CN104651903A - 一种提高zl303铝合金膜层耐腐蚀性的方法 - Google Patents
一种提高zl303铝合金膜层耐腐蚀性的方法 Download PDFInfo
- Publication number
- CN104651903A CN104651903A CN201410273693.1A CN201410273693A CN104651903A CN 104651903 A CN104651903 A CN 104651903A CN 201410273693 A CN201410273693 A CN 201410273693A CN 104651903 A CN104651903 A CN 104651903A
- Authority
- CN
- China
- Prior art keywords
- micro
- zinc oxide
- oxide composite
- arc oxidization
- composite additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000005260 corrosion Methods 0.000 title abstract description 6
- 230000007797 corrosion Effects 0.000 title abstract description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000654 additive Substances 0.000 claims abstract description 17
- 230000000996 additive effect Effects 0.000 claims abstract description 17
- 239000011787 zinc oxide Substances 0.000 claims abstract description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 239000003792 electrolyte Substances 0.000 claims abstract description 11
- 230000003628 erosive effect Effects 0.000 claims description 7
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 16
- 239000000919 ceramic Substances 0.000 abstract description 3
- 229910020350 Na2WO4 Inorganic materials 0.000 abstract 1
- 235000019795 sodium metasilicate Nutrition 0.000 abstract 1
- 229910052911 sodium silicate Inorganic materials 0.000 abstract 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 description 8
- 230000010287 polarization Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 2
- 206010067484 Adverse reaction Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- CZMAIROVPAYCMU-UHFFFAOYSA-N lanthanum(3+) Chemical compound [La+3] CZMAIROVPAYCMU-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种提高ZL303铝合金膜层耐腐蚀性的方法,包括微弧氧化电解液,其组成为Na2Si0310g/L,Na2WO42g/L,NaOH2g/L,H2024ml/L,在所述微弧氧化电解液内加入氧化锌复合添加剂,所述氧化锌复合添加剂的纳米浓度为3g/L。本发明在微弧氧化电解液中加入氧化锌复合添加剂后,氧化锌复合添加剂能参与微弧氧化反应并沉积于微弧氧化陶瓷层中,在加入氧化锌复合添加剂后得到的微弧氧化膜层表面的微裂纹有所降低,提高了膜层表面的厚度和硬度,并能提高微弧氧化膜层的耐腐蚀性。
Description
技术领域
本发明涉及一种提高ZL303铝合金膜层耐腐蚀性的方法,属于ZL303铝合金性能优化技术领域。
背景技术
微弧氧化技术是指在铝、镁、钛等轻金属及其合金表面原位生长陶瓷层的一种新技术,已成为目前国内外研究热点之一。采用该技术在铝合金表面制得的膜层与基体结合牢固、结构致密,从而极大地改善铝合金表面的硬度、耐磨及耐蚀等性能。纳米氧化锌具有高比表面积、高活性,可提高橡胶制品的耐磨性、机械强度。镧离子具有较大的离子半径、较高的电荷、较强的络合能力,可改善材料的力学性能。但对ZL303铝合金的微弧氧化尚无研究。
发明内容
本发明要解决的技术问题:提供一种提高ZL303铝合金膜层耐腐蚀性的方法,能够提高ZL303铝合金膜层耐腐蚀性,增加膜层的厚度和硬度。
本发明的技术方案:
一种提高ZL303铝合金膜层耐腐蚀性的方法,包括微弧氧化电解液,其组成为Na2Si03 10g/L,Na2WO4 2g/L,NaOH 2g/L, H202 4 ml/L,在所述微弧氧化电解液内加入氧化锌复合添加剂,所述氧化锌复合添加剂的纳米浓度为3 g/L。
本发明的有益效果:
与现有技术相比,本发明在微弧氧化电解液中加入氧化锌复合添加剂后,氧化锌复合添加剂能参与微弧氧化反应并沉积于微弧氧化陶瓷层中,在加入氧化锌复合添加剂后得到的微弧氧化膜层表面的微裂纹有所降低,提高了膜层表面的厚度和硬度,并能提高微弧氧化膜层的耐腐蚀性。尤其当纳米氧化锌复合添加剂浓度为3 g/L时,得到膜层效果最佳,厚度和硬度值较高。
附图说明:
图1为原样膜层的表面微观形貌图;
图2为2#膜层的表面微观形貌图;
图3为5#膜层的表面微观形貌图;
图4为9#膜层的表面微观形貌图;
图5为不同膜层极化曲线图。
具体实施方式:
实施例:
实验采用ZL303铝合金为基体材料。配制Na2Si03基础电解液,其组成为Na2Si03 10g/L,Na2WO4 2g/L,NaOH 2g/L, H202 4 ml/L,然后将ZnO按一定比例加入所配电解液中。ZnO加入量见表1。
表1 混合添加剂各试样列表
样品编号 | 纳米ZnO添加剂含量(g/L) |
0# | 0 |
1# | 2 |
2# | 3 |
3# | 4 |
4# | 2 |
5# | 3 |
6# | 4 |
7# | 2 |
8# | 3 |
9# | 4 |
采用自制双脉冲微弧氧化设备进行实验。实验电压550V,时间50分钟,频率400Hz,占空比30%。实验过程中,保持溶液温度在30℃左右。
用TT230覆层测厚仪测量陶瓷层平均厚度:在每个试样上测量5个点的厚度,取其算术平均值作为膜层平均厚度;
用维氏硬度计测量膜层表面的平均硬度:在每个试样上打5个点,以其平均值为膜层表面平均硬度;
用SEM观察膜层表面的微观形貌,并用附带的EDX能谱仪进行面扫描分析;
用电化学工作站测量在3. 5 % NaCl 溶液中膜层的动电位极化曲线。
由图1至图4对比可知:随着添加剂各组分含量的增加,膜层表面的“火山堆”堆积物增多,反应加剧,表面膜层的微裂纹减少,孔隙率减小。但当n-ZnO含量较高时(图4),膜层的“火山堆”堆积物反而减少。
图5为微弧氧化原试样与5#试样的极化曲线对照图,可见,加入添加剂所得到的微弧氧化膜层的极化曲线与原样相比,所得到的微弧氧化膜层的极化电位Ecorr上升,较微弧氧化的原试样提高0.3643V,达到-0.4601V,腐蚀电流icorr下降了一个数量级,极化电阻RP的阻值增加25.7倍。说明微弧氧化电解液中混合添加剂的加入极大地提高了膜层的耐腐蚀能力。
Claims (1)
1.一种提高ZL303铝合金膜层耐腐蚀性的方法,包括微弧氧化电解液,其组成为Na2Si03 10g/L,Na2WO4 2g/L,NaOH 2g/L, H202 4 ml/L,其特征在于:在所述微弧氧化电解液内加入氧化锌复合添加剂,所述氧化锌复合添加剂的纳米浓度为3 g/L。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410273693.1A CN104651903A (zh) | 2014-10-08 | 2014-10-08 | 一种提高zl303铝合金膜层耐腐蚀性的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410273693.1A CN104651903A (zh) | 2014-10-08 | 2014-10-08 | 一种提高zl303铝合金膜层耐腐蚀性的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104651903A true CN104651903A (zh) | 2015-05-27 |
Family
ID=53243526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410273693.1A Pending CN104651903A (zh) | 2014-10-08 | 2014-10-08 | 一种提高zl303铝合金膜层耐腐蚀性的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104651903A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331954A (zh) * | 2015-09-30 | 2016-02-17 | 芜湖永裕汽车工业有限公司 | 铝合金气缸盖表面处理方法 |
CN105543929A (zh) * | 2015-12-29 | 2016-05-04 | 贵州大学 | 新型微弧氧化电解液复合纳米添加剂及其应用 |
CN105839163A (zh) * | 2016-05-24 | 2016-08-10 | 江苏理工学院 | 用于7075铝合金激光耦合微等离子体弧氧化的电解液 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1432669A (zh) * | 2002-01-18 | 2003-07-30 | 邓栋才 | 微弧氧化锌铝合金表面生成陶瓷层 |
CN102877105A (zh) * | 2012-10-29 | 2013-01-16 | 贵州大学 | 微弧氧化电解液新型复合添加剂及其应用 |
-
2014
- 2014-10-08 CN CN201410273693.1A patent/CN104651903A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1432669A (zh) * | 2002-01-18 | 2003-07-30 | 邓栋才 | 微弧氧化锌铝合金表面生成陶瓷层 |
CN102877105A (zh) * | 2012-10-29 | 2013-01-16 | 贵州大学 | 微弧氧化电解液新型复合添加剂及其应用 |
Non-Patent Citations (3)
Title |
---|
吴德凤等: ""混合添加剂硝酸镧与纳米氧化锌对ZL205A铝合金微弧氧化膜层性能的影响"", 《功能材料》 * |
周小淞等: ""纳米ZnO添加剂对新型铸造铝合金微弧氧化膜层的影响"", 《兵器材料科学与工程》 * |
牛犇等: ""电解液体系对铸造铝合金微弧氧化陶瓷层组织和性能的影响"", 《材料热处理技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331954A (zh) * | 2015-09-30 | 2016-02-17 | 芜湖永裕汽车工业有限公司 | 铝合金气缸盖表面处理方法 |
CN105331954B (zh) * | 2015-09-30 | 2017-11-21 | 芜湖永裕汽车工业有限公司 | 铝合金气缸盖表面处理方法 |
CN105543929A (zh) * | 2015-12-29 | 2016-05-04 | 贵州大学 | 新型微弧氧化电解液复合纳米添加剂及其应用 |
CN105543929B (zh) * | 2015-12-29 | 2018-07-03 | 贵州大学 | 新型微弧氧化电解液复合纳米添加剂及其应用 |
CN105839163A (zh) * | 2016-05-24 | 2016-08-10 | 江苏理工学院 | 用于7075铝合金激光耦合微等离子体弧氧化的电解液 |
CN105839163B (zh) * | 2016-05-24 | 2018-06-08 | 江苏理工学院 | 用于7075铝合金激光耦合微等离子体弧氧化的电解液 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Preparation of wear and corrosion resistant micro-arc oxidation coating on 7N01 aluminum alloy | |
Zuo et al. | Effect of graphene oxide additive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy | |
Yu et al. | An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate–hexametaphosphate electrolyte with the suspension of SiC nanoparticles | |
Liu et al. | Effects of graphene nanosheets on the ceramic coatings formed on Ti6Al4V alloy drill pipe by plasma electrolytic oxidation | |
Chen et al. | Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties | |
Cheng et al. | A comparison of plasma electrolytic oxidation of Ti-6Al-4V and Zircaloy-2 alloys in a silicate-hexametaphosphate electrolyte | |
Lee | Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy | |
Lim et al. | Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation | |
Liu et al. | Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation | |
Gnedenkov et al. | Protective composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8 | |
Lee et al. | Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties | |
Pan et al. | Galvanic corrosion behaviour of carbon fibre reinforced polymer/magnesium alloys coupling | |
Kaseem et al. | Corrosion behavior of Al-1wt% Mg-0.85 wt% Si alloy coated by micro-arc-oxidation using TiO2 and Na2MoO4 additives: Role of current density | |
Chai et al. | Effect of electrical parameters on the growth and properties of 7075 aluminum alloy film based on scanning micro-arc oxidation with mesh electrode | |
CN104651903A (zh) | 一种提高zl303铝合金膜层耐腐蚀性的方法 | |
Arunachalam et al. | Development of nano-spherical RuO2 active material on AISI 317 steel substrate via pulse electrodeposition for supercapacitors | |
Okonkwo et al. | Oxidation states of molybdenum in oxide films formed in sulphuric acid and sodium hydroxide | |
Wei et al. | Preparation of sodium beta ″-alumina electrolyte thin film by electrophoretic deposition using Taguchi experimental design approach | |
Han et al. | Plasma-electrolytic-oxidation coating containing Y2O3 nanoparticles on AZ91 magnesium alloy | |
Korzekwa et al. | Microstructure and properties of composite coatings obtained on aluminium alloys | |
JP6205426B2 (ja) | 金属表面処理用組成物の製造方法、これを用いた表面処理鋼板、及びこの製造方法 | |
Zhang et al. | Bulk monolithic electrodes enabled by surface mechanical attrition treatment-facilitated dealloying | |
Zhang et al. | Role of rare‐earth Y addition on formation and anticorrosion properties of MAO coating on 2024 aviation aluminum alloy | |
Liu et al. | Preliminary study on preparation of black ceramic coating formed on magnesium alloy by micro-arc oxidation in carbon black pigment-contained electrolyte | |
Wang et al. | Fluoride effect on plasma electrolytic oxidation coating formed on Mg-Al alloy in alkaline electrolytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150527 |