CN104626101B - Robot three-dimensional space gravity compensating chain device and method - Google Patents
Robot three-dimensional space gravity compensating chain device and method Download PDFInfo
- Publication number
- CN104626101B CN104626101B CN201410765745.7A CN201410765745A CN104626101B CN 104626101 B CN104626101 B CN 104626101B CN 201410765745 A CN201410765745 A CN 201410765745A CN 104626101 B CN104626101 B CN 104626101B
- Authority
- CN
- China
- Prior art keywords
- lever
- spring
- joint
- formula
- armed lever
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Transmission Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种机器人重力补偿装置及方法,具体涉及一种机器人三维空间重力平衡补偿装置及方法。The invention relates to a robot gravity compensation device and method, in particular to a robot three-dimensional space gravity balance compensation device and method.
背景技术Background technique
重力补偿装置广泛应用于工业医疗等领域,例如在工业机器人的机械手中,往往需要将其自身重力平衡以达到更精确的控制目标;在医疗康复等领域中,重力平衡更能带给复健病人以福音,重力平衡装置可以减少甚至省去电驱动的环节,增加了机构的可靠性,使得使用安全性得到了极大的保障。现有的重力补偿装置大多局限于二维空间,而现有的三维空间补偿装置的结构是利用差动机构或者添加质量块等方式实现,这种补偿方式结构复杂或者笨重而失去实用性。Gravity compensation devices are widely used in industrial medical and other fields. For example, in the manipulator of industrial robots, it is often necessary to balance its own gravity to achieve more precise control goals; in fields such as medical rehabilitation, gravity balance can bring rehabilitation patients more In good news, the gravity balance device can reduce or even eliminate the electric drive link, which increases the reliability of the mechanism and greatly guarantees the safety of use. Most of the existing gravity compensation devices are limited to two-dimensional space, and the structure of the existing three-dimensional space compensation device is realized by using a differential mechanism or adding a mass block. This compensation method is complicated or cumbersome and loses its practicability.
发明内容Contents of the invention
本发明为解决现有三维空间补偿装置结构复杂的问题,而提出一种机器人三维空间重力平衡补偿装置及方法。In order to solve the problem of complicated structure of the existing three-dimensional space compensation device, the present invention proposes a robot three-dimensional space gravity balance compensation device and method.
装置:本发明的机器人三维空间重力补偿平衡装置包括第一平衡杆、第二平衡杆、固定套、大臂杆、小臂杆、肘关节、第一肩关节、第二肩关节、第三肩关节、连接头、第一转动关节、第二转动关节、第三转动关节、第一滑轮、第一弹簧、第二滑轮、第二弹簧、平衡杆钢丝绳、小臂钢丝绳和固定架,第一平衡杆的一端与第一转动关节固定连接,第一转动关节与第二转动关节铰接,第二转动关节与第三转动关节铰接,第一平衡杆的另一端与连接头固定连接,第二平衡杆的一端与连接头铰接,第二平衡杆的另一端与固定套铰接,大臂杆的一端穿过固定套与肘关节固定连接,固定套绕大臂杆转动,大臂杆的另一端与第一肩关节通过轴承连接,第一肩关节与第二肩关节铰接,第二肩关节与第三肩关节铰接,小臂杆的一端与肘关节铰接,第一滑轮和第一弹簧均固定在第一平衡杆上,且第一滑轮位于第一转动关节的一侧,第一弹簧位于连接头的一侧,第二滑轮和第二弹簧均固定在小臂杆上,且第二滑轮位于肘关节的一侧,第二弹簧位于小臂杆的外侧,第三肩关节和第三转动关节均与固定架固定连接,平衡杆钢丝绳的一端与固定架固定连接,平衡杆钢丝绳的另一端绕过第一滑轮与第一弹簧固定连接,小臂钢丝绳的一端与第二平衡杆固定连接,小臂钢丝绳的另一端绕过第二滑轮与第二弹簧固定连接。Device: The robot three-dimensional space gravity compensation balance device of the present invention includes a first balance bar, a second balance bar, a fixed sleeve, a boom bar, a small arm bar, an elbow joint, a first shoulder joint, a second shoulder joint, and a third shoulder joint. Joint, connecting head, first revolving joint, second revolving joint, third revolving joint, first pulley, first spring, second pulley, second spring, balance bar wire rope, forearm wire rope and fixed frame, first balance One end of the rod is fixedly connected to the first revolving joint, the first revolving joint is articulated to the second revolving joint, the second revolving joint is articulated to the third revolving joint, the other end of the first balance rod is fixedly connected to the connector, and the second balance rod One end of the second balance bar is hinged with the connecting head, the other end of the second balance bar is hinged with the fixed sleeve, one end of the boom rod passes through the fixed sleeve and is fixedly connected with the elbow joint, the fixed sleeve rotates around the boom rod, and the other end of the boom rod is connected to the first One shoulder joint is connected by a bearing, the first shoulder joint is hinged to the second shoulder joint, the second shoulder joint is hinged to the third shoulder joint, one end of the forearm is hinged to the elbow joint, the first pulley and the first spring are fixed on the On a balance bar, the first pulley is located on one side of the first rotating joint, the first spring is located on one side of the connecting head, the second pulley and the second spring are fixed on the forearm rod, and the second pulley is located on the elbow joint The second spring is located on the outside of the forearm rod, the third shoulder joint and the third rotation joint are fixedly connected with the fixed frame, one end of the balance bar wire rope is fixedly connected with the fixed frame, and the other end of the balance bar wire rope goes around the first A pulley is fixedly connected with the first spring, one end of the forearm wire rope is fixedly connected with the second balance bar, and the other end of the forearm wire rope is fixedly connected with the second spring around the second pulley.
方法一:所述方法是实现平面重力平衡补偿的方法,其步骤如下:Method 1: The method described is a method for realizing plane gravity balance compensation, and the steps are as follows:
步骤一:计算大臂杆的重力势能W1:Step 1: Calculate the gravitational potential energy W 1 of the boom:
公式一:W1=m1g(l′1c1+h)Formula 1: W 1 =m 1 g(l′ 1 c 1 +h)
其中,m1为大臂杆的质量,g为重力加速度,l1′为大臂杆的质量中心点至第一肩关节与第二肩关节铰接点的长度,c1为cosθ1,θ1为平行四边形的外侧大臂杆与固定架之间的锐角,h为第一肩关节的铰接点至第一转动关节的铰接点之间的距离;Among them, m 1 is the mass of the boom, g is the acceleration of gravity, l 1 ′ is the length from the center of mass of the boom to the hinge point of the first shoulder joint and the second shoulder joint, c 1 is cosθ 1 , θ 1 is the acute angle between the outer big arm of the parallelogram and the fixed frame, and h is the distance between the hinge point of the first shoulder joint and the hinge point of the first rotational joint;
步骤二:计算小臂杆的重力势能W2:Step 2: Calculate the gravitational potential energy W 2 of the small arm:
公式二:W2=m2g(l1c1+l′2c1+2+h)=m2g(l1c1+l′2c1c2-l′2s1s2+h)Formula 2: W 2 =m 2 g(l 1 c 1 +l′ 2 c 1+2 +h)=m 2 g(l 1 c 1 +l′ 2 c 1 c 2 -l′ 2 s 1 s 2 +h)
其中,m2为小臂杆的质量,l1为大臂杆的长度,l′2为小臂杆的质量中心点至肘关节铰接点的长度,c1+2为cos(θ1+θ2),c2为cosθ2,s1为sinθ1,s2为sinθ2,θ2为小臂杆的外侧小臂杆与大臂杆之间的锐角;Among them, m 2 is the mass of the forearm, l 1 is the length of the main arm, l′ 2 is the length from the center of mass of the forearm to the hinge point of the elbow joint, c 1+2 is cos(θ 1 +θ 2 ), c 2 is cosθ 2 , s 1 is sinθ 1 , s 2 is sinθ 2 , θ 2 is the acute angle between the outer forearm of the forearm and the boom;
步骤三:计算第一平衡杆的重力势能W3:Step 3: Calculate the gravitational potential energy W 3 of the first balance pole:
公式三:W3=m3gl′3c1 Formula 3: W 3 =m 3 gl′ 3 c 1
其中,m3为第一平衡杆的质量,l′3为第一平衡杆的质量中心点至第一转动关节铰接点的长度;Wherein, m 3 is the quality of the first balance pole, and l' 3 is the length from the mass center point of the first balance pole to the hinge point of the first rotating joint;
步骤四:计算第二平衡杆的重力势能W4:Step 4: Calculate the gravitational potential energy W 4 of the second balance pole:
公式四:W4=m4g(l1c1+l′4)Formula 4: W 4 =m 4 g(l 1 c 1 +l′ 4 )
其中,m4为第二平衡杆的质量,l′4为第二平衡杆的质量中心点至连接头铰接点的长度;Wherein, m 4 is the quality of the second balance pole, and l' 4 is the length from the mass center point of the second balance pole to the hinge point of the connector;
步骤五:计算大臂杆、小臂杆、第一平衡杆和第二平衡杆的总势能Vg:Step 5: Calculate the total potential energy V g of the boom, the forearm, the first balance bar and the second balance bar:
公式五:Vg=W1+W2+W3+W4=Formula 5: V g =W 1 +W 2 +W 3 +W 4 =
m1gh+m2gh+m4gl′4+(m1gl′1+m2gl1+m3gl′3+m4gl1)c1+m2gl′2c1c2-m2gl′2s1s2 m 1 gh+m 2 gh+m 4 gl′ 4 +(m 1 gl′ 1 +m 2 gl 1 +m 3 gl′ 3 +m 4 gl 1 )c 1 +m 2 gl′ 2 c 1 c 2 - m 2 gl′ 2 s 1 s 2
步骤六:计算第一弹簧的伸长量x1:Step 6: Calculate the elongation x 1 of the first spring:
公式六:
其中,x1 2为第一弹簧的伸长量的平方,d1为平衡杆钢丝绳的长度,d1 2为平衡杆钢丝绳长度的平方;Wherein, x 1 2 is the square of the elongation of the first spring, d 1 is the length of the steel wire rope of the balance bar, and d 1 2 is the square of the length of the steel wire rope of the balance bar;
步骤七:计算第二弹簧的伸长量x2:Step 7: Calculate the elongation x 2 of the second spring:
公式七:
其中,x2 2为第二弹簧的伸长量的平方,d2为小臂钢丝绳的长度,d2 2为小臂钢丝绳长度平方;Wherein, x 2 2 is the square of the elongation of the second spring, d 2 is the length of the forearm steel wire rope, and d 2 2 is the square of the length of the forearm steel wire rope;
步骤八:计算第一弹簧和第二弹簧的弹性势能和Vs:Step 8: Calculate the elastic potential energy sum V s of the first spring and the second spring:
公式八:
其中,k1为第一弹簧的劲度系数,k2为第二弹簧的劲度系数;Wherein, k 1 is the stiffness coefficient of the first spring, and k 2 is the stiffness coefficient of the second spring;
步骤九:为使Vs+Vg=常量,对公式八消除系数,由于重力势能结算结果为负值,故有:Step 9: In order to make V s +V g = constant, eliminate the coefficient for formula 8. Since the settlement result of gravitational potential energy is a negative value, there is:
公式九:m1gl′1+m2gl1+m3gl′3+m4gl1=k1hd1Vs和Vg对应项系数相消Formula 9: m 1 gl′ 1 +m 2 gl 1 +m 3 gl′ 3 +m 4 gl 1 =k 1 hd 1 The corresponding item coefficients of V s and V g cancel
公式十:m2gl′2=k2hd2Vs和Vg对应项系数相消Formula 10: m 2 gl′ 2 =k 2 hd 2 V s and V g corresponding item coefficients cancel
步骤十:当系统关系满足以上公式九和公式十时,系统达到平面平衡;Step 10: When the system relationship satisfies the above formulas 9 and 10, the system reaches plane equilibrium;
步骤十一:根据实际物体质量m,调节第一肩关节的铰接点至第一转动关节的铰接点之间的距离h,即可实现平衡补偿。Step 11: According to the actual mass m of the object, adjust the distance h between the hinge point of the first shoulder joint and the hinge point of the first rotation joint to realize balance compensation.
方法二:所述方法是实现空间重力平衡补偿方法,其步骤如下:Method two: the method is to realize the space gravity balance compensation method, and its steps are as follows:
步骤一:计算大臂杆的重力势能W1:Step 1: Calculate the gravitational potential energy W 1 of the boom:
公式一′:W1=m1g(l′1c1+h)Formula 1': W 1 =m 1 g(l' 1 c 1 +h)
其中,其中,m1为大臂杆的质量,g为重力加速度,l1′为大臂杆的质量中心点至第一肩关节与第二肩关节铰接点的长度,c1为cosθ1,θ1为平行四边形的外侧大臂杆与固定架之间的锐角,h为第一肩关节的铰接点至第一转动关节的铰接点之间的距离;Among them, m 1 is the mass of the boom, g is the acceleration of gravity, l 1 ′ is the length from the center of mass of the boom to the hinge point of the first shoulder joint and the second shoulder joint, c 1 is cosθ 1 , θ 1 is the acute angle between the outer big arm of the parallelogram and the fixed frame, and h is the distance between the hinge point of the first shoulder joint and the hinge point of the first rotational joint;
步骤二:计算小臂杆的重力势能W2:Step 2: Calculate the gravitational potential energy W 2 of the small arm:
公式二′:W2=m2g(l1c1+l′2c1c2-l′2c0s1s2+h)Formula 2': W 2 =m 2 g(l 1 c 1 +l' 2 c 1 c 2 -l' 2 c 0 s 1 s 2 +h)
其中,m2为小臂杆的质量,l1为大臂杆的长度,l′2为小臂杆的质量中心点至肘关节铰接点的长度,c0为cosθ0,c2为cosθ2,s1为sinθ1,s2为sinθ2,θ2为小臂杆的外侧小臂杆与大臂杆之间的锐角;θ0为大臂杆轴向自转角;Among them, m 2 is the mass of the forearm, l 1 is the length of the main arm, l′ 2 is the length from the center of mass of the forearm to the hinge point of the elbow joint, c 0 is cosθ 0 , and c 2 is cosθ 2 , s 1 is sinθ 1 , s 2 is sinθ 2 , θ 2 is the acute angle between the outer forearm of the forearm and the boom; θ 0 is the axial rotation angle of the boom;
步骤三:计算第一平衡杆的重力势能W3:Step 3: Calculate the gravitational potential energy W 3 of the first balance pole:
公式三′:W3=m3gl′3c1 Formula 3': W 3 =m 3 gl' 3 c 1
其中,m3为第一平衡杆的质量,l′3为第一平衡杆的质量中心点至第一转动关节铰接点的长度;Wherein, m 3 is the quality of the first balance pole, and l' 3 is the length from the mass center point of the first balance pole to the hinge point of the first rotating joint;
步骤四:计算第二平衡杆的重力势能W4:Step 4: Calculate the gravitational potential energy W 4 of the second balance pole:
公式四′:W4=m4g(l1c1+l′4)Formula 4': W 4 =m 4 g(l 1 c 1 +l' 4 )
其中,m4为第二平衡杆的质量,l′4为第二平衡杆的质量中心点至连接头铰接点的长度;Wherein, m 4 is the quality of the second balance pole, and l' 4 is the length from the mass center point of the second balance pole to the hinge point of the connector;
步骤五:计算大臂杆、小臂杆、第一平衡杆和第二平衡杆的总势能Vg:Step 5: Calculate the total potential energy V g of the boom, the forearm, the first balance bar and the second balance bar:
公式五′:Vg=W1+W2+W3+W4=Formula 5': V g =W 1 +W 2 +W 3 +W 4 =
m1gh+m2gh+m4gl′4+(m1gl′1+m2gl1+m3gl′3+m4gl1)c1+m2gl′2c1c2-m2gl′2c0s1s2 m 1 gh+m 2 gh+m 4 gl′ 4 +(m 1 gl′ 1 +m 2 gl 1 +m 3 gl′ 3 +m 4 gl 1 )c 1 +m 2 gl′ 2 c 1 c 2 - m 2 gl′ 2 c 0 s 1 s 2
步骤六:计算第一弹簧的伸长量x1:Step 6: Calculate the elongation x 1 of the first spring:
公式六′:
其中,x1 2为第一弹簧的伸长量的平方,d1为平衡杆钢丝绳的长度,d1 2为平衡杆钢丝绳长度的平方;Wherein, x 1 2 is the square of the elongation of the first spring, d 1 is the length of the steel wire rope of the balance bar, and d 1 2 is the square of the length of the steel wire rope of the balance bar;
步骤七:计算第二弹簧的伸长量x2:Step 7: Calculate the elongation x 2 of the second spring:
公式七′:
其中,x2 2为第二弹簧.的伸长量的平方,d2为小臂钢丝绳的长度,d2 2为小臂钢丝绳长度平方;Wherein, x 2 2 is the square of the elongation of the second spring, d 2 is the length of the forearm wire rope, and d 2 2 is the square of the length of the forearm wire rope;
步骤八:计算第一弹簧和第二弹簧的弹性势能和Vs:Step 8: Calculate the elastic potential energy sum V s of the first spring and the second spring:
公式八′
其中,k1为第一弹簧的劲度系数,k2为第二弹簧的劲度系数;Wherein, k 1 is the stiffness coefficient of the first spring, and k 2 is the stiffness coefficient of the second spring;
步骤九:为使Vs+Vg=常量,对公式八′消除系数,由于重力势能结算结果为负值,故有:Step 9: In order to make V s +V g = constant, eliminate the coefficient for formula 8'. Since the settlement result of gravitational potential energy is a negative value, there is:
公式九′:m1gl′1+m2gl1+m3gl′3+m4gl1=k1hd1Vs和Vg对应项系数相消Formula 9': m 1 gl' 1 + m 2 gl 1 + m 3 gl' 3 + m 4 gl 1 = k 1 hd 1 V s and V g corresponding item coefficients cancel
公式十′:m2gl′2=k2hd2Vs和Vg对应项系数相消Formula 10': m 2 gl' 2 =k 2 hd 2 V s and V g corresponding item coefficients cancel
步骤十:当系统关系满足以上公式九′和公式十′时,系统达到空间平衡;Step 10: When the system relationship satisfies the above formula 9' and formula 10', the system reaches spatial balance;
步骤十一:根据实际物体质量m,调节第一肩关节的铰接点至第一转动关节的铰接点之间的距离h,即可实现空间补偿。Step eleven: According to the actual mass m of the object, adjust the distance h between the hinge point of the first shoulder joint and the hinge point of the first rotation joint to realize space compensation.
本发明与现有技术相比具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
一、本发明的装置为模仿手臂自由度的结构,由于固定套与大臂杆可以相对转动,这样就不会受到大臂杆自转的影响,从而保证了在三维空间中平行四边形仍然存在。1. The device of the present invention is a structure imitating the degree of freedom of the arm. Since the fixed sleeve and the boom can rotate relatively, it will not be affected by the rotation of the boom, thereby ensuring that the parallelogram still exists in the three-dimensional space.
二、本发明的平行四边形结构和零位弹簧的引入,使得各个质点的位置解析式和弹簧伸长量的解析式项类型相同,即可以进行抵销,通过计算即可获得质量与弹簧位置的关系。本发明的方法有效解决了三维重力平衡的问题。结构简单,易于在机械设计中加工使用。Two, the introduction of the parallelogram structure and the zero spring of the present invention makes the position analytical formula of each mass point and the analytical formula item type of spring elongation the same, promptly can offset, can obtain quality and spring position through calculation relation. The method of the invention effectively solves the problem of three-dimensional gravity balance. Simple structure, easy to process and use in mechanical design.
三、本发明应用于康复医疗方面可以大大增加机构的安全性,减小复杂度,提高设备的实用性能。3. The application of the present invention in rehabilitation medicine can greatly increase the safety of the mechanism, reduce the complexity, and improve the practical performance of the equipment.
附图说明Description of drawings
图1是本发明的机器人三维空间重力平衡补偿装置的结构示意图;Fig. 1 is the structural representation of the robot three-dimensional space gravity balance compensation device of the present invention;
图2是利用本发明的装置实现机器人平面重力平衡补偿方法的平衡原理图;Fig. 2 is the balance principle diagram utilizing the device of the present invention to realize the compensation method for robot plane gravity balance;
图3是利用本发明的装置实现机器人空间重力平衡补偿方法的平衡原理图。Fig. 3 is a balance schematic diagram of the method for realizing the balance compensation of robot space gravity by using the device of the present invention.
具体实施方式detailed description
具体实施方式一:结合图1说明本实施方式,本实施方式包括第一平衡杆1、第二平衡杆2、固定套3、大臂杆4、小臂杆5、肘关节6、第一肩关节7、第二肩关节8、第三肩关节9、连接头10、第一转动关节11、第二转动关节12、第三转动关节13、第一滑轮14、第一弹簧15、第二滑轮16、第二弹簧17、平衡杆钢丝绳18、小臂钢丝绳19和固定架20,第一平衡杆1的一端与第一转动关节11固定连接,第一转动关节11与第二转动关节12铰接,第一转动关节11可在竖着方向转动,第二转动关节12与第三转动关节13铰接,第二转动关节12可在水平方向转动,第一平衡杆1的另一端与连接头10固定连接,第二平衡杆2的一端与连接头10铰接,第二平衡杆2可在第一平衡杆1的垂直方向转动,第二平衡杆2的另一端与固定套3铰接,大臂杆4的一端穿过固定套3与肘关节6固定连接,固定套3可以绕大臂杆4转动,大臂杆4的另一端与第一肩关节7通过轴承连接,大臂杆4可以在轴向做自传运动,第一肩关节7与第二肩关节8铰接,第二肩关节8与第三肩关节9铰接,小臂杆5的一端与肘关节6铰接,第一滑轮14和第一弹簧15均固定在第一平衡杆1上,且第一滑轮14位于第一转动关节11的一侧,第一弹簧15位于连接头10的一侧,第二滑轮16和第二弹簧17均固定在小臂杆5上,且第二滑轮16位于肘关节6的一侧,第二弹簧17位于小臂杆5的外侧,第三肩关节9和第三转动关节13均与固定架20固定连接,平衡杆钢丝绳18的一端与固定架20固定连接,平衡杆钢丝绳18的另一端绕过第一滑轮14与第一弹簧15固定连接,小臂钢丝绳19的一端与第二平衡杆2固定连接,小臂钢丝绳19的另一端绕过第二滑轮16与第二弹簧17固定连接。Specific Embodiment 1: This embodiment is described with reference to FIG. 1. This embodiment includes a first balance bar 1, a second balance bar 2, a fixed sleeve 3, a boom 4, a small arm 5, an elbow joint 6, a first shoulder Joint 7, second shoulder joint 8, third shoulder joint 9, connecting head 10, first rotating joint 11, second rotating joint 12, third rotating joint 13, first pulley 14, first spring 15, second pulley 16. The second spring 17, the balance bar steel wire rope 18, the forearm steel wire rope 19 and the fixed frame 20, one end of the first balance bar 1 is fixedly connected with the first rotary joint 11, and the first rotary joint 11 is hinged with the second rotary joint 12, The first rotary joint 11 can rotate in the vertical direction, the second rotary joint 12 is hinged with the third rotary joint 13, the second rotary joint 12 can rotate in the horizontal direction, and the other end of the first balance pole 1 is fixedly connected with the connecting head 10 , one end of the second balance pole 2 is hinged with the connector 10, the second balance pole 2 can rotate in the vertical direction of the first balance pole 1, the other end of the second balance pole 2 is hinged with the fixed sleeve 3, the boom lever 4 One end passes through the fixed sleeve 3 and is fixedly connected with the elbow joint 6. The fixed sleeve 3 can rotate around the boom 4. The other end of the boom 4 is connected with the first shoulder joint 7 through a bearing. The boom 4 can be rotated in the axial direction. Autobiographical movement, the first shoulder joint 7 is hinged with the second shoulder joint 8, the second shoulder joint 8 is hinged with the third shoulder joint 9, one end of the forearm rod 5 is hinged with the elbow joint 6, the first pulley 14 and the first spring 15 Both are fixed on the first balance bar 1, and the first pulley 14 is located on one side of the first rotating joint 11, the first spring 15 is located on one side of the connector 10, and the second pulley 16 and the second spring 17 are fixed on a small On the arm bar 5, and the second pulley 16 is located on one side of the elbow joint 6, the second spring 17 is located on the outside of the forearm bar 5, the third shoulder joint 9 and the third rotating joint 13 are fixedly connected with the fixed frame 20, balanced One end of the rod wire rope 18 is fixedly connected with the fixed frame 20, the other end of the balance rod wire rope 18 is fixedly connected with the first spring 15 around the first pulley 14, and one end of the forearm wire rope 19 is fixedly connected with the second balance rod 2, and the forearm The other end of the wire rope 19 is fixedly connected with the second spring 17 around the second pulley 16 .
具体实施方式二:结合图1说明本实施方式,本实施方式的大臂杆4的长度与第一平衡杆1的长度相同,固定架20上在第三肩关节9与第三转动关节13之间的距离与第二平衡杆2的长度相同。其它组成及连接关系与具体实施方式一相同。Embodiment 2: This embodiment is described in conjunction with FIG. 1 . The length of the boom 4 of this embodiment is the same as that of the first balance bar 1 , and the fixed frame 20 is located between the third shoulder joint 9 and the third rotation joint 13 . The distance between them is the same as the length of the second balance pole 2. Other components and connections are the same as those in the first embodiment.
具体实施方式三:结合图1说明本实施方式,本实施方式的第一平衡杆1、第二平衡杆2、大臂杆4和固定架20构成平行四边形。其它组成及连接关系与具体实施方式一或二相同。Specific Embodiment 3: This embodiment is described with reference to FIG. 1 . The first balance pole 1 , the second balance pole 2 , the boom 4 and the fixing frame 20 in this embodiment form a parallelogram. Other compositions and connections are the same as those in Embodiment 1 or Embodiment 2.
具体实施方式四:结合图2说明本实施方式,本实施方式是实现平面重力平衡补偿的方法,其步骤如下:Specific embodiment four: illustrate this embodiment in conjunction with Fig. 2, this embodiment is the method for realizing plane gravity balance compensation, and its steps are as follows:
步骤一:计算大臂杆4的重力势能W1:Step 1: Calculate the gravitational potential energy W 1 of the boom 4:
公式一:W1=m1g(l′1c1+h)Formula 1: W 1 =m 1 g(l′ 1 c 1 +h)
其中,其中,m1为大臂杆4的质量,g为重力加速度,l1′为大臂杆4的质量中心点至第一肩关节7与第二肩关节8铰接点的长度,c1为cosθ1,θ1为平行四边形的外侧大臂杆4与固定架20之间的锐角,h为第一肩关节7的铰接点至第一转动关节11的铰接点之间的距离;Among them, m 1 is the mass of the boom 4, g is the acceleration of gravity, l 1 ′ is the length from the center of mass of the boom 4 to the hinge point of the first shoulder joint 7 and the second shoulder joint 8, c 1 is cosθ 1 , θ 1 is the acute angle between the parallelogram outer boom 4 and the fixed frame 20, h is the distance between the hinge point of the first shoulder joint 7 and the hinge point of the first rotary joint 11;
步骤二:计算小臂杆5的重力势能W2:Step 2: Calculate the gravitational potential energy W 2 of the small arm 5:
公式二:W2=m2g(l1c1+l′2c1+2h)=m2g(l1c1+l′2c1c2-l′2s1s2+h)Formula 2: W 2 =m 2 g(l 1 c 1 +l′ 2 c 1+2 h)=m 2 g(l 1 c 1 +l′ 2 c 1 c 2 -l′ 2 s 1 s 2 + h)
其中,m2为小臂杆5的质量,l1为大臂杆4的长度,l′2为小臂杆5的质量中心点至肘关节6铰接点的长度,c1+2为cos(θ1+θ2),c2为cosθ2,s1为sinθ1,s2为sinθ2,θ2为小臂杆5的外侧小臂杆5与大臂杆4之间的锐角;Among them, m 2 is the mass of the forearm 5, l 1 is the length of the boom 4, l′ 2 is the length from the center of mass of the forearm 5 to the hinge point of the elbow joint 6, and c 1+2 is cos( θ 1 +θ 2 ), c 2 is cosθ 2 , s 1 is sinθ 1 , s 2 is sinθ 2 , θ 2 is the acute angle between the outer forearm 5 of the forearm 5 and the boom 4;
步骤三:计算第一平衡杆1的重力势能W3:Step 3: Calculate the gravitational potential energy W 3 of the first balance pole 1:
公式三:W3=m3gl′3c1 Formula 3: W 3 =m 3 gl′ 3 c 1
其中,m3为第一平衡杆1的质量,l′3为第一平衡杆1的质量中心点至第一转动关节11铰接点的长度;Wherein, m 3 is the quality of the first balance pole 1, and l' 3 is the length from the mass center point of the first balance pole 1 to the hinge point of the first rotating joint 11;
步骤四:计算第二平衡杆2的重力势能W4:Step 4: Calculate the gravitational potential energy W 4 of the second balance pole 2:
公式四:W4=m4g(l1c1+l′4)Formula 4: W 4 =m 4 g(l 1 c 1 +l′ 4 )
其中,m4为第二平衡杆2的质量,l′4为第二平衡杆2的质量中心点至连接头10铰接点的长度;Wherein, m 4 is the quality of the second balance pole 2, and l' 4 is the length from the mass center point of the second balance pole 2 to the hinge point of the connecting head 10;
步骤五:计算大臂杆4、小臂杆5、第一平衡杆1和第二平衡杆2的总势能Vg:Step 5: Calculate the total potential energy V g of the boom 4, the forearm 5, the first balance bar 1 and the second balance bar 2:
公式五:Vg=W1+W2+W3+W4=Formula 5: V g =W 1 +W 2 +W 3 +W 4 =
m1gh+m2gh+m4gh′l4+(m1gl′1+m2gl1+m3gl′3+m4gl1)c1+m2gl′2c1c2-m2gl′2s1s2 m 1 gh+m 2 gh+m 4 gh′l 4 +(m 1 gl′ 1 +m 2 gl 1 +m 3 gl′ 3 +m 4 gl 1 )c 1 +m 2 gl′ 2 c 1 c 2 -m 2 gl′ 2 s 1 s 2
步骤六:计算第一弹簧15的伸长量x1:Step 6: Calculate the elongation x 1 of the first spring 15:
公式六:
其中,x1 2为第一弹簧15的伸长量的平方,d1为平衡杆钢丝绳18的长度,d1 2为平衡杆钢丝绳18长度的平方;Wherein, x 1 2 is the square of the elongation of the first spring 15, d 1 is the length of the balance bar steel wire rope 18, and d 1 2 is the square of the length of the balance bar steel wire rope 18;
步骤七:计算第二弹簧17的伸长量x2:Step 7: Calculate the elongation x 2 of the second spring 17:
公式七:
其中,x2 2为第二弹簧17的伸长量的平方,d2为小臂钢丝绳19的长度,d2 2为小臂钢丝绳19长度平方;Wherein, x 2 2 is the square of the elongation of the second spring 17, d 2 is the length of the forearm steel wire rope 19, and d 2 2 is the square of the length of the forearm steel wire rope 19;
步骤八:计算第一弹簧15和第二弹簧17的弹性势能和Vs:Step 8: Calculate the elastic potential energy sum V s of the first spring 15 and the second spring 17:
公式八:
其中,k1为第一弹簧15的劲度系数,k2为第二弹簧17的劲度系数;Wherein, k 1 is the stiffness coefficient of the first spring 15, and k 2 is the stiffness coefficient of the second spring 17;
步骤九:为使Vs+Vg=常量,对公式八消除系数,由于重力势能结算结果为负值,故有:Step 9: In order to make V s +V g = constant, eliminate the coefficient for formula 8. Since the settlement result of gravitational potential energy is a negative value, there is:
公式九:m1gl′1+m2gl1+m3gl′3+m4gl1=k1hd1Vs和Vg对应项系数相消Formula 9: m 1 gl′ 1 +m 2 gl 1 +m 3 gl′ 3 +m 4 gl 1 =k 1 hd 1 The corresponding item coefficients of V s and V g cancel
公式十:m2gl′2=k2hd2Vs和Vg对应项系数相消Formula 10: m 2 gl′ 2 =k 2 hd 2 V s and V g corresponding item coefficients cancel
步骤十:当系统关系满足以上公式九和十时,系统达到平面平衡;Step 10: When the system relationship satisfies the above formulas 9 and 10, the system reaches plane equilibrium;
步骤十一:根据实际物体质量m,调节第一肩关节7的铰接点至第一转动关节11的铰接点之间的距离h,即可实现平衡补偿。Step 11: According to the actual object mass m, adjust the distance h between the hinge point of the first shoulder joint 7 and the hinge point of the first rotation joint 11 to realize balance compensation.
具体实施方式五:结合图3说明本实施方式,本实施方式是实现空间重力平衡补偿方法,其步骤如下:Specific embodiment five: illustrate this embodiment in conjunction with Fig. 3, this embodiment is to realize the space gravity balance compensation method, and its steps are as follows:
步骤一:计算大臂杆4的重力势能W1:Step 1: Calculate the gravitational potential energy W 1 of the boom 4:
公式一′:W1=m1g(l′1c1+h)Formula 1': W 1 =m 1 g(l' 1 c 1 +h)
其中,m1为大臂杆4的质量,g为重力加速度,l1′为大臂杆4的质量中心点至第一肩关节7与第二肩关节8铰接点的长度,c1为cosθ1,θ1为平行四边形的外侧大臂杆4与固定架20之间的锐角,h为第一肩关节7的铰接点至第一转动关节11的铰接点之间的距离;Among them, m 1 is the mass of the boom 4, g is the acceleration of gravity, l 1 ′ is the length from the center of mass of the boom 4 to the hinge point of the first shoulder joint 7 and the second shoulder joint 8, and c 1 is cosθ 1 , θ1 is the acute angle between the outer big arm 4 of the parallelogram and the fixed frame 20, h is the distance between the hinge point of the first shoulder joint 7 and the hinge point of the first rotary joint 11;
步骤二:计算小臂杆5的重力势能W2:Step 2: Calculate the gravitational potential energy W 2 of the small arm 5:
公式二′:W2=m2g(l1c1+l′2c1c2-l′2c0s1s2+h)Formula 2': W 2 =m 2 g(l 1 c 1 +l' 2 c 1 c 2 -l' 2 c 0 s 1 s 2 +h)
其中,m2为小臂杆5的质量,l1为大臂杆4的长度,l′2为小臂杆5的质量中心点至肘关节6铰接点的长度,c0为cosθ0,c2为cosθ2,s1为sinθ1,s2为sinθ2,θ2为小臂杆5的外侧小臂杆5与大臂杆4之间的锐角;θ0为大臂杆4轴向自转角;Among them, m 2 is the mass of the forearm 5, l 1 is the length of the boom 4, l′ 2 is the length from the center of mass of the forearm 5 to the hinge point of the elbow joint 6, c 0 is cosθ 0 , c 2 is cosθ 2 , s 1 is sinθ 1 , s 2 is sinθ 2 , θ 2 is the acute angle between the outer forearm 5 of the forearm 5 and the boom 4 ; θ 0 is the axial rotation of the boom 4 corner;
步骤三:计算第一平衡杆1的重力势能W3:Step 3: Calculate the gravitational potential energy W 3 of the first balance pole 1:
公式三′:W3=m3gl′3c1 Formula 3': W 3 =m 3 gl' 3 c 1
其中,m3为第一平衡杆1的质量,l′3为第一平衡杆1的质量中心点至第一转动关节11铰接点的长度;Wherein, m 3 is the quality of the first balance pole 1, and l' 3 is the length from the mass center point of the first balance pole 1 to the hinge point of the first rotating joint 11;
步骤四:计算第二平衡杆2的重力势能W4:Step 4: Calculate the gravitational potential energy W 4 of the second balance pole 2:
公式四′:W4=m4g(l1c1+l′4)Formula 4': W 4 =m 4 g(l 1 c 1 +l' 4 )
其中,m4为第二平衡杆2的质量,l′4为第二平衡杆2的质量中心点至连接头10铰接点的长度;Wherein, m 4 is the quality of the second balance pole 2, and l' 4 is the length from the mass center point of the second balance pole 2 to the hinge point of the connecting head 10;
步骤五:计算大臂杆4、小臂杆5、第一平衡杆1和第二平衡杆2的总势能Vg:Step 5: Calculate the total potential energy V g of the boom 4, the forearm 5, the first balance bar 1 and the second balance bar 2:
公式五′:Vg=W1+W2+W3+W4=Formula 5': V g =W 1 +W 2 +W 3 +W 4 =
m1gh+m2gh+m4gl′4+(m1gl′1+m2gl1+m3gl′3+m4gl1)c1+m2gl′2c1c2-m2gl′2c0s1s2 m 1 gh+m 2 gh+m 4 gl′ 4 +(m 1 gl′ 1 +m 2 gl 1 +m 3 gl′ 3 +m 4 gl 1 )c 1 +m 2 gl′ 2 c 1 c 2 - m 2 gl′ 2 c 0 s 1 s 2
步骤六:计算第一弹簧15的伸长量x1:Step 6: Calculate the elongation x 1 of the first spring 15:
公式六′:
其中,x1 2为第一弹簧15的伸长量的平方,d1为平衡杆钢丝绳18的长度,d1 2为平衡杆钢丝绳18长度的平方;Wherein, x 1 2 is the square of the elongation of the first spring 15, d 1 is the length of the balance bar steel wire rope 18, and d 1 2 is the square of the length of the balance bar steel wire rope 18;
步骤七:计算第二弹簧17的伸长量x2:Step 7: Calculate the elongation x 2 of the second spring 17:
公式七′:
其中,x2 2为第二弹簧17的伸长量的平方,d2为小臂钢丝绳19的长度,d2 2为小臂钢丝绳19长度平方;Wherein, x 2 2 is the square of the elongation of the second spring 17, d 2 is the length of the forearm steel wire rope 19, and d 2 2 is the square of the length of the forearm steel wire rope 19;
步骤八:计算第一弹簧15和第二弹簧17的弹性势能和Vs:Step 8: Calculate the elastic potential energy sum V s of the first spring 15 and the second spring 17:
公式八′
其中,k1为第一弹簧15的劲度系数,k2为第二弹簧17的劲度系数;Wherein, k 1 is the stiffness coefficient of the first spring 15, and k 2 is the stiffness coefficient of the second spring 17;
步骤九:为使Vs+Vg=常量,对公式八′消除系数,由于重力势能结算结果为负值,故有:Step 9: In order to make V s +V g = constant, eliminate the coefficient for formula 8'. Since the settlement result of gravitational potential energy is a negative value, there is:
公式九′:m1gl′1+m2gl1+m3gl′3+m4gl1=k1hd1Vs和Vg对应项系数相消Formula 9': m 1 gl' 1 + m 2 gl 1 + m 3 gl' 3 + m 4 gl 1 = k 1 hd 1 V s and V g corresponding item coefficients cancel
公式十′:m2gl′2=k2hd2Vs和Vg对应项系数相消Formula 10': m 2 gl' 2 =k 2 hd 2 V s and V g corresponding item coefficients cancel
步骤十:当系统关系满足以上公式九′和公式十′时,系统达到空间平衡;Step 10: When the system relationship satisfies the above formula 9' and formula 10', the system reaches spatial balance;
步骤十一:根据实际物体质量m,调节第一肩关节7的铰接点至第一转动关节11的铰接点之间的距离h,即可实现空间补偿。Step eleven: According to the actual object mass m, adjust the distance h between the hinge point of the first shoulder joint 7 and the hinge point of the first rotation joint 11 to realize space compensation.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410765745.7A CN104626101B (en) | 2014-12-12 | 2014-12-12 | Robot three-dimensional space gravity compensating chain device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410765745.7A CN104626101B (en) | 2014-12-12 | 2014-12-12 | Robot three-dimensional space gravity compensating chain device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104626101A CN104626101A (en) | 2015-05-20 |
CN104626101B true CN104626101B (en) | 2016-06-22 |
Family
ID=53205567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410765745.7A Active CN104626101B (en) | 2014-12-12 | 2014-12-12 | Robot three-dimensional space gravity compensating chain device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104626101B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105345830B (en) * | 2015-12-15 | 2018-04-10 | 清华大学 | Sucking disc type mechanical hand |
CN105619449B (en) * | 2016-01-18 | 2018-08-24 | 南昌大学 | A kind of zero drift spring gravity compensation method based on force feedback equipment |
CN105640739B (en) * | 2016-03-21 | 2017-08-25 | 哈尔滨工业大学 | A kind of upper limb healing ectoskeleton balanced based on space gravity |
TWI624341B (en) * | 2017-06-22 | 2018-05-21 | 行政院原子能委員會核能研究所 | Passive Device of Gravity Compensation with Load Adjustable |
CN107984496B (en) * | 2017-11-23 | 2020-02-28 | 杭州娃哈哈精密机械有限公司 | Balance mechanism of mechanical arm |
CN108814890B (en) * | 2018-03-12 | 2020-07-07 | 南京航空航天大学 | Gravity balance end traction type upper limb rehabilitation robot and working method |
CN113915305A (en) * | 2020-07-10 | 2022-01-11 | 北京术锐技术有限公司 | Balancing device and surgical robot |
CN112757296B (en) * | 2020-12-28 | 2022-06-03 | 江西明天高科技股份有限公司 | Gravity compensation method and device |
CN112847435A (en) * | 2020-12-31 | 2021-05-28 | 洛阳尚奇机器人科技有限公司 | Light mechanical arm with passive gravity compensation |
CN113183184A (en) * | 2021-05-28 | 2021-07-30 | 北京航空航天大学 | Six-degree-of-freedom force feedback teleoperation master hand with gravity compensation |
CN113181006A (en) * | 2021-06-03 | 2021-07-30 | 长春工业大学 | Gravity balance bionic upper limb rehabilitation robot |
CN114012778B (en) * | 2021-10-27 | 2023-04-28 | 哈尔滨思哲睿智能医疗设备股份有限公司 | Spring self-balancing mechanical arm |
CN115533964A (en) * | 2022-06-29 | 2022-12-30 | 中国航天时代电子有限公司 | Multi-degree-of-freedom gravity compensation mechanical arm |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631680A (en) * | 1992-07-20 | 1994-02-08 | Tokico Ltd | Industrial robot |
NL1032729C1 (en) * | 2006-10-24 | 2007-11-27 | Microgravity Products B V | Balancing mechanism for e.g. office chair armrest, includes springs secured to flexible members extending around peripheries of cylinders |
CN102471043A (en) * | 2009-07-15 | 2012-05-23 | 学校法人庆应义塾 | Load-compensation device |
JP5485656B2 (en) * | 2009-11-06 | 2014-05-07 | 学校法人慶應義塾 | Compensated weight switching load compensator |
CN104044155A (en) * | 2014-06-18 | 2014-09-17 | 哈尔滨工业大学 | Gravity offset device |
-
2014
- 2014-12-12 CN CN201410765745.7A patent/CN104626101B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631680A (en) * | 1992-07-20 | 1994-02-08 | Tokico Ltd | Industrial robot |
NL1032729C1 (en) * | 2006-10-24 | 2007-11-27 | Microgravity Products B V | Balancing mechanism for e.g. office chair armrest, includes springs secured to flexible members extending around peripheries of cylinders |
CN102471043A (en) * | 2009-07-15 | 2012-05-23 | 学校法人庆应义塾 | Load-compensation device |
JP5485656B2 (en) * | 2009-11-06 | 2014-05-07 | 学校法人慶應義塾 | Compensated weight switching load compensator |
CN104044155A (en) * | 2014-06-18 | 2014-09-17 | 哈尔滨工业大学 | Gravity offset device |
Non-Patent Citations (1)
Title |
---|
《具有重力补偿功能三自由度力觉主手动力学研究》;曹燕燕,潘博,付宜利等;《哈尔滨商业大学学报》;20130630;第29卷(第3期);第317-322页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104626101A (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104626101B (en) | Robot three-dimensional space gravity compensating chain device and method | |
US9610686B2 (en) | Torque-free robot arm | |
US9314934B2 (en) | Gravity-counterbalanced robot arm | |
CN110842896B (en) | Wearable waist assistance exoskeleton mechanism and control method thereof | |
CN106863268A (en) | A kind of loaded self-adaptive passive equilibrium upper limbs ectoskeleton | |
CN104308842B (en) | A kind of novel symmetry two one-rotation parallel mechanism | |
CN104385266A (en) | Seven-degree-of-freedom external skeleton type teleoperation main hand | |
JP2017512666A5 (en) | ||
KR101911147B1 (en) | Upper limb rehabilitation training apparatus | |
CN102152299A (en) | (6 plus 1)-dimension force feedback sensing device | |
CN105856193B (en) | A kind of two degrees of freedom one-rotation parallel mechanism that two continuous pivot centers be present | |
CN107320195B (en) | A master manipulator for tandem minimally invasive surgery | |
CN110480676A (en) | A kind of big corner flexible joint and robot based on rope driving | |
CN102410901B (en) | Four-dimensional grasping force measuring device for extravehicular climbing activity training of astronauts | |
CN103950042B (en) | Three revoliving arm series connection suspension type Six-freedom-degree space mechanical arm gravity-compensated devices | |
CN104325456B (en) | A kind of novel two one-rotation parallel mechanisms | |
CN106363648A (en) | Parallel sliding guide rod type rehabilitation manipulator measuring mechanism | |
KR20210069435A (en) | Wearable apparatus for assisting muscular strength | |
CN204209689U (en) | A kind of novel symmetry two one-rotation parallel mechanism | |
CN105479441B (en) | Robot hand with three under-actuated fingers connected in parallel | |
Chen et al. | A passively safe cable driven upper limb rehabilitation exoskeleton | |
CN103472852A (en) | Two-degree-of-freedom two-rotation parallel mechanism | |
CN204235547U (en) | A kind of novel bicyclic shape guide rail two one-rotation parallel mechanism | |
Shi et al. | Design and evaluation of a four-DoF upper limb exoskeleton with gravity compensation | |
CN104476540B (en) | A kind of novel bicyclic shape guide rail two one-rotation parallel mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |