CN104645350A - 一种赖氨酸修饰壳聚糖磁性超微载体的制备方法 - Google Patents

一种赖氨酸修饰壳聚糖磁性超微载体的制备方法 Download PDF

Info

Publication number
CN104645350A
CN104645350A CN201410754301.3A CN201410754301A CN104645350A CN 104645350 A CN104645350 A CN 104645350A CN 201410754301 A CN201410754301 A CN 201410754301A CN 104645350 A CN104645350 A CN 104645350A
Authority
CN
China
Prior art keywords
carrier
lysine
chitosan
modified chitosan
polylysine modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410754301.3A
Other languages
English (en)
Inventor
张立荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410754301.3A priority Critical patent/CN104645350A/zh
Publication of CN104645350A publication Critical patent/CN104645350A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种赖氨酸修饰壳聚糖磁性超微载体的制备方法,属于基因治疗中基因载体制备领域。提供一种生理条件下水溶的赖氨酸修饰壳聚糖磁性超微载体的制备方法。所述方法通过赖氨酸对壳聚糖进行修饰,制备了水溶性好,氨基含量高的赖氨酸修饰壳聚糖,并将所制得的赖氨酸修饰壳聚糖作为壳层材料制备磁性超微载体。该方法制备的赖氨酸修饰壳聚糖磁性超微载体,其表面带有大量的氨基(-NH2),粒径分布较为均一,形貌较为规则,并具有良好的超顺磁性,可以作为一种优良的基因载体。

Description

一种赖氨酸修饰壳聚糖磁性超微载体的制备方法
技术领域
本发明属于基因治疗中基因载体制备领域。
背景技术
基因治疗是一种将外源基因导入目的细胞并有效表达,从而达到治疗目的的方法,优良的基因传递系统要能包裹和保护核酸物质,避免内涵体降解,并能专一靶向肿瘤部位,因此开发高效、安全的基因传递系统是癌症基因治疗中最具挑战性的课题之一。载体问题一直是基因治疗研究领域的核心技术之一,基因载体主要分为病毒载体和非病毒载体两类:(1)病毒载体有逆转录病毒、腺病毒、疱疹病毒、慢病毒等,其优点是病原性低、转染率高,但作为一种改造的病毒,其价格昂贵,容易引发机体强烈的免疫反应并可能致癌,其安全性低等缺点在临床应用还较困难;(2)非病毒载体如阳离子聚合物、阳离子多肽和阳离子脂质体等,具有价格低、操作简单、安全、有效、无免疫原性等优点,已渐成为病毒类基因载体最有希望的替代者。
磁性靶向基因治疗为近几年迅速发展起来的癌症治疗手段,在外加磁场下,磁性载体可携带基因定位于靶部位,增强基因的转染效率。通常壳聚糖由于其可生物降解性和低细胞毒性及独特的跨细胞膜能力而被作为磁性基因载体壳层材料,但由于其在中性和生理pH值不溶限制了其应用。
发明内容
本发明的目的是提供一种生理条件下水溶的赖氨酸修饰壳聚糖磁性超微载体的制备方法。
本发明通过以下技术方案予以实现:一种赖氨酸修饰壳聚糖磁性超微载体的制备方法,包括赖氨酸修饰壳聚糖的合成和超微载体的制备两步骤;
所述赖氨酸修饰壳聚糖的合成步骤为,将0.1g壳聚糖溶于40mL 0.1M的醋酸溶液中,用15mL0.3M氢氧化钠沉淀,收集白色沉淀,用水洗至中性,真空烘干后溶于pH=5值的乙酸溶液中,同时将0.2g赖氨酸与0.1g碳二亚胺(EDC)分别溶于N,N-二甲基甲酰胺(DMF)和水中,反应油相/水相(DMF/H2O)配比为1:1逐滴加入到反应体系中,反应温度20℃,搅拌速度1200rpm,搅拌6h后收集产物并用无水乙醇洗涤多次,最后将产品透析48h冻干保存;
所述超微载体的制备步骤为,用共沉淀法制备Fe304磁流体,并将其超声分散在去离子水中,在持续机械搅拌下,缓慢滴加赖氨酸修饰壳聚糖水溶液,通氩气保护,升温至75℃反应1h即制得赖氨酸修饰壳聚糖超微磁性载体粒子。
本发明具有如下有益效果:
该制备方法在壳聚糖主链上引入了赖氨酸分子,增加了分子中氨基(-NH2)含量,从而很大程度上增强了磁性超微载体的正电性,便于携带更多的基因,在基因治疗方面将有很大的应用前景。。
具体实施方式
下面结合具体实施例对本发明做进一步说明。
具体实施例:本发明所述制备过程包括赖氨酸修饰壳聚糖的合成和超微载体的制备两步骤;
所述赖氨酸修饰壳聚糖的合成步骤为,将0.1g壳聚糖溶于40mL 0.1M的醋酸溶液中,用15mL0.3M氢氧化钠沉淀,收集白色沉淀,用水洗至中性,真空烘干后溶于pH=5值的乙酸溶液中,同时将0.2g赖氨酸与0.1g碳二亚胺(EDC)分别溶于N,N-二甲基甲酰胺(DMF)和水中,反应油相/水相(DMF/H2O)配比为1:1逐滴加入到反应体系中,反应温度20℃,搅拌速度1200rpm,搅拌6h后收集产物并用无水乙醇洗涤多次,最后将产品透析48h冻干保存;
所述超微载体的制备步骤为,用共沉淀法制备Fe304磁流体,并将其超声分散在去离子水中,在持续机械搅拌下,缓慢滴加赖氨酸修饰壳聚糖水溶液,通氩气保护,升温至75℃反应1h即制得赖氨酸修饰壳聚糖超微磁性载体粒子。
对赖氨酸修饰壳聚糖进行核磁共振谱图测定,其脱乙度为81.5%,赖氨酸的取代度为32.78%。
对制备的超微载体进行X射线光电子能谱分析,得出载体粒子表面的N元素大部分已氨基形式存在,载体具有很强的正电性,进行TEM观察,载体粒子具有良好的外观,表面光滑,粒径分布均匀,有大量粒子的粒径在100nm左右
以上内容是结合具体的实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (1)

1. 一种赖氨酸修饰壳聚糖磁性超微载体的制备方法,其特征在于:包括赖氨酸修饰壳聚糖的合成和超微载体的制备两步骤;
所述赖氨酸修饰壳聚糖的合成步骤为,将0.1g壳聚糖溶于40mL 0.1M的醋酸溶液中,用15mL0.3M氢氧化钠沉淀,收集白色沉淀,用水洗至中性,真空烘干后溶于pH=5值的乙酸溶液中,同时将0.2g赖氨酸与0.1g碳二亚胺(EDC)分别溶于N,N-二甲基甲酰胺(DMF)和水中,反应油相/水相(DMF/H2O)配比为1:1逐滴加入到反应体系中,反应温度20℃,搅拌速度1200rpm,搅拌6h后收集产物并用无水乙醇洗涤多次,最后将产品透析48h冻干保存;
所述超微载体的制备步骤为,用共沉淀法制备Fe304磁流体,并将其超声分散在去离子水中,在持续机械搅拌下,缓慢滴加赖氨酸修饰壳聚糖水溶液,通氩气保护,升温至75℃反应1h即制得赖氨酸修饰壳聚糖超微磁性载体粒子。
CN201410754301.3A 2014-12-11 2014-12-11 一种赖氨酸修饰壳聚糖磁性超微载体的制备方法 Pending CN104645350A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410754301.3A CN104645350A (zh) 2014-12-11 2014-12-11 一种赖氨酸修饰壳聚糖磁性超微载体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410754301.3A CN104645350A (zh) 2014-12-11 2014-12-11 一种赖氨酸修饰壳聚糖磁性超微载体的制备方法

Publications (1)

Publication Number Publication Date
CN104645350A true CN104645350A (zh) 2015-05-27

Family

ID=53237312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410754301.3A Pending CN104645350A (zh) 2014-12-11 2014-12-11 一种赖氨酸修饰壳聚糖磁性超微载体的制备方法

Country Status (1)

Country Link
CN (1) CN104645350A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528788A (zh) * 2018-12-11 2019-03-29 广州中医药大学第附属医院 一种经皮给药治疗缺血性心脑血管疾病的负载川芎油纳米载体及其制备方法
CN114029041A (zh) * 2021-04-13 2022-02-11 杭州安誉科技有限公司 一种新型冠状病毒核酸纯化试剂及纯化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528788A (zh) * 2018-12-11 2019-03-29 广州中医药大学第附属医院 一种经皮给药治疗缺血性心脑血管疾病的负载川芎油纳米载体及其制备方法
CN114029041A (zh) * 2021-04-13 2022-02-11 杭州安誉科技有限公司 一种新型冠状病毒核酸纯化试剂及纯化方法

Similar Documents

Publication Publication Date Title
Liu et al. A charge reversible self‐delivery chimeric peptide with cell membrane‐targeting properties for enhanced photodynamic therapy
Zhang et al. Engineering metal–organic frameworks for photoacoustic imaging-guided chemo-/photothermal combinational tumor therapy
Liu et al. Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer
Zhang et al. In situ formation of nanofibers from purpurin18‐peptide conjugates and the assembly induced retention effect in tumor sites
Liu et al. Human HSP70 promoter‐based Prussian blue nanotheranostics for thermo‐controlled gene therapy and synergistic photothermal ablation
Wang et al. Near-infrared light responsive nanoreactor for simultaneous tumor photothermal therapy and carbon monoxide-mediated anti-inflammation
Qiu et al. ACPI conjugated gold nanorods as nanoplatform for dual image guided activatable photodynamic and photothermal combined therapy in vivo
Li et al. Core-satellite metal-organic framework@ upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics
CN106139144B (zh) 一种具有协同抗肿瘤特性的透明质酸修饰的金-碳纳米球及其制备方法与应用
Liu et al. A copper-metal organic framework enhances the photothermal and chemodynamic properties of polydopamine for melanoma therapy
Li et al. Chitosan stabilized Prussian blue nanoparticles for photothermally enhanced gene delivery
Yuan et al. MRI tracing non-invasive TiO2-based nanoparticles activated by ultrasound for multi-mechanism therapy of prostatic cancer∗
CA2927528C (en) Sensitizing composition using electromagnetic waves for thermal therapy of cancers, and cancer therapy using same
Pan et al. Biodegradable nanocomposite with dual cell‐tissue penetration for deep tumor chemo‐phototherapy
Chen et al. A cellular/intranuclear dual-targeting nanoplatform based on gold nanostar for accurate tumor photothermal therapy
Zhang et al. A BiOCl nanodevice for pancreatic tumor imaging and mitochondria-targeted therapy
CN104645350A (zh) 一种赖氨酸修饰壳聚糖磁性超微载体的制备方法
CN101791408A (zh) 一种具有低细胞毒性、高转染效率的阳离子聚合物基因载体及其制备方法和应用
Yu et al. Poisonous caterpillar-inspired chitosan nanofiber enabling dual photothermal and photodynamic tumor ablation
Wang et al. Nano-modulators with the function of disrupting mitochondrial Ca2+ homeostasis and photothermal conversion for synergistic breast cancer therapy
Wang et al. Biofunctionalized graphene oxide nanosheet for amplifying antitumor therapy: Multimodal high drug encapsulation, prolonged hyperthermal window, and deep-site burst drug release
Xia et al. Tumor microenvironment-activated, immunomodulatory nanosheets loaded with copper (II) and 5-FU for synergistic chemodynamic therapy and chemotherapy
Zhang et al. Sonoactivated cascade Fenton reaction enhanced by synergistic modulation of electron–hole separation for improved tumor therapy
Yang et al. Tumor microenvironment activated glutathione self-depletion theranostic nanocapsules for imaging-directed synergistic cancer therapy
Wang et al. Self-assembled iRGD-R7-LAHP-M nanoparticle induced sufficient singlet oxygen and enhanced tumor penetration immunological therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150527

WD01 Invention patent application deemed withdrawn after publication