CN104662488A - 检测触摸模式的方法和设备 - Google Patents

检测触摸模式的方法和设备 Download PDF

Info

Publication number
CN104662488A
CN104662488A CN201380046481.3A CN201380046481A CN104662488A CN 104662488 A CN104662488 A CN 104662488A CN 201380046481 A CN201380046481 A CN 201380046481A CN 104662488 A CN104662488 A CN 104662488A
Authority
CN
China
Prior art keywords
touch
module
scan
mode
scan pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380046481.3A
Other languages
English (en)
Other versions
CN104662488B (zh
Inventor
丹尼尔·塔特
爱德华·葛理夫纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PARADE TECHNOLOGIES Ltd
Original Assignee
Cypress Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cypress Semiconductor Corp filed Critical Cypress Semiconductor Corp
Publication of CN104662488A publication Critical patent/CN104662488A/zh
Application granted granted Critical
Publication of CN104662488B publication Critical patent/CN104662488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3262Power saving in digitizer or tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041661Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using detection at multiple resolutions, e.g. coarse and fine scanning; using detection within a limited area, e.g. object tracking window
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Abstract

一种方法和设备,其通过在第一扫描模式运行来检测触摸序列的第一部分,并通过在第二扫描模式运行来检测该触摸序列的第二部分。可以基于该第一部分的检测和该第二部分的检测来检测触摸序列。

Description

检测触摸模式的方法和设备
相关申请
本申请要求在2012年9月20日提交的美国临时申请第61/703,376号的优先权,该申请的全部内容合并于此,仅供参考。
技术领域
本主题涉及编译解译用户输入的领域。更为具体地,但不是作为限制,本主题公开了用于检测触摸模式的技术。
背景技术
计算装置,诸如笔记本计算机、个人数字助理、移动通信装置、便携式娱乐装置(例如,手持视频游戏装置、多媒体播放器)、以及机顶盒(例如,数字缆线盒、数字视频盘(DVD)播放器)可以包括便于用户与该计算装置互动的用户界面装置。计算装置(包括被设计为在接通电池电源的至少部分时间起作用的那些计算装置)可以以多种功耗模式运行,所述功耗模式包括相对于另一种功耗模式消耗更少功率的一种或多种低功率模式。各种形式的用户输入可以被用于将计算装置转换到不同的功耗模式和从不同的功耗模式转换。
已经变得越来越普遍的一类用户界面装置借助电容感应来运行。电容感应系统可以包括触摸屏、触摸传感器垫、触摸传感器滑块或触摸传感器按钮,并且可以包括一个或多个电容式传感器元件的阵列。电容式感应通常包括通过传感器信号测量与电容式传感器元件相关联的电容的变化,以确定导电物体相对于电容式传感器元件的存在。
附图说明
某些实施例借助示例来说明并且不限于附图的各图,其中:
图1是说明根据各个实施例的感应系统的框图;
图2是说明根据各个实施例的、包括电容式传感器矩阵的触摸界面的框图;
图3是说明根据各个实施例的图1的感应模块的框图;
图4是说明根据各个实施例的N扫描模式的框图,该N扫描模式用于检测触摸模式的M部分;
图5是根据实施例说明用于检测触摸序列的两种扫描模式的框图;
图6是根据实施例说明用于图5的有效触摸序列的各个部分的选定持续时间范围的表格图;
图7是根据实施例说明用于图5的触摸序列的各个部分的实际检测范围的表格图,其中图5的触摸序列的各个部分被认为落入图6中所选定的各个持续时间范围内;
图8是根据实施例说明电容式传感器矩阵的目标区域和目标子区域的框图;
图9是根据实施例说明用于检测触摸模式的方法的流程图;
图10是说明根据各个实施例的电子系统的框图,该电子系统检测导电物体在电容式传感器阵列上的存在;
图11是说明根据实施例的电子系统的功率状态的表格图;以及
图12是说明根据实施例的电子系统的功率状态以及在功率状态之间的转换的状态图。
具体实施方式
描述了检测触摸模式的方法和设备。在下列描述中,为了解释目的,很多示例被阐述以便提供对实施例的透彻理解。所要求保护的主题可以在其他实施例中实践,这对于本领域的技术人员来说将是显而易见的。具体实施方式公开了使用多种扫描模式检测触摸模式的技术示例和其他事项。某些实施例现在做简短介绍并随后与从图1开始的其他实施例一起更详细讨论。
某些触摸屏装置(诸如蜂窝电话或平板计算机)在其使用寿命的相当一部分时间以低功耗模式(例如,睡眠模式)运行,而不是以更高功耗模式运行,在该更高功耗模式下,该装置也可运行。在这类装置中,可以例如通过对该装置的显示器(例如,液晶显示器(LCD)、发光二极管(LED)显示器、有源矩阵有机发光显示器(AMOLED))、主机资源停止供电来作为低功耗模式部分,和/或通过降低该装置的触摸控制器的功率,来降低功耗。装置从较低功耗模式转换到较高功耗模式的过程有时候被称为“唤醒”。某些装置配置成当用户提供输入(诸如通过按压该装置的机械按钮或通过引起该装置的全部或部分加速(例如,通过摇动或轻拍该装置))时唤醒。
本文所述的实施例允许装置响应于用户输入触摸模式到该装置的触摸界面而唤醒。因此,唤醒可以不需要机械按钮或加速计来实现,并同时将由组件使用的表面区域和与感应由用户提供的唤醒触摸模式相关联的功耗两者均减到最小。触摸模式和/或其一部分可以包括触摸的开始、触摸的提离、一个或多个触摸的持续时间、触摸之间的持续时间、触摸的序列、一个或多个触摸的形状、一个或多个触摸的位置、一个或多个触摸的移动、多个同时触摸、一个或多个输入物体在触摸界面上的接近或悬停、与一个或多个触摸相关联的力、触摸模式的其他属性中的一个或多个和/或这些的组合。
在实施例中,触摸控制器以多种扫描模式运行以识别触摸模式,该触摸模式指示处理资源和其他更高层资源(例如,显示器、无线电、触觉引擎)应当唤醒。在下面进一步描述的各个实施例中,扫描模式可以具有诸如扫描频率(例如,扫描速率或刷新率)、感应类型(例如,自电容扫描、互电容扫描或包括自电容和互电容两者的元件的混合感应模式)、扫描位置(例如,扫描触摸输入表面的目标部分)、其他特性,和/或它们的组合的特性。
(例如,扫描模式的)扫描速率可被调整,以将功耗减到最小,同时仍然允许触摸模式的可靠检测(例如,诸如双击的触摸序列)。在实施例中,触摸控制器通过第一扫描模式(例如,包括相对较低扫描速率的第一扫描模式)检测触摸模式的第一部分,并通过第二扫描模式(例如,包括相对较高扫描速率的第二扫描模式)检测触摸模式的第二部分。在实施例中,具有较低扫描速率的第一扫描模式比具有较高扫描速率的第二扫描模式消耗更少的功率,并且触摸控制器保持在较低功耗的第一扫描模式直到检测到触摸模式的第一部分。在实施例中,包括自电容扫描和/或扫描触摸界面的目标区域以寻找触摸模式的扫描模式减少了扫描时间,并因此降低功耗。将触摸模式识别分割为不同的扫描模式可将感应系统的总功耗减到最小。在实施例中,识别触摸模式触发装置唤醒。应当指出的是,识别触摸模式可以另选地或附加地启用或启动某些其他装置功能,诸如允许访问该装置的受保护的存储器或其他受保护区域。
当本文描述的实施例由装置的触摸控制器执行时,可允许该装置的其他处理器睡眠,同时仅触摸控制器查找唤醒事件,从而节约用电。此外,所述实施例提供无需物理按钮或加速计的唤醒,从而节约材料成本,避免物理零件的失效模式,或在一个物理零件失效的情况下启用冗余唤醒能力。多种扫描模式的特性是可配置的,以满足性能目标,同时将扫描频率、扫描时间和扫描区域减到最小,以便将该装置的总功耗减到最小。
下面的具体实施方式包括对附图的引用,附图形成该具体实施方式的一部分。附图示出根据实施例的例证。这些实施例(在本文也称为“示例”)被足够详细地描述,以使本领域的技术人员能够实践所要求保护主题的实施例。在不偏离所要求保护的范围的情况下,可以对这些实施例进行组合,可以使用其他实施例,并可以做出结构、逻辑和电气改变。因此,下面的具体实施方式不应被视为具有限制意义,并且范围由附随权利要求和它们的等同物来定义。
图1是说明根据各个实施例的感应系统100的框图。感应系统100包括与感应模块106耦接的触摸界面102。对于某些实施例,触摸界面102可以包括感应模块106(例如,其可以提供触摸控制器的功能性)。触摸界面102通过输入物体110(例如,尖笔、手指或用于提供输入的任何其他物体)接收来自用户的输入。触摸界面102可以包括触摸垫、触摸屏或任何触摸输入界面。在各个实施例中,感应系统100可以提供触摸屏、触摸垫、滑块、按钮、开关、水平传感器、接近传感器、位移传感器、它们的组合的功能性,或基于用户输入的检测来提供某些其他功能性。
触摸界面102包括传感器104。在各个示例实施例中,传感器104可以包括光敏元件、发光元件、感光元件、压敏元件和/或电容式传感器元件中的一个或多个。在某些实施例中,传感器104被嵌入在触摸界面102的图像显示器中。这有时候被称为单元内(in-cell)感应。例如,感光元件可以被嵌入在图像显示器的每个显示像素中。感光元件感应由输入物体反射回单元中的光,或可以检测物体在显示器的表面上投射的阴影。
输入物体110被示出接近或接触触摸界面102,并被用于提供对触摸界面102的输入。在这个示例中,输入物体110是尖笔。在实施例中,尖笔的直径是约1mm,这很大程度上小于典型手指的直径。在没有偏离所要求保护的主题的情况下,输入物体110可以是非导电物体、导电物体,和/或可以产生通过传感器104来感应的光或其他能量。在实施例中,输入物体110是无源的,意指其未被通电以提供至触摸界面102的输入。另选地或附加地,输入物体110可以是有源的,意指其被通电以提供至触摸界面102的输入。输入物体110可以被固定于适当位置或是相对于触摸界面102在适当位置可移动的。例如,用户可以相对于触敏界面102移动输入物体110。用户可以包括人、机械装置、机器和/或编程的指令。另选地或附加地,触摸界面102可被允许相对于固定或可移动的输入物体110移动。
感应模块106使用传感器104感应或检测接近或接触触摸界面102的一个或多个传感器104的一个或多个输入物体的存在。感应模块106可以使用传感器104执行操作(例如,扫描操作)以发出指示一个或多个输入物体(例如,输入物体110)的存在的信号。根据所用传感器的类型和它们感应的属性,当输入物体接近或接触触摸界面102时,传感器信号可以指示施加于触摸界面102的压力、与输入物体相关联的光(例如,红外光)、与输入物体相关联的图像、传感器104的电容和/或一个或多个传感器104的电容变化。传输介质108可以包括适合用于扫描操作的任何介质,并且传感器信号可以通过该介质输送。对于某些实施例,传输介质108包括耦接于传感器的金属迹线(例如,铜导线)。触摸界面102的示例和它的传感器元件的布置现在结合图2来讨论。
图2是说明根据各个实施例的、包括电容式传感器矩阵205的触摸界面202的框图。图2包括被布置在矩阵中的传感器元件204的行R0–R11230和列C0–C11240。传感器元件204的行R0–R11230和列C0–C11240被示出与感应模块206耦接。在下面更详细描述的扫描操作中,传感器元件的行R0–R11230中的每行和列C0–C11240中的每列可以作为传输电极和接收电极两者来运行。
在电容式传感器矩阵205中,传感器元件204的行R0–R11230中的每行被示出与传感器元件204的列C0–C11240中的每列交叉。在实施例中,行R0–R11230与列C0–C11240之间保持电隔离。在实施例中,列C0–C11240中的每列可以与X-Y平面215的X坐标或X坐标范围相关联,并且行R0–R11230中的每行可以与X-Y平面215的Y坐标或Y坐标范围相关联。
虽然传感器元件204被示出是菱形的,但是在没有偏离所要求保护的主题的情况下,一个或多个传感器元件204可以由其他形状(例如,直线、条带、条棒、三角形、雪花和/或任何其他形状)形成,并且以各种其他图案(例如,交点、同心圆、锯齿图案、曼哈顿图案和/或其他图案)来组织。传感器元件204可以包括触摸界面202的表面区域的全部或一部分。传感器元件204和传感器元件204的图案可以在触摸界面202的一层或多层上形成,或通过触摸界面202的一层或多层形成。
接近或接触感应模块206的触摸220被相对于传感器元件204示出为在导电物体相对于触摸界面202被放置的位置。如下面将从图3开始所讨论的,感应模块206可以以各种扫描模式运行以检测触摸,并且感应模块206可以使用多种扫描模式检测触摸模式。检测到的触摸模式可以被用作至感应系统100或至在感应系统100外部的系统的输入(例如,手势)。
图3是说明根据实施例的图2的感应模块206的框图。感应模块206包括通过总线319彼此耦接的扫描模块310、存在模块320、模式选择模块360、触摸模式模块340、位置模块330和存储器370,它们中的任一个都可以使用硬件、软件或硬件和软件的组合来实施。
在实施例中,扫描模块310扫描触摸界面202的传感器元件204找寻传感器信号,并且存在模块320可基于该传感器信号确定一个或多个导电物体是否接近或接触触摸界面202。检测到的触摸可以包括一个实际触摸或多个实际触摸。在示例扫描操作中,扫描模块310激励一个或多个传感器元件204,并接着从相同或其他传感器元件204接收传感器信号,该传感器信号反映与所激励的一个或多个传感器元件204和关联的触摸物体相关联的电容。扫描操作的频率是以赫兹为单位的频率(Hz),其中,所有目标传感器测量电容的变化(例如,120Hz)。扫描频率也可以被称为刷新率或扫描速率。应当指出的是,目标传感器的数量可以在扫描与扫描之间改变。扫描模块310可以包括将传感器信号转换成数字表示的模数转换器(未示出),在这个实施例中,该传感器信号是电压和电荷的模拟采集。接着,如果例如数值满足或超出等效电容的阈值或落入上限阈值电平和下限阈值电平内,则存在模块320可检测导电物体的存在。
如上所述的反映电容的传感器信号可以反映一个或多个传感器元件204与接地基准(未示出)之间的自电容。例如,扫描模块310可以激励(例如,施加信号于)电极(例如,图2的行R4222),并接着通过相同的电极(例如,行R4222)接收传感器信号,该传感器信号表示行R4222与接地基准之间的自电容。在实施例中,存在模块320可基于当触摸220不存在时所测得的自电容与当触摸220存在时所测得的自电容之间的差异,检测接近行R4222的触摸220的存在。这是轴向扫描模式的示例,在该轴向扫描模式中,每个扫描电极的传感器信号可指示输入物体相对于该电极的存在,但不指示该存在沿该电极位于何处。对于某些实施例,自电容扫描比下面讨论的互电容扫描消耗更少的能量(例如,由于需要更短的扫描时间和更少的测量)。
如上所述的反映电容的传感器信号可以反映传感器元件204中的两个或多于两个之间的互电容。再次参考图2,扫描模块310可以激励传输电极(例如,行R4222)并随后通过接收电极(例如,列C2224)接收传感器信号,该传感器信号表示在传输电极(例如,行R4222)与接收电极(例如,列C2224)交叉处的传感器电极之间的互电容。存在模块320可基于当触摸220不存在时所测得的互电容与当触摸220存在时所测得的互电容,检测触摸220的存在。这是所有点可寻址扫描模式的示例,在该模式中,每个已扫描传输-接收电极交点的互电容变化可指示在该交点的存在。
在实施例中,每个电极(例如,列C0–C11240)与沿轴的位置坐标(例如,X坐标)相关联。例如,位置模块330可将触摸的位置坐标(例如,X坐标)确定为在传感器信号的峰值变化被观察到的电极位置处的位置坐标。另选地或可选地,位置模块330可以通过发现在多个毗邻电极之上分布的传感器信号的矩心来确定触摸的位置坐标。在实施例中,扫描模块310可切换在行R0–R11230与列C0–C11240之间的传输电极和接收电极的指定,并且存在模块320和位置模块330可基于传输电极与接收电极的切换指定检测存在并确定沿多个轴(例如,在图2的X-Y平面215中)的位置(例如,X-Y位置)。
在选定电极是可用于激励的电极的整个集合或整个集合的子集的情况下,扫描模块310可以包括或使用向一个或多个选定电极分配激励信号的多路复用器或开关矩阵(未示出)。同样,扫描模块310可以包括或使用接收来自一个或多个选定电极的电流的相同或不同多路复用器(未示出)。以这种方式,扫描模块310可以轴向扫描模式和/或所有点可寻址扫描模式扫描电容式传感器矩阵205的选定部分或区域(例如,目标部分),以确定输入物体的存在。在实施例中,扫描电容式传感器矩阵205的目标部分比扫描整个电容式传感器矩阵205需要更少的能量。此外,接近电容式传感器矩阵205的未扫描部分(例如,抓住手持式装置的手指)放置的无意触摸将不被检测到。
扫描模块310可以以不同的扫描模式运行。扫描模式可以通过扫描频率、扫描所测量的属性(例如,自电容,互电容)、被扫描传感器的数量和位置、传感器如何被激励(例如,通过电流)、扫描的功耗、以及扫描操作的其他特性来表征。例如,扫描模块310的一种扫描模式可以包括20Hz下的图2的列C0–C11240的自电容扫描,而另一种扫描模式可以包括50Hz下的相同列C0–C11240的自电容扫描。扫描模块310的又一种示例扫描模式可以包括120Hz下的电容式传感器矩阵205的互电容扫描(例如,所有交点或目标交点)。因此,在各个实施例中,不同的扫描模式可以包括扫描操作的特性的不同组合。
触摸模式模块340被用于检测触摸模式(例如,一个或多个触摸的模式)。触摸模式可以包括一个或多个部分,并且每个部分可以包括例如触摸的开始、触摸的提离、一个或多个触摸的持续时间、触摸之间的持续时间、触摸的序列、一个或多个触摸的形状(例如,二维或三维形状)、一个或多个触摸的位置、一个或多个触摸的移动(例如,作为距离、速度、加速度来测量)、一个或多个输入物体在触摸界面上的接近或悬停、与一个或多个触摸相关联的力、触摸模式的其他属性和/或这些的组合。另选地或附加地,对于检测整个触摸模式,触摸模式模块340可以检测该触摸模式的部分。
在某些实施例中,不同扫描模式可被用于检测触摸模式的不同部分。模式选择模块360被用于为扫描模块310选择其在触摸模式的不同部分被检测到时运行的扫描模式。在实施例中,模式选择模块360促使扫描模块310响应于存在模块320和/或触摸模式模块340检测触摸模式的一部分存在或不存在来切换扫描模式。
图4是说明根据实施例的用于检测触摸模式402的M部分的N扫描模式410的框图。图4被示出为包括触摸模式402,触摸模式402由部分1404和部分2406至部分M 408组成。图4的N扫描模式410是要说明图3的扫描模块310可以N扫描模式410运行,以实现触摸模式402的M部分的检测。例如,部分1404和部分2406直到部分M 408中的每个部分都可以包括:触摸的开始、触摸的提离、一个或多个触摸的持续时间、触摸之间的持续时间、触摸的序列、一个或多个触摸的形状、一个或多个触摸的位置、一个或多个触摸的移动、多个同时触摸、一个或多个输入物体在触摸界面上的接近或悬停、与一个或多个触摸相关联的力、触摸模式的其他属性中的一个或多个和/或这些的组合。为检测各部分,图3的扫描模块310可以以N扫描模式410运行。如上所述,模式选择模块360可以基于各个部分(例如,部分1 404和部分2 406至部分M 408)的检测在N扫描模式410之间切换。
在下面关于图5–图7所讨论的实施例中,触摸序列被讨论,该触摸序列是示例触摸模式。触摸序列包括通过两种扫描模式检测的多个部分(例如,触摸的开始、触摸的提离、触摸的持续时间,以及触摸之间的持续时间),并且该多个部分被评估以确定它们是否与存储在图3的存储器370中的触摸序列相对应。
图5是示出用于根据实施例检测触摸序列502的扫描模式1532和扫描模式2 534的框图。触摸序列502通过触摸过程512来建模,在这个示例中,该触摸过程将触摸516指示为逻辑低,并且将无触摸514指示为逻辑高。触摸序列502可以是轻拍-轻拍手势。触摸过程512的持续时间T1 522表示触摸1 508的持续时间(例如,输入物体504在触摸界面506上或接近触摸界面506的时间),持续时间T2 524表示触摸509不存在的持续时间(例如,输入物体504不在触摸界面506上或不接近触摸界面506的时间),并且持续时间T3 526表示触摸2 510的持续时间。T1 522和T3 526不需要是相等的,并且同样地,触摸不存在的持续时间T2 524不需要等于持续时间T1 522或持续时间T3 526中的任一个。扫描模式530示出图3的扫描模块310在T0 520期间以扫描模式1 532运行,在检测到输入物体504在触摸界面506上或接近触摸界面506时转换到扫描模式2 534,并且在T1 522的剩余时间以及T2 524和T3 526的全部时间期间转换到扫描模式2 534。
在实施例中,触摸序列502的一个部分包括触摸1 508的开始(例如,在T0 520与T1 522之间的转换)以及响应于图3的存在模块320检测触摸1 508的开始,图3的模式选择模块360启动扫描模块310从以扫描模式1 532运行到以扫描模式2 534运行的转换540。触摸序列502的剩余部分可以包括触摸1 508的持续时间T1 522、触摸1 508的提离、在触摸1 508与触摸2 510之间触摸不存在509的持续时间T2 524、触摸2 510的开始、触摸2 510的持续时间T3 526、以及触摸2 510的提离。在实施例中,在扫描模块310以扫描模式2 534运行时,图3的存在模块320和/或触摸模式模块340检测触摸序列502的剩余部分。如果持续时间T1 522、T2 524和T3 526落入可接受(例如,选定)范围内,则图3的触摸模式模块340识别并检测到触摸序列502。
图6是根据实施例说明用于有效触摸序列的部分的选定持续时间范围的表格图。表格600示出了触摸1 508(T1 522)、触摸不存在509(T2 524)、以及触摸2 510(T3 526)的从最小值到最大值的持续时间范围。在实施例中,选定的持续时间范围(如下讨论)表示有效轻拍-轻拍手势的目标持续时间。选定的持续时间范围可以基于观察到的与用户轻拍-轻拍手势相关联的持续时间来选择,不过在没有偏离所要求保护主题的情况下,其他持续时间范围也可以被使用。利用选定的持续时间范围,如果持续时间T1 522在最小值80ms与最大值120ms之间、持续时间T2 524在最小值80ms与最大值200ms之间、并且持续时间T3 526在最小值80ms与最大值120ms之间,则图5的触摸序列502可以被认为是有效的。
在实施例中,当图3的扫描模块310以图5的扫描模式1 532运行时,图1的感应系统100比当图3的扫描模块310以图5的扫描模式2 534运行时消耗更少的功率。与扫描模式2 534的扫描频率相比,与扫描模式1 532相关联的较低功耗可以至少部分归功于扫描模式1532的较低扫描频率。用较低频率扫描可降低系统的总功耗。
图3的扫描模块310的扫描频率或扫描速率可以影响图5的触摸序列502的检测部分的分辨率(例如,以及持续时间)。例如,扫描速率越低,则触摸时间的不确定度越大。该不确定度可以包括关于输入物体被放置于触摸界面上的时间的不确定度、和/或关于输入物体从触摸界面提起的时间的不确定度。例如,参考图5的触摸序列502,可能有触摸1 508被放置于触摸界面506上的时间的不确定度加上触摸1 508从触摸界面506提起的时间的不确定度;可能有触摸1 508从触摸界面506提起的时间的不确定度加上触摸2 510被放置于触摸界面506上的时间的不确定度;以及可能有触摸2 510被放置于触摸界面506上的时间的不确定度加上触摸2 510从触摸界面506提起的时间的不确定度。
在实施例中,如果图3的扫描模块310在图5的扫描模式1 532以20Hz扫描(例如,每50ms一个或多个传感器信号),则触摸1 508被放置的时间的不确定度是约50ms,因为图3的触摸模式模块340不能以比50ms更好的粒度确定图5的触摸1 508最初何时被放置。如果图3的扫描模块310在图5的扫描模式2 534以50Hz扫描(例如,每20ms一个或多个传感器信号),则触摸1 508从触摸界面506提起时的时间的不确定度、触摸2 510被放置于触摸界面506上的时间的不确定度、以及触摸2 510从触摸界面506提起的时间的不确定度是约20ms,因为图3的触摸模式模块340不能以比20ms更好的粒度确定这些事件何时发生。在给定这个示例的扫描模式1 532和扫描模式2 534的扫描速率时,与检测持续时间T1 522相关联的不确定度是约70ms,并且与检测持续时间T2 524和T3526中的每一个持续时间相关联的不确定度是约40ms。该示例在图7的讨论中继续。
图7是根据实施例说明用于图5的触摸序列502的各个部分的实际检测范围的表格图,图5的触摸序列502的各个部分被认为落入图6的选定持续时间范围内。如关于图5所讨论的,图3的扫描模块310可以在扫描模式1 532以20Hz扫描触摸界面506,并接着在扫描模式2 534以50Hz扫描触摸界面506。在这些扫描速率并考虑与触摸1 508和触摸2 510相关联的计时的不确定度,图3的触摸模式模块340将根据表格700中的值确定满足在图6的表格600中示出的选定持续时间。应当指出的是,在没有偏离所要求保护主题的情况下,在指示是否满足选定的持续时间范围的表格700中的扫描数量和实际持续时间范围在其他实施例中可以是不同的。
在实施例中,如果图5的触摸1 508接近或接触触摸界面506并经两个至六个连续扫描(包括在20Hz的第一扫描和在50Hz的一个或多个后续扫描)被检测到存在,则图3的触摸模式模块340将确定图5的T1 522在图6的80ms与120ms之间。如果触摸1508经少于两个扫描或超过六个扫描被检测到(在这些扫描中的第一扫描是图5的扫描模式1 532中的触摸的初始检测的情况下),那么,触摸1 508的持续时间将被认为未落入图6的选定持续时间范围内。如果触摸1 508与触摸2 510之间的触摸不存在509在50Hz经四个至十个连续扫描被检测到,则图3的触摸模式模块340将确定图5的T2 524在图6的80ms与200ms之间。如果触摸不存在509经少于四个扫描或超过十个扫描被检测到,那么,触摸不存在509将被认为未落入图6的选定持续时间范围内。如果触摸2 510接近或接触触摸界面506并在50Hz经四个至六个连续扫描被检测到存在,则图3的触摸模式模块340将确定图5的T3 526在图6的80ms与120ms之间。如果触摸2 510经少于四个扫描或超过六个扫描被检测到,那么,触摸2 510的持续时间将被认为未落入图6的选定持续时间范围内。
在实施例中,基于触摸模式模块340确定触摸序列502是无效的,模式选择模块360将使扫描模块350返回到扫描模式1 532。在识别有效触摸序列时,图3的触摸模式模块340可以启动图1的感应系统100的功能或另一系统(未示出)的功能。
当图1的感应模块106可编程(例如,通过关于图10所讨论的可编程块和/或可再编程块)时,在感应系统100的编译时间期间和/或感应系统100的运行时间期间,与检测触摸模式相关联的许多参数可以被编程和/或再编程。可编程和可再编程参数的示例可以包括但不限于上面讨论的扫描模式的特性(例如,扫描速率)、图5的持续时间T1 522的最小和最大检测时间、持续时间T2 524的最小和最大检测时间、持续时间T3 526的最小和最大检测时间、触摸1 508和/或触摸2 510在触摸界面506上的最小和最大面积、触摸1 508和触摸2 510的最小和最大绝对位置或相对位置、以及触摸1 508的确定位置与触摸2 510的确定位置之间的最大距离。因此,扫描速率可被调整以将功耗减到最小,同时仍然允许触摸序列及其部分以可接受的置信水平被检测到。除了降低扫描速率以外,进一步节电可通过减少如结合图8所述的扫描传感器的数量来实现。
图8是根据实施例说明电容式传感器矩阵205的目标区域802和目标子区域804的框图。如上所述的某些实施例中的扫描模式可以包括检测沿一个轴的触摸存在的自电容扫描(例如,列C0–C11840的扫描)。减少数量的传感器元件可以通过扫描电容式传感器矩阵205的目标区域802在扫描模式中被扫描。例如,扫描模式可以包括目标区域802的列C3到C8的自电容扫描。例如,与图5的扫描模式1 532相关联的较低功耗可以至少部分归功于当在扫描模式1 532中被测量的传感器元件的数量与在扫描模式2 534中被测量的传感器元件的数量相比更少。扫描较少数量的传感器元件可降低系统的总功耗。在实施例中,可通过限制对目标区域的扫描来实现的节电与被扫描传感器的数量大致呈线性。此外,检测无意触摸序列的可能性可通过限制在扫描模式期间可用于接收输入的触摸区域来减少。在某些使用情况下,无意触摸发生在触摸屏的侧面,例如,由握住包括触摸屏的电话的手引起。应当指出的是,在没有偏离所要求保护的主题的情况下,位于电容式传感器矩阵上任何地方的任何数量的目标区域都可以被定义,并作为本文所述的一种或多种扫描模式所扫描的部分。例如,一种或多种扫描模式可以包括目标区域802的自电容和/或互电容扫描,而一种或多种其他扫描模式可以包括目标子区域804的自电容和/或互电容扫描。在某些实施例中,目标子区域804可以包括全部的目标区域802或电容式传感器矩阵205的其他区域。
图9是根据实施例说明用于检测触摸模式的方法900的流程图。方法900的描述引用了上面为了解释的目的引用的附图的组成部分,上述附图组成部分并不限制所要求保护的主题。应当指出的是,本文所述的方法可以由硬件、软件、固件、状态机或它们的组合来执行。
在方框902,方法900可以包括以第一扫描模式(诸如图5的扫描模式1532)运行的图3的扫描模块310。在方框904,方法900可以包括图3的存在模块320,其通过以第一扫描模式运行的扫描模块310检测触摸模式的第一部分。在图5的示例中,第一部分可以是在扫描模式1532期间由图3的存在模块320检测的触摸1508的开始。只有在触摸界面506的先前扫描中首先不存在触摸,才发生触摸1508的开始的检测。在实施例中,图3的模式选择模块360响应于存在模块320检测到触摸序列502的触摸508的开始,向扫描模块310发出以第二扫描模式运行的信号。
在方框906,方法900可以包括以第二扫描模式运行的图3的扫描模块310。如上所述,扫描模式(例如,第一扫描模式和第二扫描模式)可包括一个或多个特性,其中包括:扫描频率、通过扫描测量什么(例如,自电容、互电容)、被扫描传感器的数量和位置、传感器如何被激励(例如,通过电流)、功耗,以及扫描操作的其他特性。
在一个实施例中,扫描模块310经配置以第一扫描模式在第一频率(例如,20Hz)扫描,并以第二扫描模式在第二频率(例如,50Hz)扫描,其中第二频率大于第一频率。另选地或附加地,当扫描模块310以第一扫描模式运行时,扫描模块310可以扫描触摸屏的目标区域(例如,图8的目标区域802),并且当扫描模块310以第二扫描模式运行时,扫描模块310可以经配置扫描目标区域的目标子区域(例如,图8的目标子区域804)。
在方框908,方法900可以包括图3的存在模块320或触摸模式模块340,其通过以第二扫描模式运行的扫描模块310检测触摸模式的第二部分。在图5的示例中,触摸序列的剩余部分在扫描模式2下检测。例如,触摸序列502的剩余部分可以包括触摸1 508的持续时间T1 522、触摸1508的提离、在触摸1 508与触摸2 510之间触摸不存在509的持续时间T2 524、触摸2 510的开始、触摸2 510的持续时间T3 526、以及触摸2 510的提离中的一个或多个。
在方框910,方法900可以包括图3的触摸模式模块340,其基于触摸模式的第一部分和触摸模式的第二部分的检测来识别触摸模式。例如,触摸模式模块340可以基于确定触摸1508的持续时间T1 522、触摸2 510的持续时间T3 526、以及触摸1 508与触摸2 510之间的持续时间T2 524落入关于图6所讨论的选定持续时间范围内,来识别图5的触摸序列502。对于不同的实施例,响应于检测到触摸模式,触摸模式模块340可以生成启动运行的信号(诸如将电路(例如,下面关于图10所讨论的处理器)从睡眠模式唤醒的唤醒信号)、生成允许访问受保护内容的访问信号、或生成启动其他功能性的信号。
图10是说明根据各个实施例的电子系统1000的框图,该电子系统1000检测导电物体在电容式传感器阵列1020上的存在。电子系统1000包括处理装置1010、电容式传感器阵列1020、触摸传感器按钮1040、主处理器1050、嵌入式控制器1060、以及非电容式传感器元件1070。处理装置1010可以包括模拟和/或数字通用输入/输出(“GPIO”)端口1007。GPIO端口1007可以是可编程的。
在一个实施例中,处理装置1010的数字块阵列可以经配置使用可配置的用户模块(“UM”)实施各种数字逻辑电路(例如,DAC、数字滤波器或数字控制系统)。数字块阵列可以被耦接至系统总线。处理装置1010还可以包括存储器,诸如随机存取存储器(“RAM”)1005和程序闪存1004。RAM 1005可以是静态RAM(“SRAM”),并且程序闪存1004可以是非易失性存储装置,其可以被用于存储固件(例如,可由处理芯1002执行以实施本文所述操作的控制算法)。存储器可以包括指令,当该指令被执行时,其执行本文所述的方法。处理装置1010还可以包括被耦接至存储器和处理芯1002的微控制器单元(“MCU”)1003。
如图所示,电容感知器1001可以被集成到处理装置1010中。电容感知器1001可以包括用于耦接至外部组件(诸如电容式传感器阵列1020,触摸传感器按钮1040、和/或其他装置)的模拟I/O。电容感知器1001和处理装置1010在下面更详细描述。
本文所述的实施例可被用于任何电容式传感器阵列应用,例如,电容式传感器阵列1020可以是触摸屏、触摸垫、触摸传感器滑块或触摸传感器按钮1040(例如,电容式传感器按钮)。本文所述的实施例可以包括但不限于笔记本指示器操作、照明控制(调光器)、音量控制、图形均衡器控制、速度控制或需要渐进或离散调整的其他控制操作。还应当指出的是,电容式感应实施的这些实施例可以结合非电容式传感器元件1070(包括但不限于选择按钮、滑块(例如,显示器亮度和对比度)、滚轮、多媒体控制(例如,音量,音轨快进)、手写识别和数字键盘操作)来使用。
在一个实施例中,电子系统1000包括经由总线1021被耦接至处理装置1010的传感器元件的电容式传感器阵列1020。在实施例中,电容式传感器阵列可以包括图2的传感器元件204。在一个实施例中,传感器元件的电容式传感器阵列1020可以包括一维传感器阵列,并且在另一实施例中,可以包括二维传感器阵列。另选地或附加地,传感器元件的电容式传感器阵列1020可以具有更多维度。电容式传感器阵列1020可以采用投射式电容技术,在该技术中,电容式传感器阵列的电容式传感器元件在电容式传感器阵列1020的基板(未示出)上的一层或多层中形成。例如,电容式传感器元件可以在被沉积在玻璃、塑料或其他透明基板上的透明导电膜的一层或多层中的图像显示器(例如,液晶显示器)之上形成图案。保护透明层(例如,玻璃或塑料膜)可以覆盖电容式传感器元件以保护该电容式传感器元件免受环境损坏。在另一实施例中,基板或保护层或基板和保护层两者可以是不透明的。
而且,在一个实施例中,传感器元件的电容式传感器阵列1020可以是滑块、触摸垫、触摸屏或其他感应装置。在另一实施例中,电子系统1000包括经由总线1041被耦接至处理装置1010的触摸传感器按钮1040。触摸传感器按钮1040可以包括单维或多维传感器阵列。单维或多维传感器阵列可以包括多个传感器元件。对于触摸传感器按钮,传感器元件可以被耦接在一起以检测导电物体在感应装置的整个表面上的存在。另选地,触摸传感器按钮1040可以具有检测导电物体的存在的单个传感器元件。在一个实施例中,触摸传感器按钮1040可以包括电容式传感器元件。电容式传感器元件可以被用作非接触式传感器元件。当受隔离层保护时,这些传感器元件提供对恶劣环境的抵抗。
电子系统1000可以包括电容式传感器阵列1020和/或触摸传感器按钮1040中的一个或多个的任意组合。在另一实施例中,电子系统1000还可以包括经由总线1071被耦接至处理装置1010的非电容式传感器元件1070。非电容式传感器元件1070可以包括按钮、发光二极管(“LED”)、信息显示器(例如,LCD、AMOLED)、以及其他用户界面装置,诸如鼠标、键盘或不需要电容感应的其他功能键。在一个实施例中,总线1071、1041和1021可以是单个总线。另选地,这些总线可以被配置为一个或多个独立总线的任意组合。
处理装置1010可以包括内部振荡器/时钟1006以及通信块(“COM”)1008。振荡器/时钟块1006向处理装置1010的一个或多个组件提供时钟信号。通信块1008可以被用于经由主机接口(“I/F”)线1051与外部组件(诸如主处理器1050)通信。另选地,处理装置1010还可以被耦接至嵌入式控制器1060,以与外部组件(诸如主处理器1050)通信。在一个实施例中,处理装置1010经配置与嵌入式控制器1060或主处理器1050通信以发送和/或接收数据。在一个实施例中,处理装置1010包含主机1050的全部功能性,使得主机接口线1051不存在。
例如,处理装置1010可以安装在诸如集成电路(“IC”)管芯基板、多芯片模块基板等的公共载体基板上。另选地,处理装置1010的组件可以是一个或多个独立集成电路和/或分立组件。在一个示例性实施例中,处理装置1010可以是由加州圣何塞市的赛普拉斯半导体公司开发的芯片上可编程系统()处理装置。另选地,处理装置1010可以是本领域的普通技术人员已知的一种或多种其他处理装置,诸如微处理器或中央处理单元、控制器、专用处理器、数字信号处理器(“DSP”)、专用集成电路(“ASIC”)、现场可编程门阵列(“FPGA”)等。
还应当指出的是,本文所述的实施例并不局限于具有被耦接至主处理器1050的处理装置的配置,而是可以包括测量感应装置上的电容并向另一主计算机发送原始数据的系统,原始数据在该另一主计算机通过应用程序来分析。实际上,通过处理装置1010进行的处理也可以在主计算机中进行。
应当指出的是,图10的处理装置1010可以使用各种技术诸如自电容感应和互电容感应来测量电容。由于每个传感器元件仅需要至感应电路的一条连接线,因此自电容感应模式也被称为单电极感应模式。对于自电容感应模式,由于手指电容被添加到传感器电容中,因此触摸接近传感器元件的电容式传感器阵列1020的电介质表面增加传感器电容。互电容变化在互电容感应模式中被检测到,其中,每个传感器元件使用至少两个电极:一个是发射(TX)电极并且另一个是接收(RX)电极。当手指触摸接近电容式传感器阵列1020的发射电极与接收电极的交叉点的电容式传感器阵列1020的电介质表面时,耦接在电容式传感器阵列的接收电极与发射电极之间的电容随着手指将电场的部分分流(shunt)至接地(例如,机壳或地面)而减少。用于向电容式传感器阵列1020提供输入的尖笔1090可以是有源或无源的。在某些实施例中,处理装置1010可以通过同时检测接近电容式传感器阵列1020的不同区域的多个导电物体来提供多点触摸能力。在实施例中,处理装置1010可以包括和/或提供感应模块106、扫描模块310、模式选择模块360、存在模块320、位置模块330、以及触摸模式模块340中的一个或多个的功能性,如关于上述附图所述。
电容感知器1001可以被集成到处理装置1010的IC中,或另选地,集成到独立的IC中。如将被受益于本公开的本领域的普通技术人员所理解的,电容感知器1001可以包括用于测量电容的张弛振荡器(RO)电路、Σ-Δ调制器(也被称为CSD)电路、电荷转移电路、电荷累积电路等。另选地,电容感知器1001的描述可以被生成和编译用于并入到其他集成电路中。例如,描述电容感知器1001或其部分的行为级代码可以使用诸如VHDL或Verilog的硬件描述语言来生成,并被存储到机器可访问介质(例如,CD-ROM、硬盘、软盘等)中。此外,行为级代码可以被编译成寄存器传输级(“RTL”)代码、网表、或甚至是电路布局并被存储到机器可访问介质中。行为级代码、RTL代码、网表、以及电路布局全部表示描述电容感知器1001的各种抽象级别。应当指出的是,电子系统1000的组件可以仅包括上述分立组件中的某些或全部或它们的某些组合。
在一个实施例中,电子系统1000被用在笔记本计算机中。另选地,电子装置可以被用在其他应用中,诸如手机,个人数据助理(“PDA”)、电子平板计算机、键盘、电视、遥控、监视器、手持多媒体装置、手持视频播放器、手持游戏装置或控制面板。
图11是根据实施例说明电子系统的功率状态的表格图。图12是根据实施例说明功率状态以及在功率状态之间的转换的状态图1200。状态图1200被示出包括功率状态:“激活”1220、“寻找触摸”1222、“低功率”1224、“轻拍-轻拍(激活)”1226、“轻拍-轻拍(寻找触摸)”1228、以及“深睡眠”1230。状态图1200示出响应于主机命令、触摸、触摸不存在和唤醒事件在各个状态之间的转换。
参考图11的表格1100,在实施例中,“激活”功率状态包括在120Hz的互电容扫描,“寻找触摸”功率状态包括在100Hz的自电容扫描,“低功率”的功率状态包括在50Hz的自电容扫描,“轻拍-轻拍(激活)”功率状态包括在50Hz的自电容扫描,“轻拍-轻拍(寻找触摸)”功率状态包括在20Hz的自电容扫描,并且在“深睡眠”功率状态没有进行扫描。在实施例中,“激活”功率状态消耗几十mW的功率,“深睡眠”功率状态消耗在1μW与10μW之间的功率,并且“轻拍-轻拍”唤醒状态(例如,包括“轻拍-轻拍(激活)”和“轻拍-轻拍(寻找触摸)”)消耗小于1mW的功率。“轻拍-轻拍”唤醒状态的降低功耗部分地由于相对较低的扫描频率和自电容扫描的使用。应当指出的是,在图11的表格1100中示出的扫描速率和感应类型是可配置的,并且所示的值仅用于说明目的。虽然示例“轻拍-轻拍”唤醒状态包括状态图1200中的“轻拍-轻拍(寻找触摸)”1228和“轻拍-轻拍(激活)”1226,但是根据图11的表格1100中示出的配置扫描速率和感应类型,“轻拍-轻拍”唤醒状态可以包括不同数量的功率状态(例如,一种功率状态)和扫描模式(例如,单轴自电容、双轴自电容、目标区域自电容、互电容、目标区域互电容)。
在实施例中,“轻拍-轻拍”唤醒是图10的电子系统1000的可选择、可编程或可配置的运行模式。“轻拍-轻拍”唤醒可允许主机1050的处理器睡眠、节电,并在不需要物理按钮与避免关联成本和失效模式的情况下向主机1050提供唤醒信号。当电子系统1000处于“轻拍-轻拍”唤醒状态(例如,包括图12的“轻拍-轻拍(寻找触摸)”1228和“轻拍-轻拍(激活)”1226)时,除了处理装置1010的部分以外,图10的电子系统1000在睡眠,并且除了需要进行测量和分析该测量的时间以外,该装置也在睡眠。当处于“轻拍-轻拍”唤醒状态时,处理装置1100以较慢的速率扫描电容式传感器阵列1020并寻找触摸模式(例如,上面关于图5所述的触摸序列502)以节约能量,同时仍然提供可靠的触发(例如,触摸序列)以唤醒图10的主机1050。
在实施例中,功率状态的许多参数可以在电子系统1000的编译时间和/或电子系统1000的运行时间期间被编程和/或再编程。可编程参数的示例可以包括但不限于上面关于图5-图7所述的扫描模式的各个参数。在实施例中,用户可以设定他们认为是有效的轻拍-轻拍。例如,可以引导用户(例如,经由显示器)输入若干轻拍-轻拍事件,同时使电子系统1000保持对每次轻拍以及轻拍之间间隙的最小和最大持续时间的跟踪,并接着使用这些值计算对该用户是最优的定制轻拍-轻拍序列。另选地或附加地,这可以被延伸到连续学习模式,其中,每个接受的轻拍-轻拍手势被添加到此类事件的历史列表(例如,最近的10个的历史列表)中,并且设定的限值(例如,每个间隔的最小值和最大值)由该历史列表中采集的值确定。
在某些实施例中,当在搜索触摸存在时的功率状态中的时候,单轴自电容扫描可以被用于感应。不过,当在搜索多个触摸的多个位置时、在自电容扫描不可用时、和/或在互电容扫描的功率低于自电容扫描时的一个或多个功率状态中的时候,互电容扫描可以被用于感应。
如图11的表格1100所指示,在实施例中,转换到“激活”1220、“寻找触摸”1222、“低功率”1224和“轻拍-轻拍(激活)”1226的功率状态可以通过触摸屏控制器(例如,处理装置1010)来启动,或如图12所示,通过触摸屏事件来触发。转换到“深睡眠”1230通过主机来启动(例如,通过来自图10的主机1050的命令),并且转换到“轻拍-轻拍(寻找触摸)”1228通过主机来启动或通过触摸屏事件或触摸屏事件不存在来触发。在实施例中,转换到“激活”、“低功率”、以及“寻找触摸”功率状态也可以通过来自主机1050的命令来引导。
例如,图12示出“轻拍-轻拍(寻找触摸)”1228可以通过主机命令HST CMND 1231、HST CMND 1232或HST CMND 1234(例如,该主机命令可以设定轻拍-轻拍唤醒比特位)进入,并且可以通过另一主机命令HST CMND 1236(例如,该主机命令可以清除轻拍-轻拍唤醒比特位)退出。“轻拍-轻拍(寻找触摸)”1228还可以响应于触摸检测1238退出,触摸检测1238促使转换到“轻拍-轻拍(激活)”1226。如果轻拍-轻拍序列未被检测为有效,同时处于“轻拍-轻拍(激活)”1226功率状态,那么,可以通过轻拍-轻拍序列冲突1240再次进入“轻拍-轻拍(寻找触摸)”。在实施例中,在没有主机命令或检测到的触摸时,图10的电子系统1000以“轻拍-轻拍(寻找触摸)”1228功率状态运行。因此,电子系统1000可以转换到“轻拍-轻拍(寻找触摸)1228”功率状态,因为它刚检测到主机设定轻拍-轻拍唤醒比特位、轻拍-轻拍状态机是空闲的、或部分检测到的轻拍-轻拍唤醒事件未通过验证。
如上面所指出的,可以响应于触摸检测1238从“轻拍-轻拍(寻找触摸)”1228进入“轻拍-轻拍(激活)”1226。图10的电子系统1000可以在“轻拍-轻拍(激活)”1226下运行,同时它确定轻拍-轻拍唤醒事件的已定义序列(例如,触摸模式的部分)是否已经发生(例如,除非由主机通过HST CMND 1244来命令退出)。如果有效的轻拍-轻拍序列未被检测到(例如,在超时周期内),那么,电子系统1000将转换(例如,通过轻拍-轻拍序列冲突1240)回到“轻拍-轻拍(寻找触摸)”1228下运行。如果轻拍-轻拍序列1242在“轻拍-轻拍(激活)”1226下被检测为有效,那么,处理装置1010(例如,触摸控制器)将发出系统唤醒动作(通常是对主机1050的中断),并通过有效的轻拍-轻拍唤醒1242转换到“寻找触摸”1222。
当图10的电子系统1000如本文所述在“轻拍-轻拍”唤醒功率状态下运行时,可以允许主机1050的处理器通过唤醒检测过程睡眠,从而节电。此外,所述实施例提供无需物理按钮或加速计的唤醒,从而节约材料成本并避免物理零件的失效模式。多种扫描模式的特性可以是可配置的,以满足性能目标,并同时将扫描频率、扫描时间和扫描区域减到最小,并因此,将电子系统1000的总功耗减到最小。
上面的描述旨在说明并且不是限制性的。例如,上述的实施例(或它们的一个或多个方面)可以彼此结合使用。在阅读了上面的描述之后,其他实施例对于本领域技术人员将是显而易见的。在本文献中,术语“一(a)/一个(an)”被用于包括一个或多于一个,这在专利文献中是通用的。在本文献中,除非另有说明,否则术语“或”用于指的是非排他性的或,使得“A或B”包括“包括A但不包括B”、“包括B但不包括A”以及“A和B”。在本文献与通过引用被并入的那些文献之间的用法不一致的情况下,被并入的引用中的用法应当被认为是对本文献的用法的增补;对于不可调和的不一致,本文献中的用法替代在任何被并入的引用中的用法。
虽然所要求保护的主题已参考特定实施例来描述,但是显而易见的是,在没有偏离所要求保护的广义精神和范围的情况下,可以对这些实施例进行各种改进和更改。因此,本说明书和附图应被视为具有说明性的而不是限制性的意义。权利要求的范围应当通过参考附随权利要求以及这些权利要求所定义的等效物的全部范围一起来确定。在附随权利要求中,术语“包括”和“其中”被用作相应术语“包含”和“在其中”的纯英语等效词。而且,在附随权利要求中,术语“包括”和“包含”是开放式的;在权利要求中,包括除了在此类术语后面列出的那些要素之外的要素的系统、装置、制品或方法仍被视为落入该权利要求的范围内。此外,在附随权利要求中,术语“第一”、“第二”和“第三”等仅被用作标记并且不旨在将数值要求强加于它们的对象上。
本公开的摘要遵照37C.F.R.§1.72(b)来提供,37C.F.R.§1.72(b)要求发明摘要能允许读者快速确定该技术公开的性质。本公开的摘要的提交应被理解为它不会被用于解译或限制本权利要求的范围或含义。

Claims (20)

1.一种方法,其包括:
通过以第一扫描模式运行来检测触摸序列的第一部分;
通过以第二扫描模式运行来检测所述触摸序列的第二部分;以及
基于对所述第一部分的检测和对所述第二部分的检测来识别所述触摸序列。
2.根据权利要求1所述的方法,其中以所述第二扫描模式运行包括响应于检测到所述触摸序列的所述第一部分而以所述第二扫描模式运行。
3.根据权利要求1所述的方法,其中以所述第一扫描模式运行包括以第一频率扫描,而以所述第二扫描模式运行包括以大于所述第一频率的第二频率扫描。
4.根据权利要求1所述的方法,其中对所述触摸序列的所述第一部分的检测包括扫描触摸屏的目标区域,而对所述触摸序列的所述第二部分的检测包括扫描所述目标区域。
5.根据权利要求1所述的方法,其中对所述第一部分的检测包括检测指示第一触摸的自电容和互电容中的一个,而对所述第二部分的检测包括检测指示第二触摸的自电容和互电容中的一个。
6.根据权利要求5所述的方法,其中识别所述触摸序列包括确定所述第一触摸的持续时间、确定所述第二触摸的持续时间、以及确定所述第一触摸与所述第二触摸之间的持续时间。
7.根据权利要求1所述的方法,还包括响应于对所述触摸序列的识别提供唤醒信号,所述唤醒信号唤醒处理器。
8.根据权利要求1所述的方法,还包括响应于对所述触摸序列的识别向处理器提供访问信号,所述访问信号允许访问受保护的内容。
9.一种设备,其包括:
扫描模块,所述扫描模块经配置以第一扫描模式和第二扫描模式运行;
存在模块,所述存在模块被耦接至所述扫描模块,且经配置以通过所述扫描模块的所述第一扫描模式检测触摸模式的第一部分,并通过所述扫描模块的所述第二扫描模式检测所述触摸模式的第二部分;以及
触摸模式模块,所述触摸模式模块被耦接至所述存在模块,且经配置以基于所检测到的第一部分和所检测到的第二部分识别所述触摸模式。
10.根据权利要求9所述的设备,包括模式选择模块,所述模式选择模块被耦接至所述扫描模块和所述存在模块,且经配置以响应于所述存在模块检测到所述触摸模式的所述第一部分,向所述扫描模块发出以所述第二扫描模式运行的信号。
11.根据权利要求9所述的设备,其中所述扫描模块经配置以在所述第一扫描模式以第一频率扫描且在所述第二扫描模式以第二频率扫描,其中所述第二频率大于所述第一频率。
12.根据权利要求9所述的设备,其中当所述扫描模块以所述第一扫描模式运行时,所述扫描模块经配置以扫描触摸屏的目标区域,而当所述扫描模块以所述第二扫描模式运行时,所述扫描模块经配置以扫描所述目标区域的目标子区域。
13.根据权利要求9所述的设备,其中所述存在模块经配置以通过所述扫描模块的所述第一扫描模式,检测指示对所述第一部分的第一触摸的自电容和互电容中的一个的变化,以及通过所述扫描模块的所述第二扫描模式,检测指示对所述第二部分的第二触摸的自电容和互电容中的一个的变化。
14.根据权利要求13所述的设备,其中所述触摸模式模块经配置以基于所述第一触摸的持续时间、所述第二触摸的持续时间、以及所述第一触摸与所述第二触摸之间的持续时间识别所述触摸模式。
15.根据权利要求9所述的设备,其中响应于对所述触摸模式的识别,所述触摸模式模块经配置以向处理器提供唤醒信号以允许所述处理器从睡眠模式唤醒。
16.根据权利要求9所述的设备,其中响应于对所述触摸模式的识别,所述触摸模式模块经配置以提供访问信号以允许处理器访问受保护的内容。
17.一种系统,其包括:
主处理器;
触摸控制器;以及
触摸界面,所述触摸界面与所述触摸控制器耦接,且所述触摸控制器包括:
扫描模块,其经配置以第一频率和以第二频率扫描;
存在模块,所述存在模块被耦接至所述扫描模块,且经配置以通过以所述第一频率的扫描检测第一触摸并通过以所述第二频率的扫描检测第二触摸,其中所述存在模块经配置以响应于所述第一触摸的检测而以所述第二频率扫描;以及
触摸模式模块,所述触摸模式模块被耦接至所述存在模块,且经配置以基于所检测到的第一触摸和所检测到的第二触摸识别触摸模式,并响应于所述触摸模式的识别向所述主处理器发出从睡眠模式唤醒的信号。
18.根据权利要求17所述的系统,其中当所述扫描模块以所述第一频率和所述第二频率扫描时,所述扫描模块经配置以扫描触摸屏的目标区域。
19.根据权利要求17所述的系统,其中所述存在模块经配置以检测指示所述第一触摸的自电容的变化和检测指示所述第二触摸的自电容的变化。
20.根据权利要求17所述的系统,其中所述触摸模式模块经配置以基于所述第一触摸的持续时间、所述第二触摸的持续时间、以及所述第一触摸与所述第二触摸之间的持续时间检测所述触摸模式。
CN201380046481.3A 2012-09-20 2013-01-14 检测触摸模式的方法和设备 Active CN104662488B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261703376P 2012-09-20 2012-09-20
US61/703,376 2012-09-20
US13/723,020 2012-12-20
US13/723,020 US8816985B1 (en) 2012-09-20 2012-12-20 Methods and apparatus to detect a touch pattern
PCT/US2013/021393 WO2014046711A1 (en) 2012-09-20 2013-01-14 Methods and apparatus to detect a touch pattern

Publications (2)

Publication Number Publication Date
CN104662488A true CN104662488A (zh) 2015-05-27
CN104662488B CN104662488B (zh) 2018-01-02

Family

ID=50341829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380046481.3A Active CN104662488B (zh) 2012-09-20 2013-01-14 检测触摸模式的方法和设备

Country Status (4)

Country Link
US (2) US8816985B1 (zh)
EP (1) EP2898395A4 (zh)
CN (1) CN104662488B (zh)
WO (1) WO2014046711A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106445243A (zh) * 2016-11-07 2017-02-22 深圳Tcl数字技术有限公司 智能设备的触摸响应装置和方法
CN108733250A (zh) * 2017-04-20 2018-11-02 宏达国际电子股份有限公司 手持式电子装置及其触摸检测方法
CN108765636A (zh) * 2018-03-28 2018-11-06 上海科世达-华阳汽车电器有限公司 一种汽车车门解锁设备及系统
WO2020173469A1 (zh) * 2019-02-26 2020-09-03 敦泰电子(深圳)有限公司 触控控制方法、电路系统及触控装置
CN112764815A (zh) * 2016-09-23 2021-05-07 苹果公司 电子设备的睡眠状态期间的低功率触摸感测

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US9063731B2 (en) * 2012-08-27 2015-06-23 Samsung Electronics Co., Ltd. Ultra low power apparatus and method to wake up a main processor
US9785217B2 (en) * 2012-09-28 2017-10-10 Synaptics Incorporated System and method for low power input object detection and interaction
US9939965B2 (en) * 2012-12-11 2018-04-10 Atmel Corporation Sending drive signals with an increased number of pulses to particular drive lines
CN103064624A (zh) * 2012-12-27 2013-04-24 深圳市汇顶科技股份有限公司 触摸终端及其屏幕激活方法和系统
TWI492134B (zh) * 2013-01-24 2015-07-11 Orise Technology Co Ltd 利用自電容與互電容感應交替掃瞄之去除觸控雜訊的方法
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US20150020033A1 (en) * 2013-07-09 2015-01-15 Qualcomm Incorporated Method and apparatus for activating a user interface from a low power state
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
US20150062448A1 (en) * 2013-08-30 2015-03-05 Arvind S. Touch screen displays
US9823728B2 (en) 2013-09-04 2017-11-21 Nvidia Corporation Method and system for reduced rate touch scanning on an electronic device
US9244551B2 (en) * 2013-09-20 2016-01-26 Intel Corporation Adaptive touch scanning
US9881592B2 (en) 2013-10-08 2018-01-30 Nvidia Corporation Hardware overlay assignment
US9111076B2 (en) * 2013-11-20 2015-08-18 Lg Electronics Inc. Mobile terminal and control method thereof
US9507470B2 (en) * 2013-12-16 2016-11-29 Nvidia Corporation Method and system for reduced power touch input detection on an electronic device using reduced scanning
FR3015381B1 (fr) * 2013-12-19 2016-01-29 Dav Dispositif de controle pour vehicule automobile et procede de commande
US9293119B2 (en) 2014-01-06 2016-03-22 Nvidia Corporation Method and apparatus for optimizing display updates on an interactive display device
US9383851B2 (en) * 2014-01-06 2016-07-05 Nvidia Corporation Method and apparatus for buffering sensor input in a low power system state
KR101637174B1 (ko) * 2014-06-30 2016-07-21 엘지디스플레이 주식회사 터치스크린 일체형 표시장치
KR102185564B1 (ko) * 2014-07-09 2020-12-02 엘지전자 주식회사 이동 단말기 및 그것의 제어방법
US9904404B2 (en) 2014-10-06 2018-02-27 Lg Display Co., Ltd. Electronic device having touch sensor and driving method thereof
AU2015101688B4 (en) * 2014-12-04 2016-02-11 Apple Inc. Coarse scan and targeted active mode scan for touch
US10061449B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
KR101859419B1 (ko) * 2014-12-26 2018-05-23 엘지디스플레이 주식회사 터치 스크린 장치와 그의 구동방법
US9489097B2 (en) * 2015-01-23 2016-11-08 Sony Corporation Dynamic touch sensor scanning for false border touch input detection
US10664098B2 (en) 2015-06-22 2020-05-26 Sigmasense, Llc. Channel driver circuit
US11397492B2 (en) 2015-06-22 2022-07-26 Sigmasense, Llc. Enhanced mutual capacitance touch screen display with shape detection and methods for use therewith
US10120498B2 (en) 2015-06-22 2018-11-06 Sigmasense, Llc. Multi-touch sensor and electrostatic pen digitizing system utilizing simultaneous functions for improved performance
US11907484B2 (en) 2015-06-22 2024-02-20 Sigmasense, Llc. Function and orientation identification for input/output (I/O) operative touch sensor device (TSD)
KR102084637B1 (ko) * 2015-09-18 2020-03-05 삼성디스플레이 주식회사 터치 스크린 패널 및 그의 제어방법
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication
US10444908B2 (en) * 2016-12-31 2019-10-15 Innoventions, Inc. Virtual touchpads for wearable and portable devices
US10454474B2 (en) * 2017-04-18 2019-10-22 Ford Global Technologies, Llc Proximity switch having sensor with decorative metal
US10901557B2 (en) 2017-05-19 2021-01-26 Elo Touch Solutions, Inc. PCAP with enhanced immunity to water contaminants
US10444820B2 (en) 2017-09-11 2019-10-15 Apple Inc. Low power touch detection
DE102017216842B3 (de) * 2017-09-22 2019-03-28 Audi Ag Kapazitiv bedienbare Schaltvorrichtung zum Schalten eines elektrischen Geräts sowie Beleuchtungsvorrichtung und Kraftfahrzeug
CN110568502A (zh) * 2018-06-05 2019-12-13 义隆电子股份有限公司 电容式触控板上的液体检测方法及其控制器
US10868532B2 (en) 2018-09-12 2020-12-15 Ford Global Technologies, Llc Vehicle trim assembly having sensor and grounded trim component
FR3086079B1 (fr) * 2018-09-17 2021-04-23 Zodiac Aero Electric Dispositif tactile multitouche a detection capacitive
KR20200090438A (ko) 2019-01-21 2020-07-29 삼성전자주식회사 디스플레이의 손상을 방지하기 위한 전자 장치 및 방법
US11449175B2 (en) 2020-03-31 2022-09-20 Apple Inc. System and method for multi-frequency projection scan for input device detection
US11460933B2 (en) 2020-09-24 2022-10-04 Apple Inc. Shield electrode for input device
US11287926B1 (en) * 2020-09-25 2022-03-29 Apple Inc. System and machine learning method for detecting input device distance from touch sensitive surfaces
US11526240B1 (en) 2020-09-25 2022-12-13 Apple Inc. Reducing sensitivity to leakage variation for passive stylus
CN117043727A (zh) * 2021-03-23 2023-11-10 松下知识产权经营株式会社 检测装置
WO2022256494A1 (en) * 2021-06-03 2022-12-08 Apple Inc. Devices and methods for processing touch inputs
US11755146B2 (en) 2021-06-03 2023-09-12 Apple Inc. Devices and methods for processing touch inputs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1864125A (zh) * 2003-10-10 2006-11-15 3M创新有限公司 振动感应触摸输入装置的唤醒触摸
US20090009195A1 (en) * 2007-07-03 2009-01-08 Cypress Semiconductor Corporation Method for improving scan time and sensitivity in touch sensitive user interface device
US20090241072A1 (en) * 2005-12-23 2009-09-24 Imran Chaudhri Unlocking a Device by Performing Gestures on an Unlock Image
US20120191993A1 (en) * 2011-01-21 2012-07-26 Research In Motion Limited System and method for reducing power consumption in an electronic device having a touch-sensitive display

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355503A (en) 1990-05-31 1994-10-11 National Semiconductor Corporation Event driven scanning of data input equipment using multi-input wake-up techniques
US5543591A (en) * 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
EP0626633B1 (en) 1993-05-28 2001-03-14 Sun Microsystems, Inc. Touch screen power control in a computer system
US5977957A (en) 1997-05-22 1999-11-02 Ericsson Inc. Adaptive sampling of touch screen input
US7190356B2 (en) * 2004-02-12 2007-03-13 Sentelic Corporation Method and controller for identifying double tap gestures
US7184031B2 (en) * 2004-07-06 2007-02-27 Sentelic Corporation Method and controller for identifying a drag gesture
US8144125B2 (en) * 2006-03-30 2012-03-27 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US7812827B2 (en) * 2007-01-03 2010-10-12 Apple Inc. Simultaneous sensing arrangement
US20080284739A1 (en) 2007-05-17 2008-11-20 Microsoft Corporation Human Interface Device
WO2009006556A1 (en) * 2007-07-03 2009-01-08 Cypress Semiconductor Corporation Normalizing capacitive sensor array signals
US8174503B2 (en) * 2008-05-17 2012-05-08 David H. Cain Touch-based authentication of a mobile device through user generated pattern creation
US8451236B2 (en) 2008-12-22 2013-05-28 Hewlett-Packard Development Company L.P. Touch-sensitive display screen with absolute and relative input modes
US8564555B2 (en) * 2009-04-30 2013-10-22 Synaptics Incorporated Operating a touch screen control system according to a plurality of rule sets
US9069405B2 (en) * 2009-07-28 2015-06-30 Cypress Semiconductor Corporation Dynamic mode switching for fast touch response
US8723825B2 (en) * 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
EP2517086B1 (en) 2009-12-22 2015-04-01 Nokia Technologies OY Method and apparatus for performing energy management via sub-system
US8464183B2 (en) 2010-06-03 2013-06-11 Hewlett-Packard Development Company, L.P. System and method for distinguishing multimodal commands directed at a machine from ambient human communications
US8382591B2 (en) 2010-06-03 2013-02-26 Ol2, Inc. Graphical user interface, system and method for implementing a game controller on a touch-screen device
CN102314295A (zh) 2010-07-08 2012-01-11 富泰华工业(深圳)有限公司 屏幕解锁装置及方法
EP2646894A2 (en) 2010-11-30 2013-10-09 Cleankeys Inc. Dynamically located onscreen keyboard
US20130265276A1 (en) * 2012-04-09 2013-10-10 Amazon Technologies, Inc. Multiple touch sensing modes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1864125A (zh) * 2003-10-10 2006-11-15 3M创新有限公司 振动感应触摸输入装置的唤醒触摸
US20090241072A1 (en) * 2005-12-23 2009-09-24 Imran Chaudhri Unlocking a Device by Performing Gestures on an Unlock Image
US20090009195A1 (en) * 2007-07-03 2009-01-08 Cypress Semiconductor Corporation Method for improving scan time and sensitivity in touch sensitive user interface device
US20120191993A1 (en) * 2011-01-21 2012-07-26 Research In Motion Limited System and method for reducing power consumption in an electronic device having a touch-sensitive display

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764815A (zh) * 2016-09-23 2021-05-07 苹果公司 电子设备的睡眠状态期间的低功率触摸感测
US11226668B2 (en) 2016-09-23 2022-01-18 Apple Inc. Low power touch sensing during a sleep state of an electronic device
CN112764815B (zh) * 2016-09-23 2022-06-28 苹果公司 电子设备的睡眠状态期间的低功率触摸感测
US11614788B2 (en) 2016-09-23 2023-03-28 Apple Inc. Low power touch sensing during a sleep state of an electronic device
CN106445243A (zh) * 2016-11-07 2017-02-22 深圳Tcl数字技术有限公司 智能设备的触摸响应装置和方法
CN106445243B (zh) * 2016-11-07 2020-04-10 深圳Tcl数字技术有限公司 智能设备的触摸响应装置和方法
CN108733250A (zh) * 2017-04-20 2018-11-02 宏达国际电子股份有限公司 手持式电子装置及其触摸检测方法
CN108765636A (zh) * 2018-03-28 2018-11-06 上海科世达-华阳汽车电器有限公司 一种汽车车门解锁设备及系统
WO2020173469A1 (zh) * 2019-02-26 2020-09-03 敦泰电子(深圳)有限公司 触控控制方法、电路系统及触控装置

Also Published As

Publication number Publication date
EP2898395A4 (en) 2016-06-29
EP2898395A1 (en) 2015-07-29
WO2014046711A1 (en) 2014-03-27
CN104662488B (zh) 2018-01-02
US8816985B1 (en) 2014-08-26
US9395859B1 (en) 2016-07-19

Similar Documents

Publication Publication Date Title
CN104662488A (zh) 检测触摸模式的方法和设备
JP6853215B2 (ja) 静電容量ボタンへの異なる大きさの導電性対象物のタッチの検出及び識別
US10338739B1 (en) Methods and apparatus to detect a presence of a conductive object
US8674950B2 (en) Dual-sensing-mode touch-sensor device
US8773386B2 (en) Methods and apparatus to scan a targeted portion of an input device to detect a presence
CN102455823B (zh) 具有使用接近检测模式的低功率模式的双模式触摸板
CN203773517U (zh) 主机设备
US8258986B2 (en) Capacitive-matrix keyboard with multiple touch detection
US8072429B2 (en) Multi-axial touch-sensor device with multi-touch resolution
US20070229470A1 (en) Capacitive touch sense device having polygonal shaped sensor elements
US20070229469A1 (en) Non-planar touch sensor pad
CN102576278A (zh) 用于快速触摸响应的动态模式切换
US9705495B2 (en) Asymmetric sensor pattern
CN103425370A (zh) 电容式位置传感器系统
CN104423758A (zh) 电容传感阵列的交错传感元件
US9753577B2 (en) Methods and apparatus to perform a detection operation
US9360972B1 (en) Touch sensor conductor routing
US8970796B2 (en) Field-line repeater (FLR) structure of a sense array
US9001074B2 (en) Methods and apparatus to determine position of an input object
CN103124952A (zh) 电容式感测阵列中的准确度的改进
US9612265B1 (en) Methods and apparatus to detect a conductive object

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20171128

Address after: American California

Applicant after: Parade Technologies, Ltd.

Address before: American California

Applicant before: Cypress Semiconductor Corp.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant