和干扰信号,导致执行器误动作。
发明内容
本发明的目的是提供一种抗CO干扰乙醇传感材料及其制备方法,实现金属半导体氧化物对乙醇气体的高选择性,同时获得初始电阻相对较小的气敏元器件。
本发明的技术构思是:以二氧化锡(SnO2)作为敏感材料体系,采用锑(Sb)掺杂,人为地增加二氧化锡半导体的电子浓度,降低材料电阻率,再通过机械研磨混合的方式,将氧化镧(La2O3)与锑掺杂的氧化锡粉体基质混合,获得抗一氧化碳干扰乙醇传感材料。
本发明的技术方案如下:
一种抗CO干扰乙醇传感材料,按质量计,该乙醇传感材料由0.1%~0.5%的La2O3粉体和99.9%~99.5%的Sb掺杂SnO2纳米粉体混合制成,所述Sb掺杂SnO2纳米粉体中Sb/Sn摩尔比为0.05~0.1%。
在上述的抗CO干扰乙醇传感材料中,优选地,La2O3粉体的质量百分含量为0.2%~0.4%,Sb掺杂SnO2纳米粉体的质量百分含量为99.8%~99.6%。
在上述的抗CO干扰乙醇传感材料中,优选地,所述Sb掺杂SnO2纳米粉体中Sb/Sn摩尔比为0.065~0.085%。
一种抗CO干扰乙醇传感材料的制备方法包括以下步骤:
1)制备Sb掺杂SnO2纳米粉体
1-1)按上述任意一项所述Sb/Sn摩尔比称取SnCl4·5H2O和Sb2O3,将SnCl4·5H2O溶于乙醇制成氯化锡乙醇溶液,将Sb2O3溶于浓盐酸制成含锑的盐酸溶液;
1-2)将含锑的盐酸溶液逐滴加入氯化锡乙醇溶液中,搅拌混合20分钟后,加入0.05重量份螯合剂;
1-3)搅拌条件下向溶液中逐滴加入氨水至pH值达到9.0,将沉淀产物离心收集,用乙醇清洗后,烘干,然后置于空气中400~800℃下烧结4~8小时,制得Sb掺杂SnO2纳米粉体;
2)按上述任意一项所述比例称取La2O3粉体和步骤1)制得的Sb掺杂SnO2纳米粉体,研磨使二者充分混合,即制得最终产物。
在上述的抗CO干扰乙醇传感材料的制备方法中,优选地,所述螯合剂为乙酰丙酮、聚丙烯酸、聚甲基丙烯酸、水解聚马来酸酐、柠檬酸中的一种或几种。
在上述的抗CO干扰乙醇传感材料的制备方法中,优选地,以重量计,所述氯化锡乙醇溶液由1份SnCl4·5H2O溶于4份乙醇制成。
在上述的抗CO干扰乙醇传感材料的制备方法中,优选地,以重量计,所述含锑的盐酸溶液由10~30份Sb2O3溶于100份浓盐酸制成,浓盐酸中HCl含量为36wt%。
在上述的抗CO干扰乙醇传感材料的制备方法中,优选地,步骤2)中研磨工艺为采用球磨机研磨混合4小时,球磨机转速1000转/分钟,每运行5分钟停止30秒。
本发明还提供一种气敏传感元件,它包括基片、以及设置于基片上的加热材料和传感材料,所述传感材料可以为上述任意一项所述的抗CO干扰乙醇传感材料。优选地,该气敏传感元件在空气中的稳定阻值小于2MΩ。
本发明具有以下有益效果:本发明制得的乙醇传感材料具有相对较小的初始电阻,同时对乙醇浓度的响应远高于同浓度的一氧化碳。而且制备方法简单。
附图说明
图1为实施例制得的抗CO干扰乙醇传感材料的X射线衍射(XRD)谱图;
图2为实施例制得的抗CO干扰乙醇传感材料的扫描电子显微镜(SEM)微观形貌图;
图3a-3c为实施例制得的平面型金属氧化物半导体气敏传感元件的结构示意图;
图4为实施例制得的抗CO干扰乙醇传感材料对CO和乙醇气体的电流随时间相应曲线图;
图5为实施例制得的抗CO干扰乙醇传感材料对CO和乙醇气体的浓度-灵敏度曲线。
具体实施方式
下面结合实例对本发明做进一步说明。
本实施例抗CO干扰乙醇传感材料,按质量计,该乙醇传感材料由0.5%的La2O3粉体和99.5%的Sb掺杂SnO2纳米粉体混合制成,所述Sb掺杂SnO2纳米粉体中Sb/Sn摩尔比为0.1%。
一、上述抗CO干扰乙醇传感材料的制备
1)制备Sb掺杂SnO2纳米粉体
按Sb/Sn摩尔比为0.1%称取SnCl4·5H2O和Sb2O3。将SnCl4·5H2O溶于乙醇中制成氯化锡乙醇溶液,SnCl4·5H2O和乙醇重量比为1:4。将Sb2O3溶于浓盐酸(浓盐酸中HCl含量为36wt%)制成含锑的盐酸溶液,Sb2O3与浓盐酸的重量比例为1:10。
将含锑的盐酸溶液逐滴加入氯化锡乙醇溶液中,在磁力转子搅拌的条件下搅拌混合20分钟,再加入0.05重量份乙酰丙酮;
搅拌条件下向溶液中逐滴加入氨水,直至混合溶液的pH值达到9.0。将沉淀产物离心收集,用乙醇清洗后,置于90℃烘箱中烘干,然后置于空气中600℃下烧结4小时,制得Sb掺杂SnO2纳米粉体;
2)将步骤1)制得的Sb掺杂SnO2纳米粉体与La2O3粉体用球磨机研磨混合4小时,其中,La2O3与Sb掺杂SnO2纳米粉体的质量比为0.5%,球磨机转速1000转/分钟,每运行5分钟停止30秒,从而制得抗CO干扰乙醇传感材料。
制得的抗CO干扰乙醇传感材料的X射线谱图如图1所示。该材料的X射线谱图与经典的四方相SnO2完全相同。对应的标准JCPDF卡片号码为41-1445。
制得的抗CO干扰乙醇传感材料的SEM图如图2所示。材料的颗粒尺寸分布范围为100~500nm。
用上述抗CO干扰乙醇传感材料作为传感材料,采用现有气敏传感元件的制备工艺即可以制得对乙醇传感选择性高、且在空气中的稳定阻值相对较低的气敏传感元件,即抗CO干扰乙醇传感元件。
二、性能测试
1)传感元件的制备及测试条件
称取上述抗CO干扰乙醇传感材料1g,用3~5滴去离子水混合研磨成泥浆状。将该浆状传感材料30涂抹到一制备有金平行对电极31、32的陶瓷片33的正面(如图3a),金电极间距为1mm,金电极的宽度为0.25mm,陶瓷片33的尺寸为1×1.5mm2。在陶瓷片33的背面印刷有钌加热电阻34(如图3b),电阻的典型阻值为80欧姆。陶瓷片33的工作温度可以通过对钌电阻施加不同的加热电压调整。如图3c,陶瓷片33由Pt丝35悬挂,形成热绝缘结构。
传感元件工作条件为250℃,对连接传感材料30的电极施加5V的直流电压。其电流随时间的变化值通过皮安表(Keithley 6487)在线获取。该传感元件对乙醇蒸汽或一氧化碳的测量在一个自制的气密性良好的气缸中进行。气缸体积为16L,内安装有间歇启动的搅拌风扇。传感元件被安装在容器内,并用导线引出至气缸外部。采用静态气体扩散法来配置一氧化碳或乙醇蒸汽浓度。实验中的一氧化碳气源购自深圳文川工业特种气体有限公司,纯度99.9%。乙醇配气采用液态蒸发静态配气方式。
2)气敏性能
传感元件对一氧化碳和乙醇的实时响应曲线如图4所示。该元件内部的气敏材料的工作温度为250℃。传感元件在空气中的稳定阻值约为0.6MΩ。明显低于现有报道的上百兆欧姆。元件对系列乙醇气氛浓度的响应明显高于其对相同浓度一氧化碳的响应,图5展示了传感元件的气氛浓度-灵敏度关系曲线。灵敏度定义为Ra/Rg,即元件在空气中的阻值与在气氛中的阻值的比例。从图5中数据可见,传感元件对1000ppm的乙醇和一氧化碳的响应灵敏度分别为59.8和2.77。

Claims (10)

1.一种抗CO干扰乙醇传感材料,其特征在于:按质量计,该乙醇传感材料由0.1%~0.5%的La2O3粉体和99.9%~99.5%的Sb掺杂SnO2纳米粉体混合制成,所述Sb掺杂SnO2纳米粉体中Sb/Sn摩尔比为0.05~0.1%。
2.根据权利要求1所述的抗CO干扰乙醇传感材料,其特征在于:La2O3粉体的质量百分含量为0.2%~0.4%,Sb掺杂SnO2纳米粉体的质量百分含量为99.8%~99.6%。
3.根据权利要求1所述的抗CO干扰乙醇传感材料,其特征在于:所述Sb掺杂SnO2纳米粉体中Sb/Sn摩尔比为0.065~0.085%。
4.一种抗CO干扰乙醇传感材料的制备方法,其特征在于包括以下步骤:
1)制备Sb掺杂SnO2纳米粉体
1-1)按权利要求1~3中任意一项所述Sb/Sn摩尔比称取SnCl4·5H2O和Sb2O3,将SnCl4·5H2O溶于乙醇制成氯化锡乙醇溶液,将Sb2O3溶于浓盐酸制成含锑的盐酸溶液;
1-2)将含锑的盐酸溶液逐滴加入氯化锡乙醇溶液中,搅拌混合20分钟后,加入0.05重量份螯合剂;
1-3)搅拌条件下向溶液中逐滴加入氨水至pH值达到9.0,将沉淀产物离心收集,用乙醇清洗后,烘干,然后置于空气中400~800℃下烧结4~8小时,制得Sb掺杂SnO2纳米粉体;
2)按权利要求1~3中任意一项所述比例称取La2O3粉体和步骤1)制得的Sb掺杂SnO2纳米粉体,研磨使二者充分混合,即制得最终产物。
5.根据权利要求4所述的抗CO干扰乙醇传感材料的制备方法,其特征在于:所述螯合剂为乙酰丙酮、聚丙烯酸、聚甲基丙烯酸、水解聚马来酸酐、柠檬酸中的一种或几种。
6.根据权利要求4所述的抗CO干扰乙醇传感材料的制备方法,其特征在于:以重量计,所述氯化锡乙醇溶液由1份SnCl4·5H2O溶于4份乙醇制成。
7.根据权利要求4所述的抗CO干扰乙醇传感材料的制备方法,其特征在于:以重量计,所述含锑的盐酸溶液由10~30份Sb2O3溶于100份浓盐酸制成,浓盐酸中HCl含量为36wt%。
8.根据权利要求4所述的抗CO干扰乙醇传感材料的制备方法,其特征在于:步骤2)中研磨工艺为采用球磨机研磨混合4小时,球磨机转速1000转/分钟,每运行5分钟停止30秒。
9.一种气敏传感元件,包括基片、以及设置于基片上的加热材料和传感材料,其特征在于:所述传感材料为权利要求1~3中任意一项所述的抗CO干扰乙醇传感材料。
10.根据权利要求9所述的气敏传感元件,其特征在于:该气敏传感元件在空气中的稳定阻值小于2MΩ。
CN201510101152.5A 2015-03-06 2015-03-06 抗co干扰乙醇传感材料 Active CN104671774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510101152.5A CN104671774B (zh) 2015-03-06 2015-03-06 抗co干扰乙醇传感材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510101152.5A CN104671774B (zh) 2015-03-06 2015-03-06 抗co干扰乙醇传感材料

Publications (2)

Publication Number Publication Date
CN104671774A true CN104671774A (zh) 2015-06-03
CN104671774B CN104671774B (zh) 2017-10-31

Family

ID=53307430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510101152.5A Active CN104671774B (zh) 2015-03-06 2015-03-06 抗co干扰乙醇传感材料

Country Status (1)

Country Link
CN (1) CN104671774B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887875A (zh) * 2019-11-25 2020-03-17 陕西科技大学 一种对甲醛气体具有特异性的敏感材料的制备方法
CN111982981A (zh) * 2020-08-17 2020-11-24 合肥微纳传感技术有限公司 一种SnO2基气敏材料、气敏材料的制备方法及其应用
CN113008946A (zh) * 2021-03-03 2021-06-22 南开大学 一种Ag掺杂的SnO2气敏材料的制备方法
CN114839231A (zh) * 2022-04-27 2022-08-02 河南森斯科传感技术有限公司 一种用于半导体可燃气体传感器的抗干扰气敏涂层及其制备方法、应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329293A (zh) * 2007-06-22 2008-12-24 郑州炜盛电子科技有限公司 一种用于酒精蒸汽和呼气酒精检测的半导体气体传感器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329293A (zh) * 2007-06-22 2008-12-24 郑州炜盛电子科技有限公司 一种用于酒精蒸汽和呼气酒精检测的半导体气体传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIRO KUGISHIMA ET AL.: "C2H4O sensing properties for thick film sensor using La2O3-modified SnO2", 《SENSORS AND ACTUATORS B》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887875A (zh) * 2019-11-25 2020-03-17 陕西科技大学 一种对甲醛气体具有特异性的敏感材料的制备方法
CN111982981A (zh) * 2020-08-17 2020-11-24 合肥微纳传感技术有限公司 一种SnO2基气敏材料、气敏材料的制备方法及其应用
CN113008946A (zh) * 2021-03-03 2021-06-22 南开大学 一种Ag掺杂的SnO2气敏材料的制备方法
CN114839231A (zh) * 2022-04-27 2022-08-02 河南森斯科传感技术有限公司 一种用于半导体可燃气体传感器的抗干扰气敏涂层及其制备方法、应用

Also Published As

Publication number Publication date
CN104671774B (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
Yuan et al. Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors
Ali et al. Low power consumption and fast response H2S gas sensor based on a chitosan-CuO hybrid nanocomposite thin film
Xu et al. Ni-doped ZnO nanorods gas sensor: enhanced gas-sensing properties, AC and DC electrical behaviors
Yin et al. Synthesis of thickness-controlled cuboid WO3 nanosheets and their exposed facets-dependent acetone sensing properties
CN104671774A (zh) 抗co干扰乙醇传感材料、制备方法及气敏传感元件
Kapse et al. Nanocrystalline Ni0. 6Zn0. 4Fe2O4: a novel semiconducting material for ethanol detection
Chatterjee et al. The effect of palladium incorporation on methane sensitivity of antimony doped tin dioxide
Kozhushner et al. Effect of temperature and nanoparticle size on sensor properties of nanostructured tin dioxide films
Fu CuS-doped CuO nanoparticles sensor for detection of H2S and NH3 at room temperature
CN103293197B (zh) 二氧化锡掺杂二氧化钛基薄膜丙酮气敏传感器的制备方法
CN109946358A (zh) 一种以MTiO3为敏感电极的YSZ基混成电位型SO2传感器、制备方法及其应用
Zhang et al. Response improvement for In2O3–TiO2 thick film gas sensors
Wang et al. Mixed potential type ppb-level acetaldehyde gas sensor based on stabilized zirconia electrolyte and a NiTiO3 sensing electrode
Xuemei et al. Fabrication of Cubic p‐n Heterojunction‐Like NiO/In2O3 Composite Microparticles and Their Enhanced Gas Sensing Characteristics
Fu Silver sulfide-based sensor for the selective determination of ammonia at room temperature
CN103713016A (zh) 钯掺杂二氧化锡包覆碳纳米管及其制备方法和应用
Yin et al. Sensitivity and selectivity of (Au, Pt, Pd)-loaded and (In, Fe)-doped SnO 2 sensors for H 2 and CO detection
Pandey et al. Ag Doped ${\rm WO} _ {3} $ Nanomaterials as Relative Humidity Sensor
Wang et al. Preparation and CO gas-sensing behavior of Au-doped SnO2 sensors
Ko et al. Enhanced ethanol sensing properties of TeO2/In2O3 core–shell nanorod sensors
Zhang et al. Effect of Co doping on chemosorbed oxygen accumulation and gas response of SnO2 under dynamic program cooling
CN110376252B (zh) 一种SnO2纳米粉体及透明气体传感器的制备方法
Fedorenko et al. Cerium-doped SnO 2 nanomaterials with enhanced gas-sensitive properties for adsorption semiconductor sensors intended to detect low H 2 concentrations
Ni et al. Enhanced acetone sensing performance of the ZnFe 2 O 4/SnO 2 nanocomposite
Epifani et al. Nanocrystals as Very Active Interfaces: Ultrasensitive Room-Temperature Ozone Sensors with In2O3 Nanocrystals Prepared by a Low-Temperature Sol− Gel Process in a Coordinating Environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 518055 Guangdong city of Shenzhen province Nanshan District Xili of Tsinghua

Patentee after: Shenzhen International Graduate School of Tsinghua University

Address before: 518055 Guangdong city of Shenzhen province Nanshan District Xili of Tsinghua

Patentee before: GRADUATE SCHOOL AT SHENZHEN, TSINGHUA University