CN104602713A - 用于制备丝微球的方法和组合物 - Google Patents

用于制备丝微球的方法和组合物 Download PDF

Info

Publication number
CN104602713A
CN104602713A CN201380030726.3A CN201380030726A CN104602713A CN 104602713 A CN104602713 A CN 104602713A CN 201380030726 A CN201380030726 A CN 201380030726A CN 104602713 A CN104602713 A CN 104602713A
Authority
CN
China
Prior art keywords
silk
microsphere
solution
compositions
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380030726.3A
Other languages
English (en)
Inventor
戴维·L·卡普兰
T·于赛尔
X·Q·王
M·罗维特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tufts University
Original Assignee
Tufts University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tufts University filed Critical Tufts University
Publication of CN104602713A publication Critical patent/CN104602713A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof

Abstract

本申请提供了用于制备丝微球的方法和组合物以及所得到的丝微球。在一些实施方式中,本申请所述的方法和组合物均是水性的,其能够用于将活性剂包封在丝微球中,同时在处理过程中保持活性剂的活性。在一些实施方式中,所得到的丝微球能够用于持续递送包封在其中的活性剂。

Description

用于制备丝微球的方法和组合物
相关申请的交叉引用
本申请要求2012年4月13日根据35U.S.C.§119(e)提交的美国临时申请61/623,970的优先权,其全部内容在此参考并入。
政府支持
本发明在由美国国立卫生研究院(NIH)提供的基金号为P41EB002520的政府支持下进行。美国政府享有本发明的某些权利。
技术领域
本申请涉及用于制备丝微球的方法和组合物,以及所述丝微球的用途。在一些实施方式中,所述丝微球可以用作药物递送运载体或活性剂如治疗剂的储库。
背景
具有1至1000μm粒径的微球已被用作药物递送运载体。与能够更加容易地穿透组织并进入细胞的纳米球(例如<1μm)相比,微球由于其具有更大的体积因而具有更高的载药容量的益处。而且,微球还能够表现出包封的药物分子更加均质地分布在其基质(matrices)中,使其更适于用作持续药物释放储库。药物分子的包封通常在微球制备过程中实现,并且一旦干燥的微球被水化通常随后出现药物释放。参见例如Chiellini F.等,“Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications.(用于生物医学和制药应用的微米/纳米结构的聚合物系统)”Nanomed(2008)3:367-93;RanadeVV等,“Drug delivery systems.(药物递送系统)”2nd ed.Boca Raton;CRC Press(2004)。如果所述微球由不能降解的材料制成,则药物释放通常仅由扩散驱动,例如由于从所述微球至释放介质的药物浓度梯度。参考同上。对于由生物可降解材料制备的微球而言,药物释放途径可以包括材料降解和扩散(参考同上;和Ye M.等,“Issues in long-term proteindelivery using biodegradable microparticles.(使用生物可降解微粒的长期蛋白递送的问题)”J Control Release(2010)146:241-260)。
然而,用于生成微球的现有方法通常需要一种或多种有机溶剂,和/或高温。此类条件能够导致活性剂(例如治疗剂)在包封过程中降解或失活,从而导致向可向对象施用的活性剂的有效量降低。因此,需要用于制备微球的改进的方法和组合物,以使得活性剂能够在包封过程中保持其生物活性。
概述
由于高温和/或有机溶剂处理导致的微球收率较低和药物失活通常是与现有用于微球生产的方法相关的主要关注问题。因此,这些微球和/或制造方法可能不适于温度敏感性药物的递送,并且需要开发一种用于生产更适于药物包封的微球的新方法。本申请提供了通常涉及制备基于丝的材料的方法、由此产生的基于丝的材料和所述基于丝的材料的用途例如用于药物递送。在一个实施方式中,所述基于丝的材料以微球形式生产。因此,本申请还提供了制备丝微球的方法、由此产生的所述丝微球和所述丝微球的用途例如用于药物递送。在一些实施方式中,基于丝的材料(例如丝微球)能够在完全水性溶剂中制备,并且因此能够避免使用能够降解和/或使本申请中负载的治疗剂失活的有机溶剂或任意有害化学物质,或将能够降解和/或使本申请中负载的治疗剂失活的有机溶剂或任意有害化学物质的使用最小化。在一些实施方式中,能够通过本申请所述的方法生产不溶性的基于丝的材料,无需进一步使用有机溶剂例如甲醇进行后处理。在一些实施方式中,在制备过程中不需要将所述基于丝的材料暴露于高温,因此保持了其中所包封的治疗剂的生物活性。
在一些实施方式中,发明人开发了一种新型、廉价、快速、简单、全水性的方法以生产β-片层结晶(水不溶性)和多孔性的基于丝的材料。例如,可以将丝蛋白溶液超声(例如在约10kHz或更高的频率)以诱导丝蛋白β-片层结构的形成,并且同时形成富含β-片层结晶结构的丝微球喷雾以制备丝微球。尽管可能是不必要的,可以将所述丝微球进一步冻干以诱导更高的微米/纳米孔隙度。而且,发明人已证实这种制备方法在丝微球中包封治疗剂(例如贝伐单抗或盐酸美金刚)的可行性、上述丝微球的可注射性及其用于持续递送的应用。
因此,一个方面,本申请提供了制备丝微球的方法。所述方法包括在丝溶液中诱导丝蛋白的β-片层结构的形成;和从所述丝溶液诱导微球的形成。
所述丝蛋白的β-片层结构通常可以采用本领域公知的任意方法在丝溶液中形成,例如但不限于超声能量(例如通过超声)、剪切力、水浸、热处理、溶剂浸没例如甲醇处理、冻干、气体干燥、水退火、水蒸气退火、热退火、pH降低(例如pH滴定和/或将丝溶液暴露于电场)或其任意组合。在一些实施方式中,例如当活性剂存在于所述溶液中时,可能不太希望使用热处理或醇(例如甲醇)处理以诱导丝蛋白的β-片层结构的形成。在一些实施方式中,通过超声(或高频率的超声能量)在丝溶液中诱导丝蛋白的β-片层结构的形成,其能够用于同时或促进从所述丝溶液中液滴或微球的形成。
超声通常能够在约10kHz或更高频率下进行,例如至少约20kHz、至少约30kHz、至少约40kHz、至少约50kHz、至少约60kHz、至少约70kHz、至少约80kHz或更高。在一些实施方式中,超声可以在约20kHz至约40kHz的频率下进行。根据所需的所述丝微球的形态和/或溶解度,能够在任意超声功率输出下诱导丝蛋白的β-片层结构的形成。在一个实施方式中,所述超声功率输出的范围可以是从约1瓦至约50瓦,或从约2瓦至约20瓦。
丝微球可以由所述丝溶液形成,例如通过所述丝溶液的雾化。示例性的雾化方法可以包括但不限于注射器喷出、同轴空气流法、机械扰动法、静电力法、静电珠发生器法、喷雾、超声(超声能)或其任意组合。
在一个实施方式中,形成丝微球的所述丝溶液的雾化可以包括喷雾例如使用液滴发生器的喷嘴系统,或通过空气驱动的液滴产生包封单元的喷嘴。在这种实施方式中,可以通过改变一个或多个参数调整所述丝微球的形状和/或尺寸,所述参数包括但不限于喷嘴直径、喷雾流速、喷雾压力、收集所述丝微球的容器与喷嘴的距离、丝溶液的浓度、超声波的功率;超声处理时间及其任意组合。在一些实施方式中,形成丝微球的所述丝溶液的雾化可以包括超声喷雾。
在一些实施方式中,所述β-片层结构和所述微球的形成可以同时和/或伴随被诱导,例如在一个单一步骤中。通过仅作为示例的方式,通过将所述丝溶液流过能够被超声活化的流通室的同时和/或伴随着将所述丝溶液流过能够被超声活化的流通室,可以在丝溶液中诱导所述丝蛋白的β-片层结构和所述微球的形成。在这种实施方式中,所述流通室可以含有用于产生液滴的喷嘴。
可以在批处理、连续流处理或其组合中制备丝微球。在一些实施方式中,可以在连续流处理中制备丝微球。例如,所述丝溶液可以以约0.0001mL/min至约5mL/min,或约0.001mL/min至约5mL/min,或约0.05mL/min至约0.3mL/min的速率流动(例如通过流通室如超声雾化器)。
在一些实施方式中,所述方法还可以包括冷冻所述丝微球。例如,在一个实施方式中,可以将所述丝微球收集至维持在零度以下温度(例如足以使所述丝微球立即冷冻的温度)的容器中。可以通过冷冻剂例如但不限于干冰、液氮将所述容器预冷至和/或保持在零度以下的温度。
为了在丝微球中诱导微米或纳米多孔性结构,所述方法还可以包括在例如雾化和可选地冷冻后将所述丝微球冻干。所述冻干条件(例如压力和/或温度)能够影响所述丝微球的孔隙度和/或孔径。在一些实施方式中,可以在产生至少约10%或更高的(例如至少约20%、至少约30%或更高)孔隙度的条件下(例如压力和/或温度)将所述丝微球冻干。在一些实施方式中,可以在产生约1nm至约500μm或者10nm至约50μm孔径的条件下(例如压力和/或温度)将所述丝微球冻干。
在本申请所述的方法中使用的丝溶液可以包含任意浓度的丝蛋白,其取决于所需的所述丝微球的特性,例如药物释放性质和/或其如在水中的溶解度。在一些实施方式中,所述丝溶液可以包含浓度为约1%(w/v)至约30%(w/v),或约1%(w/v)至约15%(w/v)的丝蛋白。在一个实施方式中,所述丝溶液可以包含浓度为约5%(w/v)的丝蛋白。在一些实施方式中,所述丝溶液可以是去除丝胶蛋白的。
在一些实施方式中,所述丝溶液还可以包含一种或多种添加剂,例如用于各种所需性质的。示例性的添加剂可以包括但不限于生物聚合物、致孔剂、磁性粒子、等离子体粒子、超材料、赋形剂、增塑剂、检测标签及其任意组合。所述添加剂可以以任意比例存在于所述丝溶液中。例如,在所述丝溶液中一种或多种添加剂与丝的总重量比的范围可以是从约1:1000至约1000:1,或从约1:100至约100:1,或从约1:10至约10:1。
在一些实施方式中,加入所述丝溶液中的所述添加剂可以包括一种或多种增塑剂,例如在所述丝中诱导β-片层结晶结构的形成的试剂。在这种实施方式中,在所述丝溶液中存在的一种或多种增塑剂与丝的总重量比的范围可以是约1:20至约20:1或约1:10至约10:1。在一些实施方式中,在所述丝溶液中存在的一种或多种增塑剂与丝的总重量比可以是约1:3。所述增塑剂的非限制性示例可以包括甘油、聚乙烯醇、胶原蛋白、明胶、藻酸盐、壳聚糖、透明质酸、聚乙二醇、聚环氧乙烷及其任意组合。在一个实施方式中,将甘油加入所述丝溶液中,例如以便在所述丝中诱导β-片层结晶结构的形成。
在一些实施方式中,本申请所述的丝微球可以用作药物递送运载体和/或活性剂的储库。所述丝微球能够包含活性剂,例如温度敏感性活性剂。所述活性剂通常可以以约0.01%(w/w)至约70%(w/w),或约0.1%(w/w)至约50%(w/w),或约1%(w/w)至约20%(w/w)的量存在于所述丝微球中。所述活性剂可以均质地或非均质地或以一定梯度存在于所述丝微球表面和/或分散或包封于所述丝微球中。在一些实施方式中,所述活性剂可以作为添加剂,在形成所述丝微球之前被加入至所述丝溶液中。在一些实施方式中,所述活性剂可以在所述丝微球形成厚涂覆在其表面上。在一些实施方式中,可以将丝微球在活性剂的溶液中孵育一段时间,在此期间所述活性剂的量扩散进入所述丝微球中。
根据所述丝微球的不同应用,可以将不同类型的活性剂包括在所述丝微球中。不应受到限制,例如所述丝微球可以包含一种或多种治疗剂,包括用于疾病或病症的治疗的化疗剂。所述治疗剂的示例包括但不限于有机或无机小分子;糖;寡糖;聚糖;生物大分子,例如肽、蛋白和肽类似物和衍生物;拟肽;核酸;核酸类似物和衍生物;抗体和其抗原结合片段;由生物材料如细菌、植物、真菌或动物细胞制备的提取物;动物组织;天然存在的或合成的组合物;及其任意组合。在一个实施方式中,在本申请所述的丝微球中包括的所述治疗剂可以包括贝伐单抗、美金刚或其组合。
在一些实施方式中,所述方法还可以包括对所述丝微球进行后处理。例如,尽管采用本申请所述的方法生产的所述丝微球通常是水不溶性的或具有较低的水溶性并且因此不需要进行附加的处理以诱导丝蛋白β-片层的形成,在一些实施方式中,在所述丝微球形成后,可以对所述丝微球进行后处理,所述后处理通常用于诱导β-片层结晶结构的形成。这种后处理可以包括但不限于溶剂浸没、水退火、水蒸汽退火、热退火或其任意组合。在一些实施方式中,所述方法不包括在所述丝微球形成后进行溶剂浸没、水退火或水蒸汽退火,并且所述丝微球仍是水不溶性的(例如在水化后保持原来的形状和体积,例如在约37℃下经过一段时间,例如至少约2小时或更长时间)或具有较低的水溶性(例如水溶性低于50%、低于30%或者更低)。
所述丝微球的β-片层结晶度和所产生的水不溶性和/或所述多孔性结构能够通过改变各种工艺条件参数进行控制,如超声或流动参数、丝浓度、所述喷雾溶液的组成和/或条件、添加剂的加入(例如β-片层结晶度诱导剂如甘油)或其任意组合。
在一些实施方式中,如前面所提到的,通过本申请所述的方法生产的所述丝微球不需要进行后处理以诱导附加的β-片层结晶结构的形成,例如溶剂浸没、水或水蒸气退火和/或热退火。在一些实施方式中,所述丝溶液的超声能够诱导足量β-片层结晶结构的形成以制备完全或部分不溶于水的丝微球。例如,在诱导β-片层内容物的后处理(例如溶剂浸没、水或水蒸气退火和/或热退火)之前的所述丝微球可以具有低于50%或低于30%或者更低的水溶性。在一些实施方式中,在诱导β-片层内容物的后处理(例如溶剂浸没、水或水蒸气退火和/或热退火)之前的所述丝微球可以是水不溶性的。
在一些实施方式中,所述丝微球能够具有至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%或更多的β-片层结晶含量。在一些实施方式中,在不使用溶剂浸没或水蒸气退火作任何后处理时,所述丝微球能够具有至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%或更多的β-片层结晶含量。在一些实施方式中,在不使用溶剂浸没或水蒸气退火作任何后处理时,所述丝微球能够具有至少约50%或更多的β-片层结晶含量。
本申请所述的丝微球能够在任何适当的应用中使用。例如,在一些实施方式中,所述丝微球能够用作药物递送运载体。在一些实施方式中,所述丝微球能够用作填充材料。在一些实施方式中,所述丝微球能够用在复合材料中,例如将丝微球包封在基质材料例如基于丝的材料中。因此,本申请所述的另一个方面涉及组合物,所述组合物包含由本申请所述方法的各种实施方式制备的丝微球。在一些实施方式中,所述组合物能够用于给予治疗剂,对于体内给药而言,本申请提供了包含本申请所述的丝微球和药学上可接受的赋形剂的药物组合物。根据各种给药途径,在一些实施方式中,所述组合物或药物组合物可以是被制成可注射的。
在本申请所述的任意方面的一些实施方式中,所述丝微球的尺寸可以是约10μm至约1000μm,或约50μm至约100μm。
在本申请所述任意方面的一些实施方式中,所述丝微球可以含有任意量的丝。例如,所述丝微球可以含有含量约10%(w/w)至约100%(w/w)、约30%(w/w)至约100%(w/w)或者约50%(w/w)至约100%(w/w)的丝。
在本申请所述任意方面的一些实施方式中,含有活性剂(例如治疗剂)的所述丝微球能够提供所述活性剂的持续释放。例如,含有活性剂(例如治疗剂)的所述丝微球在至少约10天的时间段内能够释放其所负载的所述活性剂的至少约5%。
在另一个方面,本申请还提供了丝微球和含有一种或多种丝微球的组合物。例如,本申请提供了涉及含有尺寸为约10μm至约2000μm的丝微球的组合物。在一些实施方式中,所述丝微球是水不溶性的,例如具有至少约50%或更高的β-片层结晶片层含量。在一些实施方式中,所述丝微球还包含溶剂敏感性或温度敏感性活性剂。在一些实施方式中,所述丝微球还能够含有如本申请所述的添加剂,例如但不限于甘油。在一些实施方式中,所述组合物是可注射的。在一些实施方式中,所述组合物是例如但不限于片剂、胶囊剂、锭剂、粉剂、糊剂、颗粒剂、液体、溶液剂、凝胶剂或其任意组合的形式的药物组合物。
附图简述
图1是用于制备丝微球的喷雾-结晶-冷冻-干燥(SCFD)工艺设置的示例性示意图。
图2A-2D是根据本申请所述的一个或多个实施方式的丝SCFD球的光学显微图像。图2A是在水中重悬之前的丝SCFD微球的光学显微图像,其中所述丝SCFD微球在25%的超声振幅下以约0.1mL/min的流速由5%(w/v)的丝溶液制备。图2B是在水中重悬之前的丝SCFD微球的光学显微图像,其中所述丝SCFD微球由5%(w/v)的丝溶液在25%的超声振幅下以约1mL/min的流速制备。图2C是在水中重悬之后的丝SCFD微球的光学显微图像,其中所述丝SCFD微球由5%(w/v)的丝溶液在25%的超声振幅下以约0.1mL/min的流速制备。图2D是在水中重悬之后的丝SCFD微球的光学显微图像,其中所述丝SCFD微球由5%(w/v)的丝溶液在25%的超声振幅下以约1mL/min的流速制备。标尺=100μm。
图3A-3B是根据本申请所述的一个或多个实施方式的丝/甘油SCFD微球的光学显微图像。图3A是在水中悬浮前的丝/甘油(比例约3/1)SCFD球的光学显微图像,其中所述丝/甘油SCFD球在25%的超声振幅下以0.17mL/min的流速制备。图3B是在水中悬浮后的丝/甘油(比例约3/1)SCFD球的光学显微图像,其中所述丝/甘油SCFD球在25%的超声振幅下以0.17mL/min的流速制备。标尺=100μm。
图4A-4D是根据本申请所述的一个或多个实施方式的含有或不含有美金刚的丝/甘油SCFD微球的扫描电子显微镜(SEM)图像。图4A和4C是不含有美金刚的丝/甘油SCFD微球的SEM图像。图4B和4D是负载有美金刚的丝/甘油SCFD微球的SEM图像。图4A和4B均采集自冻干粉末。图4C和4D采集自重悬的和干燥的粉末。标尺=100μm。
图5是显示美金刚从具有不同的丝/甘油比的丝SCFD微球释放的线型图。SG25M样品含有25%(w/w)的甘油(丝/甘油=约3/1);SG15M样品含有15%(w/w)的甘油;和SM样品不含有甘油。
图6是显示贝伐单抗从具有不同的丝/甘油比的丝SCFD微球释放的线型图。SG25A样品含有25%(w/w)的甘油(丝/甘油=约3/1);SG15A样品含有15%(w/w)的甘油;和SA样品不含有甘油。
发明详述
需要开发用于生产具有更高收率的药物递送运载体或储库的新方法,和/或用于在那些运载体或储库中包封药物以使得所述药物能够在所述包封过程中保持其生物活性的方法。本申请通常涉及制备丝基质的方法及其用途。在一些实施方式中,所述丝基质可以以微球形式生产。因此,本申请还提供了制备丝微球的方法和所述丝微球的用途,例如用于药物递送如持续释放。在一些实施方式中,可以通过本申请所述的方法生产不溶性丝基质,无需使用有机溶剂例如甲醇进一步进行后处理。此外,可以在完全基于水性的溶剂中制备丝基质,因此避免使用能够使其所负载的任意治疗剂降解或失活的有机溶剂或任何有害化学物质或最低化对能够使其所负载的任意治疗剂降解或失活的有机溶剂或任何有害化学物质的使用。在其他实施方式中,所述丝基质的制备不需要高温,因此使得包封在其中的治疗剂的生物活性得以保持。因此,本申请还提供了增加包封在丝组合物中的治疗剂的有效量的方法。
在一些实施方式中,发明人已证实了一种新型、廉价、简单、全水性的方法以生产β-片层结晶(水不溶性)和多孔性的丝基质。例如,可以将丝蛋白溶液超声以诱导其中的丝蛋白的β-片层结构的形成以制备丝微球,可以同时和/或伴随地将其转化成富含β-片层结晶结构的丝微球喷雾。尽管可能是不必要的,可以将所述丝微球进一步进行冷冻干燥以诱导更高程度的微米/纳米孔隙度。而且,发明人已证实这种制备方法在丝微球中包封治疗剂(例如贝伐单抗或盐酸美金刚)的可行性、上述丝微球的可注射性及其用于持续递送的应用。
因此,本申请所述各种方面的一些实施方式涉及丝微球和含有一种或多种丝微球的组合物以及制备其的方法。例如,本申请涉及一种组合物,所述组合物含有尺寸为约10μm至约2000μm的丝微球。在一些实施方式中,所述丝微球是水不溶性的,例如具有至少约50%或更多的β-片层结晶片层含量。在一些实施方式中,所述丝微球还包含溶剂敏感性或温度敏感性活性剂。在一些实施方式中,所述丝微球还可以含有如本申请所述的添加剂,例如但不限于甘油。在一些实施方式中,所述组合物是可注射的。在一些实施方式中,所述组合物是例如但不限于片剂、胶囊剂、锭剂、粉剂、糊剂、颗粒剂、液体、溶液剂、凝胶剂或其任意组合的形式的药物组合物。在一些实施方式中,所述丝微球是多孔性的。
制备基于丝的材料或丝基质(例如丝微球)和含有丝微球的组合物的方法
因此,本申请所述的一个方面涉及制备基于丝的材料(或丝基质,其在本申请中互换使用)的方法。所述方法包括在丝溶液中诱导β-片层结构的形成;和从所述丝溶液中诱导丝基质的形成。在一些实施方式中,所述β-片层结构在丝溶液中的形成能够与所述丝基质从所述丝溶液中的形成同时被诱导。所述丝基质可以包括例如但不仅限于粒子(包括微球和纳米球)、纤维、棒、水凝胶、膜、凝胶样或凝胶粒子及其任意组合。
在广泛的生物医药应用中,微球已被广泛地用作药物递送运载体。在一些实施方式中,本申请所述的方法能够用于生产丝微球。因此,本申请还涉及制备丝微球的方法,所述方法包括在丝溶液中诱导β-片层结构的形成,和从所述丝溶液中诱导微球的形成。
在本申请中可以互换使用的短语“丝基质”或“基于丝的材料”通常指包含含有丝的微球的基质。丝基质可以以任意形式存在,包括但不限于粒子或冻干粒子(例如纳米粒子或微粒)、球体或冻干的球体(例如纳米球或微球)、纤维、凝胶或凝胶样粒子、水凝胶、膜、粉末及其任意组合。在一些实施方式中,丝基质可以以微球或冻干微球的形式存在。在一些实施方式中,丝可以排除丝胶蛋白。在一些实施方式中,丝可以包含丝蛋白、丝胶蛋白或其组合。所述短语“丝基质”或“丝微球”可以指基质或微球,其中丝(或丝蛋白)占总基质的至少约10%(w/w)或以上,包括总基质的至少约20%(w/w)、至少约30%(w/w)、至少约40%(w/w)、至少约50%(w/w)、至少约60%(w/w)、至少约70%(w/w)、至少约80%(w/w)、至少约90%(w/w)、至少约95%(w/w)、达到和包括100%(w/w)或者约30%(w/w)至约100%(w/w)之间的任意百分数。在某些实施方式中,所述丝基质(例如丝微球)可以基本上由丝或丝蛋白形成。在各种实施方式中,所述丝基质(例如丝蛋白)可以基本上由含有至少一种活性剂的丝或丝蛋白形成。
β-片层结构的形成:在本申请中使用的短语“诱导β-片层结构的形成”指与在所述丝溶液中存在的β-片层结构的原始量相比,在丝溶液中的β-片层结构(例如丝IIβ-片层结晶结构)的量增加至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%或者更多。在一些实施方式中,所述短语“诱导β-片层结构的形成”可以指与在所述丝溶液中存在的β-片层结构的原始量相比,在丝溶液中的β-片层结构的量增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍或者更多。测定丝蛋白结构(例如随机螺旋vsβ-片层)的方法是本领域公知的,例如但不限于圆二色光谱。
在一些实施方式中,可以在丝溶液中诱导β-片层的形成以使得由所述丝溶液形成的所述丝组合物(例如丝微球)能够变成不溶性的,例如不需要任何进一步的本申请所述的后处理。术语“不溶性的”通常指在特定条件下具有完全或部分不溶性的丝组合物(例如丝微球)。在通常情况下,物质的溶解度取决于溶剂的性质和/或组成(例如水性vs非水性溶剂,和/或所述物质与溶剂的分子间相互作用)、温度、压力或其任意组合。例如,丝组合物(例如丝微球)能够在一种溶剂中比在另一种溶剂中具有更高的溶解度,和/或其在某溶剂中在较高温度下能够比在相同溶剂中在较低温度下具有更高的溶解度。在一些实施方式中,丝组合物(例如丝微球)在水溶液中在某温度下能够是完全或部分不溶的,例如在高于0℃至约室温或约室温至约对象体温(例如正常健康人为约37℃或者其他动物更高或更低)的范围内。丝组合物(例如丝微球)暴露于其中的水溶液可以包括含有水的任意液体,包括但不限于水、血液、组织液及任意其他体液。在一些实施方式中,丝微球是水不溶性的,例如在水化后能够保持原来的形状和体积,例如在约37℃下持续一段时间,例如至少约2小时或更长时间。
本申请中使用的术语“部分不溶性的”指丝组合物(例如丝微球)在特定条件下(例如在室温下的水溶液如水或缓冲溶液)具有低于60%、低于50%、低于40%、低于30%、低于20%、低于10%、低于5%或者更低的溶解度。在一些实施方式中,所述丝组合物(例如丝微球)在室温下在水溶液如水或缓冲溶液中具有低于30%的溶解度。在一些实施方式中,当所述丝组合物(例如丝微球)在体内给予时,在体液和/或组织中分散或分布的所述丝组合物(例如丝微球)能够具有低于60%、低于50%、低于40%、低于30%、低于20%、低于10%、低于5%或者更低的溶解度。在本申请中使用的以百分数表示的溶解度指能够在约100g溶剂中溶解以形成均质溶液的物质的最大量。例如,具有30%的水溶解度的丝微球表示能够在100g水中溶解30g丝微球以形成均质溶液。
可以采用本领域公知的任意方法在丝溶液中形成β-片层,例如但不限于超声、剪切力、水浸没、热处理、醇处理例如甲醇处理、pH调节或其任意组合。在一些实施方式中,在所述丝溶液中所述β-片层结构的形成并不是通过热处理或醇处理例如甲醇诱导的。
在一些实施方式中,在丝溶液中β-片层结构的形成能够通过超声诱导,例如超声含有浓度约0.25%(w/v)至约50%(w/v)、约0.25%(w/v)至约30%(w/v)、约0.5%(w/v)至约20%(w/v)或约1%(w/v)至约15%(w/v)的丝或丝蛋白的丝溶液。在一些实施方式中,所述丝溶液可以含有浓度允许注射的丝或丝蛋白,例如约0.5%(w/v)至约10%(w/v)的丝浓度。在一个实施方式中,所述丝溶液可以包含浓度约3%(w/v)至约10%(w/v)的丝蛋白。在一个实施方式中,所述丝水凝胶可以包含浓度约5%(w/v)至约8%(w/v)的丝蛋白。对于使用超声诱导β-结构形成的方法参见例如美国专利申请号为2010/0178304和国际申请号为WO 2008/150861的申请,其内容通过引用并入本申请。
超声通常是指将声音(声)波例如超声作用于物质的行为。超声频率的跨距通常为约15kHz至10MHz。根据本申请所述的方法一些实施方式,所述超声可以在约10kHz或更高(例如20kHz或更高)的频率下进行以诱导在所述丝溶液中β-片层结构的形成。在一些实施方式中,超声可以在约20kHz至约40kHz的频率下进行以诱导在所述丝溶液中β-片层结构的形成。所述超声可以以任意形式用于所述丝溶液,包括但不限于连续模式、脉冲模式及其任意组合。
根据所需的丝微球的形态、溶解度,可以在诱导β-片层结构的形成中使用任意水平的超声频率,和/或超声持续时间,超声功率输出。在一些实施方式中,所述超声功率输出的范围可以是约1瓦至约50瓦,或从约2瓦至约20瓦。在一个实施方式中,用于诱导β-片层结构的形成的所述超声功率输出可以从约2瓦变化至约20瓦。
所述丝溶液的超声或超声处理通常可以持续足够长的时间以便在所述丝溶液中诱导所需量的β-片层结构的形成,但不能太长以致破坏所述丝基质的机械性质。典型地,根据所述超声的功率输出和/或频率,所述丝溶液的超声或超声处理可以持续约5秒至约60秒,其取决于所述丝的浓度、在所述丝溶液中丝蛋白的量、添加剂的存在情况(如果有的话)和本领域的普通技术人员知晓的其他因素。例如,所述超声或超声处理能够持续约15秒至约45秒。在所述丝溶液中β-片层结构的形成通常可以始于开始进行所述超声和/或超声处理并且在处理结束后持续一段时间。
在一些实施方式中,在本申请所述的制备丝基质(例如丝微球)的方法中使用的所述超声频率、超声持续时间和超声功率输出的组合不会生成足以使包封于其中的任意活性剂(例如治疗剂)(如果有的话)降解或失活的热量。在这种实施方式中,在所述丝基质(例如微球)中存在的活性剂(例如治疗剂)的生物活性能够保持其原始生物活性的至少约30%,包括其原始生物活性的至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%、至少约95%或者更高。所述短语“原始生物活性”可以指在采用本申请所述的方法处理之前活性剂在丝溶液中的初始组成的活性。
尽管不是必需的,所述超声或超声处理可以包括附加处理以促进在所述丝溶液中β-片层结构的形成。例如,所述附加处理可以包括盐溶液。盐溶液是本领域公知的用于辅助诱导凝胶化的。在这种实施方式中,将盐加入丝溶液中能够降低用于在所述丝溶液中达到所需量的β-片层结构的形成的超声持续时间、频率和/或功率输出。通常可以使用含有钾、钙、钠、锰、铜和/或锌离子的盐溶液。在一些实施方式中,可以在用于超声处理的所述丝溶液中加入钾盐溶液。
在替代的实施方式中,在超声过程中还可以将剪切力应用于丝溶液以促进在所述丝溶液中β-片层结构的形成。生产用于包封和递送的涡旋诱导的丝蛋白凝胶的方法,参见例如国际申请号为WO 2011/005381的申请,其内容通过引用并入本申请。在这种实施方式中,对所述丝溶液施加超声和剪切力能够减少在所述丝溶液中获得所需量的β-片层结构的形成所使用的超声持续时间、频率和/或功率输出。
根据在所述丝溶液中存在的活性剂在各种pH下的稳定性,在一些实施方式中,可以对制备用于超声的所述丝溶液的pH进行调整。例如,可以通过向所述丝溶液施加电场改变所述丝溶液的pH和/或使用酸降低所述丝溶液的pH。对于生产pH诱导的丝凝胶的方法的详细情况,参见例如美国专利申请号为US 2011/0171239的申请,其内容通过引用并入本申请。在这种实施方式中,向所述所溶液施加超声联合pH控制能够减少在所述丝溶液中获得所需量的β-片层结构的形成所使用的超声持续时间、频率和/或功率输出。
从所述丝溶液中形成微球:可以采用本领域公知的任何方法诱导从所述丝溶液中形成微球,例如但不限于乳化、雾化、沉降、分散和沉淀的方法。在乳化中,例如,可以在含有乳化剂的非水相中将所述丝的水溶液混合以形成乳滴。然后可以使用胶凝剂将所述溶液胶凝,例如pH降低剂或能够诱导丝凝胶化的任意试剂。在分散方法中,丝溶液在交联溶液例如PEG溶液中的直接分散能够导致微球的形成。在沉降/沉淀方法中,基于丝的离聚物对的混合能够导致微球的形成(参见例如国际申请号为WO 2011/109691的申请,其内容通过引用并入本申请)。
在一些实施方式中,微球能够由所述丝溶液通过所述丝溶液的雾化形成。示例性的雾化方法可以包括但不限于注射器喷出、同轴空气流法、机械扰动法、静电力法、静电珠发生器法、喷雾、使用旋转或离心雾化器雾化、空气雾化(例如使用喷枪和空气压力)、压力雾化、真空雾化(例如由高压向低压区喷雾)、超声雾化、超声(超声能)及其任意组合。
在空气驱动的雾化中,在空气流压力的帮助下丝溶液的液滴能够破碎成细小的液滴。可以改变气流模式以形成用于形成均匀的微球或粒子的同轴模式。同轴气流技术通常使用空气的同心流,其剪切由一个或多个针释放的液滴。
空气驱动机制的替代包括静电场、机械干扰和静电力。静电机制通常利用毛细管尖端例如喷嘴和平对电极之间的电势差通过在重力方向上施加附加的力(即电场力)以便克服液体向上的毛细管力从而缩小液滴的直径。不希望受到理论的束缚,这些方法可以被用于由粘性液体根据其导电性产生小于100μm的液滴。在机械扰动法中,可以使用机械扰动将液滴破碎成细小的液滴。通常地,包括超声雾化的振动可以作为机械扰动以产生微球。在静电力法中,静电力能够扰乱粘性喷射,其中所述静电力能够代替机械扰动用于使液体表面破裂。
根据各种雾化方法,可以对各雾化条件进行独立地控制以提供所需的雾化液滴尺寸,进而提供所需的丝微球尺寸。这些雾化过程是本领域公知的并且任何本领域技术人员能够容易地执行和优化丝溶液的这些雾化条件以生产所需尺寸的微球。
例如,通过改变仪器/工艺和/或材料参数丝溶液的雾化能够生产不同尺寸和/或形状的丝微球。示例性的能够改变的仪器/工艺参数包括但不限于喷雾空气压力、喷嘴尺寸(例如喷嘴直径)、超声频率、雾化功率输出(例如超声功率输出)、喷雾流速、喷嘴头高度(例如喷嘴头与收集浴或容器的距离)、雾化持续时间(例如超声处理时间),和能够改变的材料参数包括但不限于丝溶液的浓度和/或粘度,和/或增塑剂的浓度,如果有的话。
在一些实施方式中,所述丝溶液的雾化可以包括使用液滴发生器的喷雾喷嘴系统。例如,可以使用具有所需流速和/或空气压力的包封单元喷雾所述丝溶液。在一些实施方式中,可以通过空气驱动液滴生成包封单元的喷嘴喷雾所述丝溶液。在这种实施方式中,所述丝溶液可以以约0.05ml/小时至约1000ml/小时、或约10ml/hr至约750ml/hr、或约25ml/hr至约500ml/hr、或约50ml/hr至约250ml/hr的流速喷雾。在其他实施方式中,所述丝溶液可以以约1ml/hr至约20ml/hr或约5ml/hr至约10ml/hr的流速喷雾。
在一些实施方式中,使用空气压力范围为从约0bar至1bar、从约0bar至500mbar、从约0mbar至250mbar或从约0mbar至100mbar的空气驱动液滴发生器的喷雾喷嘴系统喷雾所述丝溶液。在一些实施方式中,可以使用空气压力约1bar至500bar;或约1bar至250bar;或约5bar至100bar,或约10bar至约50bar喷雾所述丝溶液。
在一些实施方式中,所述丝溶液的雾化可以包含超声喷雾器的喷雾喷嘴系统。超声雾化通常依赖于以非常高的频率例如约20kHz或更高频率振动的机电装置。通过振动表面的丝溶液能够通过高频振动例如超声变成液滴。在这种实施方式中,所述超声可以在约20kHz或更高频率下进行以便由所述丝溶液形成微球。在一些实施方式中,所述超声可以在约20kHz至约10MHz频率下进行以便由所述丝溶液形成微球。在一些实施方式中,所述超声可以在约20kHz至约40kHz频率下进行。所述超声可以以任意形式应用于所述丝溶液,包括但不限于连续模式、脉冲模式及其任意组合。
根据所述丝微球所需的形态和/或溶解度,在丝溶液的雾化中通常可以使用任意水平的超声频率和/或持续时间、超声功率输出。在一些实施方式中,所述超声功率输出的范围可以是从约1瓦至约50瓦,或从约2瓦至约20瓦。在一些实施方式中,所述超声功率输出可以是至少约1瓦、至少约2瓦、至少约3瓦、至少约4瓦、至少约5瓦、至少约10瓦、至少约20瓦、至少约30瓦、至少约40瓦、至少约50瓦、至少约60瓦或更高。在一个实施方式中,用于从所述丝溶液中形成微球的所述超声功率输出可以从约2瓦变化至约20瓦。
尽管在所述丝溶液中β-片层结构的形成和从所述丝溶液中所述微球的形成可以使用本申请所述的不同方法分别进行,使用相同方法和/或相同仪器以同时达到这两个目的可能是理想的。例如,在一些实施方式中,可以在所述丝溶液中诱导所述β-片层结构的形成,同时可以从所述丝溶液伴随地或同时地形成一种或多种微球。在一个实施方式中,雾化和β-片层结晶结构可以使用单一仪器在一个步骤中伴随实现。仅通过举例的方式,所述β-片层结构的形成和所述丝溶液的雾化能够通过将丝溶液流过能够被超声活化的流通室伴随地或同时地进行。在这种实施方式中,所述超声活化的流通室可以含有用于生成液滴的喷嘴,例如超声雾化器。本领域公知的任意市售超声雾化器均可以用于本申请所述方法的一些实施方式中,包括经改装以用于雾化(例如配有用于雾化和/或喷雾的流通臂(flow-throughhorn))的细胞破碎器。
丝微球可以在批处理、连续流处理或其组合中制备。在一些实施方式中,丝微球可以在连续流处理中制备。例如,当使用超声诱导在所述丝溶液中的β-片层结构的形成同时伴随地或同时地从所述丝溶液中形成微球时,可以对所述丝溶液的流速进行调整以提供所述丝溶液在超声下足够的停留时间,用于诱导所需量的β-片层结构(其能够至少部分地决定溶解度)和/或所需尺寸的微球。例如,所述丝溶液可以以约0.0001mL/min至约5mL/min、或约0.001mL/min至约5mL/min、或约0.05mL/min至约0.3mL/min的速率流动(例如通过超声雾化器或其等价物,例如配有流通室或臂的超声仪)。在一些实施方式中,所述丝溶液可以以约0.1mL/min至约0.2mL/min的速率流动(例如通过流通室或臂)。本领域技术人员能够容易地意识到所述丝溶液的流动能够通过各种方法完成,包括例如膜片泵、离心泵、气体生成泵、注射泵或本领域公知的任何其他适宜的方法,其取决于所述过程的规模。
在所述丝溶液雾化以形成丝微球(例如通过超声雾化)后,在一些实施方式中,所述方法还可以包括将所述丝微球冷冻。适用于冷冻丝微球的方法是本领域技术人员公知的。例如,可以通过将所述丝微球直接或间接地与冷却剂接触将所述丝微球冷冻。在一个实施方式中,可以通过将其直接与冷冻剂(例如但不限于低温液体如液氮和/或干冰)接触将所述丝微球冷冻;或者替代地,可以将所述丝微球收集在预先冷却至零度以下的温度(例如低温温度,其足以将所述丝微球立即冷冻)的容器中。在一个实施方式中,可以将所述丝微球收集于容器中,所述容器外表面的至少一部分与低温液体如液氮和/或干冰接触。在这些实施方式中,可以对所述喷雾喷嘴的尖端与所述容器底部之间的距离进行调整以确保所述喷雾立即冷冻和所述喷雾的均匀性。例如,所述喷雾喷嘴的尖端可以距离所述容器的底部至少约10cm、至少约20cm、至少约30cm、至少约40cm或更远。
在一些实施方式中,产生丝微球的所述方法还可以包括在所述丝微球中形成多孔性结构。在丝基质中形成孔的方法是本领域公知的,例如致孔剂浸出法、冷冻干燥法(例如冻干)和/或气体形成法。例如在美国专利申请号为US 2010/0279112、US 2010/0279112和US 7842780的申请对此类方法进行了描述,其内容通过引用整体并入本申请。
在一些实施方式中,可以将所述丝微球冻干以便在所述丝微球中诱导高度的微米或纳米孔隙度。在一些实施方式中,可以在冻干前将所述丝微球冷冻。所述冻干条件(例如压力和温度)能够影响所述丝微球的孔隙度和/或孔径。在一些实施方式中,可以在产生至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%或更高的孔隙度的条件(例如压力和/或温度)下将所述丝微球冻干。过高的孔隙度能够产生具有较低机械性质的丝组合物(例如丝微球),但是能够更快地释放包封在其中的任意活性剂。然而,过低的孔隙度能够减少包封在其中的活性剂的释放。本领域技术人员可以根据多种因素相应地调整所述孔隙度,所述因素例如但不限于所需的释放速率、所述活性剂的分子尺寸和/或扩散系数、和/或在所述丝基质中丝蛋白的浓度和/或量。本申请中使用的术语“孔隙度”是衡量材料例如基质如丝蛋白中的孔隙空间,是孔隙体积占总体积的分数,以0至100%之间的百分数(或0至1之间)表示。基质孔隙度的测定方法是本领域技术人员公知的,例如使用标准化的技术,如压汞法和气体吸附例如氮吸附。
所述多孔性丝基质(例如丝微球)能够具有任意孔径,例如范围从约1nm至约1000μm、从约1nm至约500μm或从约10nm至约50μm。在一些实施方式中,所述丝基质(例如丝微球)的孔能够具有范围从约1nm至约1000nm、从约10nm至约750nm、从约25nm至约500nm、从约50nm至约250nm的尺寸分布或尺寸。在其他实施方式中,所述丝基质(例如丝微球)的孔能够具有范围从约1nm至约1000nm、从约5nm至约750nm、从约10nm至约500nm、从约25nm至约250nm或从约50nm至约100nm的尺寸分布或尺寸。在本申请中使用的术语“孔径”指孔截面的直径或有效直径。所述术语“孔径”还可以指基于多个孔的检测结果的所述孔截面的平均直径或平均有效直径。不是圆形的截面的有效直径等于与所述不是圆形的截面具有相同截面面积的圆形截面的直径。在一些实施方式中,当所述丝蛋白基质被水化时,所述丝蛋白是可溶胀的。然后可以根据在所述丝蛋白中水的含量改变所述孔的尺寸。能够使用液体如水或空气填充所述孔。
所述多孔性丝基质(例如多孔性丝微球)能够用作药物递送运载体或储库。因此,在一些实施方式中,所述丝基质(例如丝微球)能够包含一种或多种(例如1、2、3、4、5或更多种)活性剂。示例性的活性剂包括但不限于治疗剂、诊断剂(例如造影剂)及其任意组合。在一些实施方式中,在所述丝基质(例如丝微球)中存在的所述活性剂能够包括不稳定的活性剂,例如在暴露于特定条件(例如高温、高湿、光暴露及其任意组合)后能够出现化学、物理、或生物学改变、降解和/或失活的试剂。在一些实施方式中,在所述丝基质(例如丝微球)中存在的所述活性剂能够包括温度敏感性活性剂,例如在暴露于至少约10℃或以上,包括至少约15℃或以上、至少约室温或以上、或者至少约体温(例如约37℃)或者以上的温度后,将失去其原始活性或生物活性的至少约30%或以上的活性剂。
所述活性剂能够通常存在于约0.01%(w/w)至约70%(w/w)、或约0.1%(w/w)至约50%(w/w)、或约1%(w/w)至约30%(w/w)的量的所述丝基质(例如丝微球)中。所述活性剂能够均匀地或不均匀地或以梯度形式存在于所述丝基质(例如丝微球)表面和/或包封和分散在所述丝基质(例如丝微球)中。在一些实施方式中,可以将所述活性剂加入所述丝溶液中,然后再使用本申请所述的用于制备丝基质(例如丝微球)的方法。在一些实施方式中,可以将所述活性剂涂覆在所述丝基质(例如丝微球)的表面上。在一些实施方式中,可以通过将所述丝微球在所述活性剂的溶液中孵育一段时间将所述活性剂负载于丝基质(例如丝微球)中,在此期间一定量的所述活性剂能够扩散进入所述丝基质(例如丝微球)并且进而分布在所述丝基质(例如丝微球)中。
在一些实施方式中,制备丝基质(例如丝微球)的方法还可以包括对所述丝基质(例如丝微球)进行后处理,例如进一步修饰所述丝基质(例如丝微球)的表面和/或容量性质。在一些实施方式中,所述后处理可以包括使用活性剂装载所述丝基质(例如丝微球),例如通过使用活性剂涂覆所述丝基质(例如丝微球)的表面,或者将所述活性剂扩散进入所述丝基质(例如丝微球)。
在一些实施方式中,所述后处理可以包括修饰丝基质(例如丝微球)的表面。例如,可以使用如上文所述的活性剂涂覆所述丝基质(例如丝微球)。附加地或替代地,可以使用配体例如靶向配体或细胞靶向配体涂覆所述丝基质(例如丝微球)。在本申请中使用的术语“靶向配体”指能够促进所述丝基质在体内和/或体外靶向组织和/或受体的任意材料或物质。所述靶向配体可以是合成的、半合成的或天然存在的。能够作为靶向配体的材料或物质包括例如蛋白包括抗体、抗体片段、激素、激素类似物、糖蛋白和凝集素、肽、多肽、氨基酸、糖、糖类包括单糖和多糖、碳水化合物、维生素、类固醇、类固醇类似物、激素、辅因子,和遗传物质包括核苷、核苷酸、核苷酸构建体、肽核酸(PNA)、适体和多核苷酸。能够在本申请中使用的其他靶向配体包括细胞粘附分子(CAM),其中有例如细胞因子、整合素、钙粘素、免疫球蛋白和选择素。所述丝基质(例如丝微球)还可以包含靶向配体的前体。靶向配体的前体指能够转化成靶向配体的任意材料或物质。这种转化可以包括例如将前体锚定至靶向配体。示例性的靶向前体部分包括马来酰亚胺基、二硫化物基如邻吡啶基二硫化物、乙烯基砜基和叠氮基。所述靶向配体可以是共价地(例如交联)或非共价地与所述丝基质(例如丝微球)连接。例如,靶向配体可以共价地与用于制备所述丝基质的丝蛋白连接。
在一些实施方式中,所述丝基质(例如丝微球)的表面可以被修饰,例如以促进活性剂或配体的涂覆。示例性的丝基质(例如丝微球)的表面修饰可以包括但不限于碳二亚胺偶联反应(参见例如美国专利申请号为US 2007/0212730的申请)、重氮偶联反应(参见美国专利申请号为US 2009/0232963的申请)、亲和素-生物素相互作用(参见例如国际申请号为WO 2011/011347的申请)。在其他实施方式中,所述丝基质(例如丝微球)可以涂覆本申请所述的生物相容性聚合物,例如使用化学活化的或活化的PEG聚合物的衍生物聚乙二醇化(参见例如国际申请号为WO 2010/057142的申请)。在一些实施方式中,所述丝基质(例如丝微球)的外表面可以沉积一个或多个(例如1、2、3、4、5个或更多个)丝基质层。各个丝基质层可以具有不同的组成(例如但不限于不同的丝浓度、不同的药物和/或浓度)。将一种或多种丝蛋白涂覆在所述丝基质(例如丝微球)周围的示例性分步沉积方法可以参见美国专利申请号为US 2009/0202614的申请,其内容通过引用并入本申请。
在通常情况下,通过本申请所述的方法生产的所述丝基质(例如丝微球)不需要进行后处理以进一步诱导在所述丝基质(例如丝微球)中丝蛋白的β-片层结构的形成。例如,对所述丝溶液的超声能够诱导β-片层结晶丝蛋白的形成足以维持所述丝微球在水中的完全或部分不溶性。在一些实施方式中,在所述β-片层诱导后处理(例如溶剂浸没、水或水蒸气退火和/或热退火)前,所述丝基质(例如丝微球)能够具有低于50%、低于40%、低于30%、低于20%、低于10%、低于5%或更低的水溶性。在一些实施方式中,在所述β-片层诱导后处理(例如溶剂浸没、水或水蒸气退火和/或热退火)前,所述丝微球可以是水不溶性的。
在一些实施方式中,所述丝微球可以具有至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%或更多的β-片层结晶含量。在一些实施方式中,在不使用溶剂浸没或水蒸气退火进行任何后处理时,所述丝微球能够具有至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%或更多的β-片层结晶含量。在一些实施方式中,在不使用溶剂浸没或水蒸气退火进行任何后处理时,所述丝微球能够具有至少约50%或更多的β-片层结晶含量。
在一些实施方式中,在不使用溶剂浸没或水蒸气退火进行任何后处理时,所述多孔性丝微球(例如冻干的丝微球)能够具有至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%或更多的β-片层结晶含量。在一些实施方式中,在不使用溶剂浸没或水蒸气退火进行任何后处理时,所述多孔性丝微球(例如冻干的丝微球)能够具有至少约50%或更多的β-片层结晶含量。
尽管不是必需的,在一些实施方式中,可以对所述丝基质(例如丝微球)进行后处理,所述后处理通常用于在所述丝基质(例如丝微球)中诱导丝蛋白的β-片层结晶结构的形成。例如,在一些实施方式中,可以对所述丝基质(例如丝微球)进行后处理,所述后处理用于在所述丝基质(例如丝微球)中诱导附加的β-片层结晶结构的形成,以进一步降低所述丝基质(例如丝微球)的溶解性。在所述丝基质(例如丝微球)中诱导β-片层结晶结构的形成的示例性的后处理可以包括但不限于醇浸没、水蒸气退火、热退火及其任意组合。然而,在活性剂存在于所述丝基质(例如丝微球)中的一些实施方式中,可能不希望将所述丝基质(例如丝微球)暴露于有机溶剂和/或高温,因为这可能会导致所述活性剂的降解和/或失活。
所述丝微球的β-片层结晶度和所产生的水不溶性、和/或所述多孔性结构能够通过改变各种工艺条件参数进行控制,如超声或流动参数、丝浓度、所述喷雾溶液的组成和/或条件、添加剂的加入(例如β-片层结晶度诱导剂如甘油)或其任意组合。
根据所述丝基质(例如丝微球vs丝纤维)的形式和/或材料状态,所述丝基质可以是任意尺寸,从宽度为纳米至长度为米的范围。在所述丝基质的尺寸过大而不能用于注射的一些实施方式中,所述方法还可以包括将所述丝基质缩小成更小的粒子,例如通过研磨、切削和/或粉碎。在一些实施方式中,所述丝粒子可以是任何适于注射的尺寸。
在所述丝基质是丝粒子或微球的一些实施方式中,所述丝粒子或微球的尺寸(例如直径)可以是约0.5μm至约2000μm、约1μm至约2000μm、约10μm至约1000μm、约20μm至约800μm、约30μm至约500μm、约40μm至约250μm或者约50μm至约100μm。在一些实施方式中,所述丝微球的直径可以是约50μm至约100μm。本申请中使用的术语“微球”并不意味着将丝粒子的形状限制为球形,而是还包括具有任意形状例如球状、棒状、椭圆形、圆柱形、胶囊形或盘状的粒子。本领域的普通技术人员将理解微球通常显示出在所示“尺寸”附近的粒径分布。在一些实施方式中,本申请中使用的术语“尺寸”指微球的尺寸分布模式,即在所述尺寸分布中出现频率最高的值。用于测定所述微球尺寸的方法是本领域技术人员公知的,例如通过动态光散射(如光相关光谱、激光衍射、小角激光光散射(LALLS)、和中角激光光散射(MALLS))、光遮蔽法(如柯尔特(Coulter)分析法)或其他技术(如流变性和光学或电子显微镜)。
因此,在另一个方面,本申请还提供了丝微球和包含一种或多种丝微球的组合物。例如,本申请提供了包含丝微球的组合物,所述丝微球具有约10μm至约2000μm的尺寸。在一些实施方式中,所述丝微球是水不溶性的,例如具有至少约50%或更多的β-片层结晶片层含量。在一些实施方式中,所述丝微球还可以包含溶剂敏感性或温度敏感性活性剂。在一些实施方式中,所述丝微球还可以包含本申请所述的添加剂,例如但不限于甘油。在一些实施方式中,所述组合物是可注射的。在一些实施方式中,所述组合物是例如但不限于片剂、胶囊剂、锭剂、粉剂、糊剂、颗粒剂、液体、溶液剂、凝胶剂或其任意组合的形式的药物组合物,将在下文中对其进行进一步的描述。
此前的报道已表明通常具有不规则形状的丝微球能够通过研磨生的或脱胶的(degummed)丝纤维直接制备[Ref.6]。这些微球被用作化妆品配方中的抗氧化剂,或用作组织工程的3D多孔性丝支架中的补强剂[Refs.7,8]。对于药物递送目的而言,脱胶的丝纤维能够溶解在已加入药物并与丝混合的水性溶液中。然后对所述溶液进行进一步处理以获得多种形式的再生的丝材料,如膜、凝胶、纳米纤维或微球[Ref.4]。然而,将药物分子均匀地分布在所述丝材料基质中以使得药物释放速率恒定是所需要的。
喷雾干燥是一种广泛使用的制备微球的方法,此前已报道采用其制备丝微球[Refs.9,10]。喷雾干燥微粒的制备步骤包括丝溶液的喷嘴雾化和喷雾干燥,这两个步骤均需要高温和随后进行旋流分离[9,10]。即使这些高温能够在所述微球中诱导一些随机的螺旋向β-片层的转化并且使其能够在水化后的短时间内(即几小时)保持球形的形状,但是其不适于递送温度敏感性药物。特别是针对疏水性聚合物,较低的收率和由于高温和甲醇处理可能导致药物失活是与喷雾干燥法相关的其他的主要问题。此前已报道了制备丝微球的改进的喷雾干燥法[11],其中使用振动喷嘴获得喷雾代替使用热空气干燥所述丝喷雾,所述喷雾被直接收集至液氮容器中并在其中冷冻。振动喷嘴使用的频率远低于超声频率的通常范围(例如20kHz–40kHz)。冻干后,后续的甲醇或水蒸气处理仍是必需的以保持所述微球的水不溶性。因此,所报道的这种技术需要将所述丝微球与有机溶剂接触,因而其缺乏用于药物递送的全水性微球制备方法的潜在益处。与此前报道的这些现有的和常规的喷雾干燥法不同的是,本申请所述方法的一些实施方式既不需要使丝溶液经历高温也不需要使用甲醇或水蒸气对丝微球进行后处理以保持所述微球在水中的不溶性。由本申请所述方法生产的所述丝微粒(例如丝微球)中仍能形成β-片层结构并且能够使所述丝微粒在水化后的一段时间(例如至少24小时或更长时间)保持其形状。
此前在Refs[12,13]中已描述了在温和条件下使用磷脂作为微球形成模板制备平均尺寸约2μm的丝微球的其他方法。此前在Ref.[14]中已描述了基于丝与聚乙烯醇(PVA)之间的相分离的方法,在所述方法中使用PVA作为连续相从混合溶液中分离纳米至微米级的丝液滴,并且能够通过干燥的混合膜的再水化直接获得水不溶性丝纳米球(300-400nm)和微球(平均尺寸10-20μm)。然而,与本申请所述方法的一些实施方式不同的是,这些此前报道的方法均不能在一步中例如使用单一仪器同时实现雾化和β-片层结晶形成。
例如,在一个特定的实施方式中,所述方法能够利用流通超声臂,丝溶液通过该臂。由于当所述溶液通过所述臂时对其进行超声,因而能够直接诱导相对较高的丝状、β-片层含量,并且在所述臂的尖端获得雾化的丝微粒的细喷雾。待从所述臂中排出之后可以直接将所述喷雾收集至经液氮冷却的烧瓶中并且任选地冻干至少约12小时或更长时间。随后对所述喷雾的冷冻干燥能够在所述微球中诱导具有纳米至微米级孔径的多孔性结构。由于能够使用单一仪器在一个步骤中同时实现雾化和β-片层结晶的形成,因而能够实现包括冻干在内的少于24小时的最短工艺时间和对能量和溶剂的最低消耗,这表明所述方法能够用于丝微球的大规模生产。而且,使用本申请所述方法的这种特定实施方式制备的所述丝微球能够具有从50到100μm的平均尺寸,其大于采用现有方法生产的丝微球,因此所述方法拓宽了丝微球的可用尺寸范围并且提供了丝微球高度多孔性结构的替代方案。
在本申请所述方法中使用的丝蛋白和丝溶液:
由于具有疏水性的β-片层区段使丝蛋白具有独特的化学和物理性质,例如可调节的降解速率、可控的结晶度——使其成为阻止包封的药物分子扩散的理想屏障,氨基酸性质提供了药物包封的惰性微环境并且基于水性的材料处理对敏感性的药物分子是有利的。此前已报道了基于丝的生物材料在各种体内应用中的生物相容性和生物安全性,其与其他生物可降解材料相当或优于其他生物可降解材料,如胶原、透明质酸、聚乳酸-羟基乙酸共聚物(PLGA)[Refs.4,5]。
在本申请中使用的术语“丝蛋白”包括蚕丝蛋白和昆虫或蜘蛛丝蛋白。参见例如Lucas等,13Adv.Protein Chem.107(1958)。任意类型的丝蛋白均能够根据本申请提供的方面被使用。由蚕如家蚕(Bombyx mori)产生的丝蛋白是最常见的并且是环保的、可再生的资源。例如,在丝蛋白纤维中使用的丝蛋白能够通过从家蚕的茧中提取丝胶蛋白获得。有机蚕茧也是市售的。但是,还可以使用多种不同的丝,包括蛛丝(例如由Nephila clavipes获得)、转基因丝、基因工程改造的丝,如来自细菌、酵母、哺乳动物、转基因动物或转基因植物的丝(参见例如WO 97/08315;美国专利号为5,245,012的申请)及其变体。在一些实施方式中,丝蛋白可以来源于其他来源如蜘蛛、其他蚕、蜜蜂及其生物工程改造的变体。在一些实施方式中,丝蛋白可以提取自蚕或转基因蚕的腺体(参见例如WO 2007/098951)。
可以采用本领域技术人员公知的任意常规方法制备丝蛋白溶液。例如,在水溶液中煮沸家蚕茧约30分钟。在一个实施方式中,所述水溶液是约0.02M Na2CO3。茧被冲洗,例如,使用水冲洗茧以提取丝胶蛋白并且所提取的丝角蛋白溶解在水性盐溶液中。用于这一目的的盐包括溴化锂、硫氰酸锂、硝酸钙或能够溶解丝的其他化学药品。在一些实施方式中,将所提取的丝溶解在约8M-12M的LiBr溶液中。随后使用例如透析法除去盐。
如有必要,然后可以浓缩所述溶液,使用例如针对吸湿性聚合物(例如PEG、聚环氧乙烷、直链淀粉或丝胶蛋白)的透析法。在一些实施方式中,所述PEG的分子量为8,000-10,000g/mol和浓度为25%-50%。可以使用slide-a-lyzer透析盒(Pierce,MW CO3500)。但是,可以使用任意透析系统。所述透析可以进行足够长的一段时间以使水性丝溶液最终贮存液的浓度在约6%(w/v)至约30%(w/v)之间。在一个实施方式中,所述透析可以进行足够长的一段时间以使水性丝溶液最终贮存液的浓度为约8%(w/v)。在大多数情况下,透析2-12小时就足够了。参见例如国际申请号为WO 2005/012606的申请,其内容通过引用并入本申请。
或者,可以使用有机溶剂生产所述丝蛋白。已在例如Li,M.等,J.Appl.Poly Sci.2001,79,2192-2199;Min,S.等,Sen'I Gakkaishi 1997,54,85-92;Nazarov,R.等,Biomacromolecules2004May-Jun;5(3):718-26中对此类方法进行了描述。例如,能够用于生产丝溶液的示例性的有机溶剂包括但不限于六氟异丙醇。
用于制备本申请所述的丝基质(例如丝微球)的方法的丝溶液可以包含任意浓度的丝蛋白,这取决于所需的所述丝微球的特征,例如药物释放性质和/或其例如在水中和/或雾化方法中的溶解度。在一些实施方式中,所述丝溶液可以包含浓度约0.1%(w/v)至约30%(w/v)、约0.5%(w/v)至约20%(w/v)、约1%(w/v)至约15%(w/v)或约2%(w/v)至约10%(w/v)的丝蛋白。在一些实施方式中,所述丝溶液可以包含浓度为约5%(w/v)至约8%(w/v)的丝蛋白。在一些实施方式中,所述丝溶液可以包含浓度约5%(w/v)的丝蛋白。在通常情况下,丝浓度越高可以使得凝胶化越迅速。较高的丝浓度可能会堵塞喷雾喷嘴,这取决于工艺方法如喷雾。本领域技术人员能够优化在各种雾化方法和/或喷嘴尺寸使用的丝浓度。
在各种实施方式中,可以针对不同的应用和/或所需的机械或化学性质(例如以便于在丝蛋白基质中形成具有梯度的治疗剂),对所述丝蛋白进行修饰。本领域技术人员能够选择修饰丝蛋白的适当方法,例如根据所述丝蛋白的侧基、所需的所述丝蛋白的反应性和/或在所述丝蛋白上的所需的电荷密度。在一个实施方式中,可以使用适宜的氨基酸侧链化学对丝蛋白进行修饰,如通过共价键的化学修饰,或通过电荷间相互作用的修饰。示例性的化学修饰方法包括但不限于碳二亚胺偶联反应(参见例如美国专利申请号为US2007/0212730的申请)、重氮偶联反应(参见美国专利申请号为US 2009/0232963的申请)、亲和素-生物素相互作用(参见例如国际申请号为WO 2011/011347的申请)和使用有化学活性的或被活化的PEG聚合物的衍生物进行聚乙二醇化(参见例如国际申请号为WO2010/057142的申请)。还可以通过基因修饰对丝蛋白进行修饰以改变所述丝蛋白的功能性(参见例如国际申请号为WO 2011/006133的申请)。例如,可以对所述丝蛋白进行基因修饰,其能够对所述丝提供进一步的修饰如使其包含含有纤维蛋白结构域和矿化结构域的融合多肽,所述结构域能够用于形成有机-无机复合物。参见WO 2006/076711。在一些实施方式中,可以对所述丝蛋白进行基因修饰以便与蛋白如治疗蛋白融合。此外,可以将所述丝蛋白基质与化学药物例如影响所述基质的柔性和/或溶解性的化学药物如甘油组合。参见例如WO 2010/042798,含有甘油的经修饰的丝膜。
在一些实施方式中,制备丝基质(例如丝微球)的所述丝溶液还能够包含一种或多种(例如1、2、3、4、5种或更多种)添加剂,例如用于各种所需的性质和/或应用。示例性的添加剂可以包括但不限于生物聚合物、致孔剂(例如盐或聚合物粒子)、磁性粒子、等离子体粒子、超材料、赋形剂、增塑剂、检测标签及其任意组合。所述添加剂可以以任意比例存在于所述丝溶液中。例如,在所述丝溶液中添加剂与丝的重量比的范围可以是从约1:1000至约1000:1,或从约1:100至约100:1,或从约1:10至约10:1。在一些实施方式中,在所述溶液中添加剂的总量可以占所述溶液中丝蛋白总量的从约0.1wt%至约70wt%、从约5wt%至约60wt%、从约10wt%至约50wt%、从约15wt%至约45wt%或者从约20wt%至约40wt%。
在一些实施方式中,加入所述丝溶液中的至少一种添加剂可以包括一种或多种(例如1、2、3、4、5种或更多种)增塑剂,例如在所述丝中诱导β-片层结晶结构形成的试剂。在这种实施方式中,在所述丝溶液中存在的所述增塑剂与丝的总重量比的范围可以是约1:20至约20:1或约1:10至约10:1。在一些实施方式中,在所述丝溶液中存在的所述增塑剂与丝的总重量比可以是约1:3。在一些实施方式中,所述增塑剂的总量可以占在所述溶液中所述丝蛋白总量的从约10wt%至约50wt%、从约20wt%至约40wt%或从约25wt%至约35wt%。增塑剂的非限制性示例可以包括甘油、聚乙烯醇、胶原蛋白、明胶、藻酸盐、壳聚糖、透明质酸、聚乙二醇、聚环氧乙烷及其任意组合。在一个实施方式中,例如将甘油加入到所述丝溶液中以便在所述丝中诱导β-片层结晶结构的形成。在这种实施方式中,在所述丝溶液中甘油与丝的重量比的范围可以是从约1:10至约10:1。在一个实施方式中,在所述丝溶液中甘油与丝的总量可以是约1:3。以另一种方式表示,在所述溶液中甘油的量可以占所述溶液中丝蛋白总量的从约20wt%至约40wt%或从约25wt%至约35wt%。
在一些实施方式中,加入所述丝溶液中的增塑剂(例如甘油)的量能够足以在超声期间在所述丝溶液中诱导至少约5%的丝IIβ-片层结晶含量的形成,例如至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%或至少约95%但不是100%(即所有的丝均以丝IIβ-片层构型存在)的丝IIβ-片层结晶含量。在一些实施方式中,在将所述丝溶液雾化成丝微球后,在所述丝基质中的丝可以完全以丝IIβ-片层构型存在。
在一些实施方式中,加入用于制备丝基质例如丝微球的所述丝溶液中的至少一种添加剂可以包括一种或多种(例如1、2、3、4、5种或更多中)生物聚合物和/或生物相容性聚合物。示例性的生物聚合物和/或生物相容性聚合物包括但不限于聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚酯、聚(原酸酯)、聚(膦嗪)、聚(磷酸酯)、聚己内酯、明胶、胶原、纤连蛋白、角蛋白、聚天冬氨酸、藻酸盐、壳聚糖、甲壳素、透明质酸、果胶、聚羟基烷酸酯、葡聚糖、聚酐、聚环氧乙烷(PEO)、聚乙二醇(PEG)、三嵌段共聚物、聚赖氨酸、藻酸盐、聚天冬氨酸及其任意衍生物和其任意组合。适用于根据本发明的其他示例性生物相容性聚合物包括例如在US Pat.No.6,302,848;No.6,395,734;No.6,127,143;No.5,263,992;No.6,379,690;No.5,015,476;No.4,806,355;No.6,372,244;No.6,310,188;No.5,093,489;No.US 387,413;No.6,325,810;No.6,337,198;No.US 6,267,776;No.5,576,881;No.6,245,537;No.5,902,800和No.5,270,419中描述的那些,其全部内容通过引用并入本申请。
在丝基质例如微球中的示例性的治疗剂及其含量
根据所述丝基质(例如丝微球)的各种应用,不同类型的所述活性剂可以在所述丝基质(例如丝微球)中存在,例如通过包封和/或涂覆。不希望被束缚,例如所述丝基质(例如丝微球)可以包含一种或多种活性剂,包括但不限于治疗剂、成像剂或其任意组合。
在一些实施方式中,在所述丝基质(例如丝微球)中可以包含一种或多种成像剂。成像剂的示例可以包括但不限于染料、荧光剂、放射性成像剂、用于组织和/或器官成像的任何本领域公认的造影剂及其任意组合。荧光剂是本领域公知的。荧光剂的示例可以包括但不限于异硫氰酸荧光素-葡聚糖(FITC-葡聚糖)、基于钌的染料或铂卟啉或者其混合物。
在本申请中使用的术语“治疗剂”指给予生物体的用于诊断、治疗、预防性医疗或兽用目的的分子、分子基团、复合物或物质。在本申请中使用的术语“治疗剂”包括“药物”或“疫苗”。该术语包括从外部和从内部局部、局部和全身给予人和动物药物、治疗、疗法、保健品、药妆、生物制品、装置、诊断和避孕药具,包括对临床和兽用筛选、防止、预防、康复、疗养、检测、成像、诊断、治疗、手术、监测、整容、修复、法医等有用的配制品。该术语还可以指包括能够识别细胞受体、膜受体、激素受体、治疗受体、微生物、病毒的选定分子或选定核酸序列的或包括选定靶点的或能够接触植物、动物和/或人的用于农学、工作场所、军事、工业和环境的治疗剂或疗法。该术语还能够特别地包括核酸和化合物,所述化合物包含产生治疗作用的核酸,例如脱氧核糖核酸(DNA)、核糖核酸(RNA)或者其混合物或组合。
术语“治疗剂”还包括能够在其应用的生物系统中提供局部或全身性生物、生理或治疗作用的药剂。例如,所述治疗剂能够发挥控制感染或炎症、增强细胞生长和组织再生、控制肿瘤生长的作用,发挥镇痛、促进抗细胞附着和增强骨生长等其他功能。其他适宜的治疗剂可以包括抗病毒剂、激素、抗体或治疗性蛋白。其他治疗剂包括前药,其是当给予时不具有生物活性,但是在给予对象后通过代谢或一些其他机制转化成生物活性剂的药剂。此外,丝基质(例如丝微球)可以含有两种或多种治疗剂的组合。
治疗剂可以包括多种不同的化合物,包括化学化合物和和化学化合物的混合物,例如有机或无机小分子;糖;寡糖;聚糖;生物大分子,例如肽、蛋白和肽类似物和衍生物;拟肽;抗体和其抗原结合片段;核酸;核酸类似物和衍生物;由生物材料如细菌、植物、真菌或动物细胞制备的提取物;动物组织;天然存在的或合成的组合物;及其任意组合。在一些实施方式中,所述治疗剂是小分子。
在本申请中使用的术语“小分子”可以指“天然产物样”的化合物,但是,所述术语“小分子”不限于“天然产物样”的化合物。而且,小分子典型的特征为其含有若干碳碳键并且分子量低于5000道尔顿(5kDa)、优选地低于3kDa、更优选地低于2kDa和最优选地低于1kDa。在一些情况下,优选分子量等于或低于700道尔顿的小分子。
示例性的治疗剂包括但不限于在Harrison’s Principles of Internal Medicine(哈里森内科原理),第13版,Eds.T.R.Harrison等,McGraw-Hill N.Y.,NY;Physicians Desk Reference(医师案头参考手册),第50版,1997,Oradell New Jersey,Medical Economics Co.;Pharmacological Basis of Therapeutics(治疗的药理学基础),第8版,Goodman and Gilman,1990;美国药典,国家处方集,USP XII NF XVII,1990中的那些,其全部内容通过引用并入本申请。
治疗剂包括本申请中公开的类别和特定的实施例。所述类别并非旨在由特定的实施例限定。本领域的普通技术人员还将想到多种其他的化合物,其落入所述类别中并且根据本发明是有用的。示例包括放射增敏剂、类固醇、黄嘌呤、β2-激动剂支气管扩张剂、抗炎剂、镇痛剂、钙拮抗剂、血管紧张素转化酶抑制剂、β阻断剂、中枢活性的α-激动剂、α1拮抗剂、抗胆碱能药/解痉剂、血管加压素类似物、抗心律失常药、抗帕金森药、抗心绞痛/降压药、抗凝血剂、抗血小板剂、镇静剂、抗焦虑剂、肽剂、生物聚合物剂、抗肿瘤药、缓泻剂、止泻剂、抗微生物剂、抗真菌剂、疫苗、蛋白或核酸。在进一步的方面,所述药物活性剂可以是香豆素、白蛋白、类固醇如倍他米松、地塞米松、甲泼尼龙、泼尼松龙、强的松、曲安西龙、布地缩松、氢化可的松和药学上可接受的氢化可的松衍生物;黄嘌呤如茶碱和多索茶碱;β2-激动剂支气管扩张剂如沙丁胺醇、非诺特罗、克伦特罗、班布特罗、沙美特罗、非诺特罗;抗炎剂包括平喘的抗炎剂、抗关节炎的抗炎剂和非甾体抗炎剂,其示例包括但不限于硫化物、美沙拉嗪、布地奈德、柳氮磺胺吡啶、双氯芬酸、双氯芬酸药学上可接受的盐、尼美舒利、萘普生、对乙酰氨基酚、布洛芬、酮洛芬和吡罗昔康;镇痛剂如水杨酸盐;钙通道阻滞剂如硝苯地平、氨氯地平和尼卡地平;血管紧张素转换酶抑制剂如卡托普利、盐酸贝那普利、福辛普利钠、群多普利、雷米普利、赖诺普利、依那普利、盐酸喹那普利和盐酸莫昔普利;β-阻断剂(即β肾上腺素能阻断剂)如盐酸索他洛尔、马来酸噻吗洛尔、盐酸艾司洛尔、卡替洛尔,盐酸普萘洛尔、盐酸倍他洛尔、硫酸喷布洛尔、酒石酸美托洛尔、琥珀酸美托洛尔、盐酸醋丁洛尔、阿替洛尔、吲哚洛尔和富马酸比索洛尔;中枢活性的α-2激动剂如可乐定;α-1拮抗剂如多沙唑嗪和哌唑嗪;抗胆碱能药/解痉剂如盐酸双环胺、氢溴酸东莨菪碱、格隆溴铵、克利溴铵、黄酮哌酯和奥昔布宁;血管加压素类似物如血管加压素和去氨加压素;抗心律失常药如奎尼丁、利多卡因、盐酸妥卡尼、盐酸美西律、地高辛、盐酸维拉帕米、盐酸普罗帕酮、醋酸氟卡胺、盐酸普鲁卡因胺、盐酸莫雷西嗪和磷酸丙吡胺;抗帕金森药如多巴胺、L-多巴/卡比多巴、司来吉林、二氢麦角隐亭、培高利特、利舒脲、阿扑吗啡和溴隐亭;抗心绞痛药和抗高血压药如异山梨醇单硝酸酯、异山梨醇二硝酸酯、普萘洛尔、阿替洛尔和维拉帕米;抗凝血剂和抗血小板剂如香豆素、华法林、乙酰水杨酸和噻氯匹定;镇静剂如苯二氮卓类和巴比妥类;抗焦虑剂如劳拉西泮、溴西泮和地西泮;肽和生物聚合物剂如降钙素、亮丙瑞林和其他LHRH激动剂、水蛭素、环孢菌素、胰岛素、促生长素抑制素、普罗瑞林、干扰素、去氨加压素、促生长素、胸腺喷丁、匹多莫德、促红细胞生成素、白细胞介素、褪黑激素,粒细胞/巨噬细胞CSF和肝素;抗肿瘤剂如依托泊苷、磷酸依托泊苷、环磷酰胺、氨甲蝶呤、5-氟尿嘧啶、长春新碱、多柔比星、顺铂、羟基脲、亚叶酸钙盐、他莫昔芬、氟他胺、天冬酰胺酶、六甲蜜胺、米托坦和盐酸甲基苄肼;缓泻剂如番泻叶浓缩物、美鼠李皮蒽酚苷、比沙可啶和匹克硫酸钠;止泻剂如盐酸地芬诺新、盐酸洛哌丁胺、呋喃唑酮、盐酸地芬诺酯和微生物;疫苗如细菌和病毒疫苗;抗微生物剂如青霉素类、头孢菌素类和大环内酯类;抗真菌剂如咪唑和三唑衍生物;以及核酸如编码生物蛋白的DNA序列和反义寡核苷酸。
如上文所述,在丝基质(例如丝微球)中可以包括任意治疗剂,例如通过包封和/或涂覆。在一些实施方式中,在丝基质(例如丝微球)中包括材料以促进所述试剂(针对生物剂)生长、在所述试剂从包封中释放后促进所述试剂的功能性、或在包封期间增加所述试剂存活或保持其效能的能力是理想的。已知促进细胞生长的材料包括细胞生长基质如杜尔贝科改良的伊格尔培养基(DMEM),胎牛血清(FBS),非必需氨基酸和抗生素,和生长和形态因子如碱性成纤维生长因子(bFGF)、转化生长因子(TGF)、血管内皮生长因子(VEGF)、胰岛素样生长因子(IGF-I)、骨形态发生生长因子(BMP)、神经生长因子和相关蛋白。
通过本申请所述的丝基质(例如丝微球)递送的其他选项可以包括DNA、siRNA、反义、质粒、脂质体和用于递送遗传物质的相关系统;抗体和其抗原结合片段;激活细胞信号级联的肽和蛋白;针对来自细胞的促矿化作用或相关事件的肽和蛋白;改善凝胶-组织的界面的粘附肽和蛋白;抗微生物肽以及蛋白和相关化合物。
在一些实施方式中,在本发明中使用的治疗剂包括但不限于需要相对频繁给药的那些。例如,用于慢性疾病或病情的治疗的那些。
在一些实施方式中,所述治疗剂包括2-[4-[3-[2-(三氟甲基)-10H-吩噻嗪-10-基]丙基]哌嗪-1-基]乙醇(氟奋乃静)、3,5-二甲基三环[3.3.1.1]癸烷-1胺(3,5-二甲基金刚烷-1-胺,美金刚)或氯化美金刚。氟奋乃静目前有口服和可注射剂型。不利地,氟奋乃静具有40%至50%的不完全的口服生物利用度(由于在肝脏中广泛的首过代谢),使其半衰期为15至30小时。森林实验室(Forest Labs)旗下Namenda品牌的美金刚目前有口服剂型如片剂、胶囊或溶液剂。在一些实施方式中,美金刚可以联合一种或多种胆碱酯酶抑制剂(例如多奈哌齐、加兰他敏、卡巴拉汀)给予或包括在所述丝基质(例如丝微球)中。
在一些实施方式中,所述治疗剂包括贝伐单抗()、兰尼单抗()或其组合。在一些实施方式中,贝伐单抗和/或兰尼单抗可以与一种或多种本领域公知的抗血管生成剂例如抗VEGF剂联合给予或包括在所述丝基质(例如丝微球)中给予。
在一些实施方式中,所述治疗剂是细胞,例如生物细胞。在这种实施方式中,所述细胞能够通过在细胞悬液中孵育所述丝基质(例如丝微球)分布在丝基质(例如丝微球)中,其中所述细胞能够由所述悬液迁移至所述丝基质(例如丝微球)的孔中。能够掺入所述丝基质(例如丝微球)的细胞包括但不限于干细胞(胚胎干细胞、间充质干细胞、骨髓来源的干细胞和造血干细胞)、软骨细胞祖细胞、胰腺祖细胞、成肌细胞、成纤维细胞、角化细胞、神经元细胞、神经胶质细胞、星形细胞、前脂肪细胞、脂肪细胞、血管内皮细胞、毛囊干细胞、内皮祖细胞、间充质细胞、神经干细胞和平滑肌祖细胞。
在一些实施方式中,所述细胞是经基因修饰的细胞。可以对细胞进行基因修饰以使其表达和分泌所需的化合物例如生物活性剂、生长因子、分化因子、细胞因子等。用于表达和分泌目标化合物的基因修饰的方法是本领域公知的和本领域技术人员易于获得的。
还可以使用已重编程为干细胞的已分化的细胞。例如,通过用Oct3/4、Sox2、c-Myc和Klf4转导人皮肤细胞将其重编程为胚胎干细胞(Junying Yu等,Science,2007,318,1917-1920和Takahashi K.等,Cell,2007,131,1-12)。
用于掺入所述丝基质(例如丝微球)的细胞可以来自任意来源,例如人、大鼠或小鼠。人细胞包括但不限于人心肌细胞-成人(HCMa)、人皮肤成纤维细胞-胎儿(HDF-f)、人表皮角化细胞(HEK)、人间充质干细胞-骨髓、人脐带间充质干细胞、人毛囊内根鞘细胞、人脐静脉内皮细胞(HUVEC)、人脐静脉平滑肌细胞(HUVSMC)、人内皮祖细胞、人成肌细胞、人毛细血管内皮细胞和人神经干细胞。
示例性的大鼠和小鼠细胞包括但不限于RN-h(大鼠神经元-海马)、RN-c(大鼠神经元-皮质)、RA(大鼠星形胶质细胞)、大鼠背根神经节细胞、大鼠神经祖细胞、小鼠胚胎干细胞(mESC)、小鼠神经祖细胞、小鼠胰腺祖细胞、小鼠间充质细胞和小鼠内胚层细胞。
在一些实施方式中,组织培养细胞系可以用于本申请所述的丝基质(例如丝微球)中。细胞系的示例包括但不限于C166细胞(胚胎第12日小鼠卵黄)、C6神经胶质瘤细胞系、HL1(心肌细胞系)、AML12(非转化肝细胞)、HeLa细胞(宫颈癌细胞系)和中国参数卵巢细胞(CHO细胞)。
本领域的普通技术人员能够定位、分离和扩增此类细胞。此外,用于组织工程的细胞培养的基本原理以及定位、分离和扩增以及制备细胞的方法参见“Culture of Cells for TissueEngineering(用于组织工程的细胞培养)”Editor(s):Gordana Vunjak-Novakovic,R.IanFreshney,2006John Wiley&Sons,Inc.和Heath C.A.,Trends in Biotechnology,2000,18,17-19,其内容通过引用整体并入本申请。
在通常情况下,可以将任意量的所述治疗剂分散或包封于所述丝基质中,这取决于多种因素,包括但不限于所述治疗剂所需的释放谱(例如释放速率和/或持续时间)、性质(例如半衰期和/或分子尺寸)和/或效能,待治疗的对象的疾病或病症的严重程度,所需的给药方案,所述丝基质的负载能力及其任意组合。例如,在一些实施方式中,治疗剂可以以约1ng至约100mg、约500ng至约90mg、约1μg至约75mg、约0.01mg至约50mg、约0.1mg至约50mg、约1mg至约40mg、约5mg至约25mg的量存在于丝基质(例如约10mg丝微球)中。在一些实施方式中,治疗剂可以以占总重量(即所述丝基质和所述治疗剂共同的重量)约0.01%(w/w)至约90%(w/w)的量存在于丝基质(例如约10mg丝微球)中,例如包括所述总重量的约0.01%(w/w)至约70%(w/w)、约0.1%(w/w)至约50%(w/w)、约1%(w/w)至约30%(w/w)、约5%(w/w)至约25%(w/w)或约7.5%(w/w)至约20%(w/w)。在一些实施方式中,所述治疗剂可以以所述总重量约0.5%(w/w)至约20%(w/w)的量存在于所述丝基质中。在一些实施方式中,所述治疗剂可以以所述总重量约2%(w/w)至约20%(w/w)的量存在于丝基质中。在一个实施方式中,所述治疗剂(例如贝伐单抗、兰尼单抗或其混合物)可以以所述总重量约1%(w/w)至约20%(w/w)的量存在于丝基质中。在一个实施方式中,所述治疗剂(例如美金刚)可以以所述总重量约0.1%(w/w)至5%(w/w)的量存在于丝基质中。
不希望受到理论的束缚,在待治疗靶点治疗作用的持续时间通常与递送至所述靶位点的所述治疗剂的量能够维持治疗有效量的时间相关。因此,在一些实施方式中,本申请所述的药物组合物可以含有分散或包封在丝基质(例如一定剂量的丝微球)中的治疗剂,其中所述治疗剂存在的量足以在给药后的一个特定的时间段例如超过1周或超过1个月维持递送至治疗靶位点的治疗有效量。
在本申请中使用的术语“治疗有效量”指至少在对象的细胞亚群中以应用任何药物治疗均处于合理的收益/风险比有效产生有益的或所需的临床结果的治疗剂的量。例如,递送至靶位点的治疗有效量足以直接或间接地产生如本申请所定义的具有统计学意义的、可检测的治疗效果。仅通过举例的方式,与不存在治疗剂相比,递送至靶位点用于治疗的所述治疗有效量足以将与待治疗的疾病或病症(例如但不限于癌症、眼病如年龄相关的黄斑变性或神经退行性疾病如阿尔茨海默氏症)的至少一种症状或标记物减少至少约10%、至少约20%、至少约30%、至少约40%、至少约50%%、至少约60%或更高。在一些实施方式中,与不存在治疗剂相比,递送至靶位点用于治疗的所述治疗有效量足以将与待治疗的疾病或病症(例如但不限于癌症、眼病如年龄相关的黄斑变性或神经退行性疾病如阿尔茨海默氏症)的至少一种症状或标记物减少至少约60%、至少约70%、至少约80%或更高。在一些实施方式中,与不存在治疗剂相比,递送至靶位点用于治疗的所述治疗有效量足以将与待治疗的疾病或病症(例如但不限于癌症、眼病如年龄相关的黄斑变性或神经退行性疾病如阿尔茨海默氏症)的至少一种症状或标记物减少至少约80%、至少约90%、至少约95%、至少约98%、至少约99%、达到并包括100%。
治疗有效量的确定在本领域技术人员能力的范围内。在通常情况下,治疗有效量可能随对象的病史、年龄、状况、性别以及在对象中病况的严重程度和类型,以及其他药物活性剂的施用而改变。而且,治疗有效量将根据本领域技术人员的判断而改变,这取决于所治疗的特定疾病、给药途径、所选择的赋形剂和联合疗法的可能性。在一些实施方式中,所述治疗有效量可以在ED50和LD50(约50%使用其的对象被杀死的治疗剂的剂量)之间的范围内。在一些实施方式中,所述治疗有效量可以在ED50(在至少约50%使用其的对象中检测到治疗效果的治疗剂的剂量)和TD50(约50%的病例出现毒性的剂量)之间的范围内。在替代的实施方式中,所述治疗有效量可以是基于在非丝基质中施用的相同治疗剂的现有给药方案测定的量。例如,所述治疗有效量的上限可以是基于在给药当天使用现有的在非丝基质中的治疗剂的剂量递送至靶位点的所述治疗剂的浓度或量;而所述治疗有效量的下限可以是基于在当天所使用的在非丝基质中的治疗剂的新鲜剂量(fresh doage)递送至靶位点的所述治疗剂的浓度或量。
在本申请中使用的术语“维持”用于指在一个特定的时间段内将递送至靶位点的治疗剂的浓度或量保持在至少约为治疗有效量或其以上。在一些实施方式中,在本申请中使用的术语“维持”可以指在一个特定的时间段内将治疗剂的浓度或量保持在一个基本上恒定的值。在一些实施方式中,在本申请中使用的术语“维持”可以指在一个特定的时间段内将治疗剂的浓度或量保持在一定范围内。例如,在一个特定的时间段内递送至靶位点的治疗剂的浓度或量可以维持在约ED50至约LD50之间或约ED50至约TD50之间的范围内。在此类实施方式中,递送至靶位点的所述治疗剂的浓度或量可以随时间改变,但是保持在所述特定时间段的治疗有效量至少90%的范围内(例如所述特定时间段的至少约95%、约98%、约99%、达到和包括100%)。
在一些实施方式中,在给药后超过1周的时间段内,所述治疗剂能够以足以维持其递送至靶位点的治疗有效量的量存在,包括例如至少约2周、至少约3周、至少约1个月、至少约2个月、至少约3个月、至少约6个月、至少约12个月或更长时间。在一定剂量的丝基质(例如一定剂量的丝微球)中存在的所述治疗剂的这种量通常可以低于产生基本上相同的治疗作用所需的在现有治疗方案的剂量(即不使用丝基质)中存在的所述治疗剂的量,例如至少低约10%。因此,一定剂量的丝基质(例如一定剂量的丝微球)可以含有一定量的所述治疗剂,所述的一定量低于一个剂量的所述治疗剂的推荐用量。例如,如果所述治疗剂的推荐剂量是X,则所述丝基质可以含有约0.9X、约0.8X、约0.7X、约0.6X、约0.5X、约0.4X、约0.3X、约0.2X、约0.1X或更低的量的治疗剂。不希望受到理论的束缚,在丝基质中能够允许使用更低剂量的所述治疗剂以获得与当不使用所述丝基质而给予更高剂量时相似的治疗作用。
在一些实施方式中,分散或包封在一定剂量的丝基质(例如一定剂量的丝微球)中的所述治疗剂的量可以高于一剂量相同治疗剂用于特定适应证的常规推荐用量。在溶液中施用的治疗剂(例如贝伐单抗)通常不是可控的和持续释放的。因此,与负载在丝基质中的相同量的所述治疗剂相比,在溶液中治疗剂的释放速率通常形成较高的初始突释和/或总体上较快的释放动力学。然而,所述丝基质能够以储库的形式发挥作用以使得在丝基质中负载的所述治疗剂的量可以高于一剂量相同治疗剂通常的推荐用量并且在一段时间内释放所述治疗剂,从而以更低频率的给药提供更长的治疗作用。因此,如果所述治疗剂的推荐剂量是X,则所述丝基质能够以约1.25X、约1.5X、约1.75X、约2X、约2.5X、约3X、约4X、约5X、约6X、约7X、约8X、约9X、约10X或更多的量包封治疗剂。不希望受到理论的束缚,在丝基质中给予所述治疗剂能够获得与不使用本申请所述的丝基质多次给予所述治疗剂所获得的相似的治疗作用。
在一些实施方式中,包封或分布在一定剂量的所述丝基质(例如一定剂量的丝微球)中的所述治疗剂的量可以基本上与一剂量所述治疗剂的推荐用量相同。例如,如果所述治疗剂的推荐剂量的X,则所述基于丝的组合物可以包含约X的量的所述治疗剂。不希望受到理论的束缚,这能够使所述治疗剂在一段时间内以较低的给药频率获得治疗作用。
在本申请中使用的术语“持续递送”指在给药后的一段时间内在体内或体外连续递送治疗剂。例如,持续递送能够发生在至少约3天、至少约1周、至少约2周、至少约3周、至少约4周、至少约1个月、至少约2个月、至少约3个月、至少约4个月、至少约5个月、至少约6个月、至少约7个月、至少约8个月、至少约9个月、至少约10个月、至少约11个月、至少约12个月或更长的一段时间内。在一些实施方式中,所述持续释放能发生在超过一个月或更长的一段时间内。在一些实施方式中,所述持续释放能够发生在至少约3个月或更长的一段时间内。在一些实施方式中,所述持续释放能够发生在至少约6个月或更长的一段时间内。在一些实施方式中,所述持续释放能够发生在至少约9个月或更长的一段时间内。在一些实施方式中,所述持续释放能够发生在至少约12个月或更长的一段时间内。
所述治疗剂的体内持续递送能够通过例如所述药剂随时间推移的持续治疗效果所证实。或者,所述治疗剂的持续递送能够通过检测随着时间的推移的所述治疗剂在体内的存在或水平所证实。可以根据多种因素调整治疗剂的释放速率,如丝基质的组分和/或浓度、所述丝基质的多孔性性质、所述治疗剂的分子尺寸和/或所述治疗剂与所述丝基质的相互作用。例如,如果所述治疗剂与所述丝基质具有较高的亲和性,则所述释放速率通常低于与所述丝基质具有较低亲和性的治疗剂。此外,当丝基质具有更大的孔时,所包封的治疗剂通常从所述丝基质中的释放要快于从具有较小孔的丝基质中的释放。
在一些实施方式中,所述治疗剂可以以提供所述治疗剂从所述丝基质中的释放性质的量存在,以使得递送至靶位点的所述治疗剂的量在一段时间内维持在治疗有效量的范围内。在一些实施方式中,所述治疗剂可以以提供所述治疗剂释放性质的量存在,在一段时间内具有的释放速率的范围为从约0.01ng/天至约1000mg/天、从约0.1ng/天至约500mg/天或从约1ng/天至约250mg/天。不希望受到理论的束缚,在施用包封或分散在本申请所述的丝基质或组合物中的治疗剂后,递送至靶位点的所述治疗剂的量通常具有初始峰值,然后在一段时间内所述治疗剂从所述丝基质中的释放速率降低。因此,所述治疗剂可以在初始以高达mg/天的速率释放,并且在随后以较慢的速率释放,例如μg/天或ng/天。因此,在一些实施方式中,所述治疗剂可以以能够提供释放性质的量存在,以使得所述治疗剂的每日释放能够在从约1ng/天至约1000mg/天的范围内。例如,所释放的量可以在下限从1至1000(例如从1至1000的各个整数)至上限从1至1000(例如从1至1000的各个整数)的范围内,其中所述下限和上限单位可以独立地选自ng/天、μg/天、mg/天或其任意组合。
在一些实施方式中,每日释放可以从约1μg/天变化至约10mg/天、从约0.25μg/天变化至约2.5mg/天或从约0.5μg/天变化至约5mg/天。在一些实施方式中,所述治疗剂的每日释放可以在从约100ng/天至1mg/天,例如或约500ng/天至5mg/天或约100μg/天的范围内。
换言之,所述治疗剂可以以一定速率从所述丝基质中释放,以使得在约3天、约1周、约10天、约20天、约1个月、约2个月、约3个月、约4个月、约5个月、约6个月、约7个月、约8个月、约9个月、约10个月、约11个月、约12个月或更长的一段时间内,在所述丝基质中所述治疗剂初始存在量的至少约5%包括例如至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约90%或更高的量可以被释放。在一些实施方式中,所述治疗剂(例如贝伐单抗)可以以一定速率从所述丝基质中释放,以使得在约3-20天的一段时间内在所述丝基质中所述治疗剂初始存在量的约5-30%可以被释放。在一些实施方式中,所述治疗剂(例如美金刚)可以以一定速率从所述丝基质中释放,以使得在约3-30天的一段时间内在所述丝基质中所述治疗剂初始存在量的约40-90%可以被释放。
可以根据多种因素(如在丝基质中负载的所述治疗剂的量和/或分子尺寸、所述丝基质的多孔性、在丝基质中的丝蛋白的量和/或在丝基质中的β-片层构象结构的含量、所述治疗剂与丝基质的结合亲和性及其任意组合)调整所述治疗剂从一定剂量的丝基质(例如一定剂量的丝微球)或药物组合物中的释放性质。
此外,在某种条件下丝基质能够稳定治疗剂的生物活性,例如在体内的生理条件下。对于稳定活性剂的组合物和方法的其他详细情况,参见例如美国临时专利申请号61/477,737,其内容通过引用并入本申请。因此,在一些实施方式中,将治疗剂包封在丝基质中能够增加所述治疗剂的体内半衰期。例如,与未使用所述丝基质的所述治疗剂相比,在丝基质中分布或包封的治疗剂的体内半衰期能够增加至少约5%、至少约10%、至少约15%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约90%、至少约1-倍、至少约1.5-倍。不希望收到理论的束缚,在丝基质中分散或包封的治疗剂增加的体内半衰期能够提供更长的治疗作用。换言之,在丝基质中分散或包封的治疗剂的体内半衰期增加能够使得负载更少量的所述治疗剂即可达到相同治疗作用的持续时间。
在一些实施方式中,可以将至少一种治疗剂分散或包封在所述丝基质中。在一些实施方式中,可以将至少两种或多种治疗剂分散或包封在所述丝基质中。所述治疗剂可以是适于用于包封和/或分散的特定方法的任意形式。例如,所述治疗剂可以是固体、液体或凝胶形式。在一些实施方式中,所述治疗剂可以是粉末或小球形式。在一些实施方式中,所述治疗剂可以在形成所述丝基质之前分散或包封在丝溶液或基质中。在一些实施方式中,所述治疗剂可以在形成所述丝基质之后分散或包封在丝溶液或基质中。例如,所述治疗剂可以均质性或异质性地分散在所述丝基质中,或者以一定梯度分散,例如使用美国专利申请号US 2007/0212730中所描述的碳二亚胺介导的修饰的方法。在一些实施方式中,所述治疗剂可以涂覆在所述丝基质的表面上,例如通过重氮偶联反应(参见例如美国专利申请号US 2009/0232963)和/或抗生物素蛋白-生物素的相互作用(参见例如国际申请号WO2011/011347)。在一些实施方式中,所述治疗剂可以包封在所述丝基质中,例如通过在加工成所需材料状态例如水凝胶或微球或纳米球前将所述治疗剂混入丝溶液中。在一些实施方式中,所述治疗剂可以以与丝蛋白融合蛋白的形式存在,例如通过将丝蛋白基因工程改造以产生包含所述治疗剂的融合蛋白。
在一些实施方式中,可以在所述丝基质形成后将所述治疗剂分散或包封在丝基质中,例如通过将已形成的丝基质置于治疗剂溶液中并使得所述治疗剂在一段时间内扩散进入所述丝基质中。在一些实施方式中,在负载所述治疗剂之前,可以任选地将所述丝基质水化。例如,可以在去离子水中孵育所述丝基质直至其完全水化。
药物组合物和给药
在另一个方面,本申请提供了一种药物组合物,所诉药物组合物包含一种或多种(例如两种或多种)本申请所述的微球和药学上可接受的赋形剂。在一些实施方式中,药物组合物可以包含包埋在本申请所列的生物相容性聚合物中的多种(例如两种或多种)本申请所述的丝微球。在一些实施方式中,药物组合物可以包含包埋在丝水凝胶中的多种(例如两种或多种)丝微球。所述丝水凝胶能够由本领域公知的任意方法生产。根据各种给药途径,在一些实施方式中,所述药物组合物可以制成可注射的。
可以将所述药物组合物制成以固体或液体形式给药,包括采用下述方式的那些:(1)口服给药,例如灌服剂(水性或非水性溶液或混悬液)、锭剂、糖锭、胶囊、丸剂、片剂(例如被靶向口腔、舌下和全身吸收的那些)、大丸剂、粉剂、颗粒剂、用于舌的糊剂;(2)胃肠外给药,例如通过皮下、肌内、静脉内或硬膜外注射,通过例如无菌溶液或混悬液或持续释放剂型;(3)局部应用,例如用于皮肤的乳膏、软膏或者控释贴片或喷雾;(4)阴道内或直肠内,例如阴道栓、乳膏或泡沫;(5)舌下;(6)眼部或眼内(例如玻璃体内给药);(7)经皮;(8)经粘膜或(9)经鼻。此外,使用本申请所述的药物组合物可以将一种或多种治疗剂植入或注入患者。
在本申请中使用的术语“药学上可接受的”指在合理的医学判断的范围内适宜用于与人类和动物的组织接触同时不会导致过度的毒性、刺激、过敏反应或者其他问题或并发症,并具有合理的收益/风险比的那些化合物、材料、组分和/或剂型。
在本申请中使用的术语“药学上可接受的载体”指用于治疗剂和/或成像剂给药的药学上可接受的材料、组分或运载体。药学上可接受的载体包括与所述活性剂的活性具有相容性和是对象生理上可接受的任意和全部的溶剂、分散介质、包衣、抗细菌和抗真菌剂、等渗和吸收延迟剂等。在与所述制剂中的其他成分具有相容性和不能对患者是有害的意义上各种载体必需是“可接受的”。能够作为药学上可接受的载体的材料的一些示例包括:(1)糖,如乳糖、葡萄糖和蔗糖;(2)淀粉,如玉米淀粉和马铃薯淀粉;(3)纤维素及其衍生物,如羧甲基纤维素钠、甲基纤维素、乙基纤维素、微晶纤维素和醋酸纤维素;(4)粉状西黄蓍胶;(5)麦芽;(6)明胶;(7)润滑剂,如硬脂酸镁、十二烷基硫酸钠和滑石粉;(8)赋形剂,如可可豆脂和栓剂蜡;(9)油,如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;(10)乙二醇,如丙二醇;(11)多元醇,如甘油、山梨醇、甘露醇和聚乙二醇(PEG);(12)酯,如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,如氢氧化镁和氢氧化铝;(15)海藻酸;(16)无热原水;(17)等渗盐水;(18)林格氏液;(19)乙醇;(20)pH缓冲液;(21)聚酯、聚碳酸酯和/或聚酐;(22)膨胀剂,如多肽和氨基酸(23)血清组分,如血清白蛋白、HDL和LDL;(22)C2-C12醇,如乙醇;和(23)在药物制剂中使用的其他无毒性可相容的物质。润湿剂、着色剂、释放剂、包衣剂、甜味剂、矫味剂、芳香剂、防腐剂和抗氧化剂也可以存在于制剂中。术语如“赋形剂”、“载体”、“药学上可接受的载体”等在本申请中可以互换使用。
药学上可接受的抗氧化剂包括但不限于(1)水溶性抗氧剂,如抗坏血酸、盐酸半胱氨酸、硫酸氢钠、焦亚硫酸钠、亚硫酸钠等;(2)油溶性抗氧剂,如抗坏血酸棕榈酸酯、丁基化羟基苯甲醚(BHA)、丁基化羟基甲苯(BHT)、卵磷脂、没食子酸丙酯、α-生育酚等;和(3)金属螯合剂,如柠檬酸、乙二胺四乙酸(EDTA)、山梨醇、酒石酸、磷酸等。
在本申请中使用的术语“给药”指通过方法或途径使药物组合物置于对象中,以使得至少部分药物活性剂定位于所需位点。本申请所述的药物组合物可以通过任意适宜的途径给药,以便在所述对象中产生有效的治疗,即给药使得至少一部分药物活性剂被递送至所述对象中的所需位置。示例性的给药方式包括但不限于植入、注射、输注、滴注、植入或食入。“注射”包括但不限于静脉内、肌内、动脉内、鞘内、心室内、囊内、眶内、心内、真皮内、腹腔内、经气管、皮下、表皮下、关节内、囊下、蛛网膜下、脊柱内、脑脊柱内、眼内(例如玻璃体内)和胸骨内注射和输注。
在一些实施方式中,可以将本申请所述的药物组合物植入对象中。在本申请中使用的术语“植入”及语法上相关的术语指将药物组合物临时性、半永久性或永久性定位在所述对象中的特定位置。该术语不需要将所述药物组合物永久性固定在特定位置或区域。示例性的体内位置包括但不限于伤口、创伤或疾病部位。
使用方法
在本申请所述的另一个方面,本申请所述的丝基质(例如丝微球)和/或药物组合物可以用于各种应用中,例如但不限于作为填充剂以填充空隙,例如伤口,用于医学治疗或用于化妆应用,或者作为载体以递送活性剂,例如治疗剂、诊断剂,或者作为增强材料,例如在复合物中。
在一些实施方式中,本申请提供了一种通过给予诊断有效量的包含如本申请所述的丝微球的药物组合物,在人或动物对象中使至少一个细胞(包括组织或器官的一部分)成像的方法。例如,所述丝微球可以包含适于所述成像方法的造影剂,例如基于钆的造影剂;放射性造影剂如碘或钡化合物;氧化铁、铁铂、锰或其任意组合。在给予本申请所述的丝微球和/或药物组合物后,可以使用诊断设备或成像系统检查所述对象的身体,包括但不限于X-射线扫描仪、磁共振成像(MRI)和/或计算机轴向断层扫描(CAT扫描)。
“诊断有效量”指便于获得所需的诊断结果的丝微球或药物组合物的量。诊断包括在哺乳动物例如但不限于人中与疾病状态或生物学状态(例如糖尿病、葡萄糖不耐受、铁缺乏、肿瘤检测、血流等)的体外、离体或体内诊断相关的检测。所述诊断有效量将随着所使用的特定丝微球或组合物、给药方案、给药周期、待诊断的对象和疾病状态、对象的体重和年龄、疾病状态的严重程度、给药方法等的变化而改变,其均能够由本领域的普通技术人员容易地测定。
如本申请所述的,这些成像方法可以用于诊断或监测对状况的治疗,例如但不限于脑肿瘤;胸部、腹部或骨盆肿瘤;心脏问题如血管阻塞或梗死;肝脏疾病,如肝硬化;其他腹部器官的诊断,包括胆管、胆囊和胰管;肾脏和尿道其他部分的囊肿和实体瘤;血管阻塞或扩张,包括大动脉、肾动脉和腿部动脉;生殖器官(例如子宫、卵巢、睾丸、前列腺)肿瘤和其他异常;导致女性骨盆疼痛的原因,如肌瘤、子宫内膜异位症和子宫腺肌症;正在接受不孕评估的女性疑似子宫先天异常;乳腺癌;和乳房假体。
在一些实施方式中,本申请还提供了一种通过在对象中给予所述对象治疗有效量的本申请所述的丝微球或药物组合物以治疗患有疾病或病症的对象的方法。在一些实施方式中,待治疗的所述疾病或病症包括但不限于能够从涉及持续释放药物递送的治疗中获益的慢性疾病,例如但不限于癌症、眼部疾病如年龄相关的黄斑变性、神经退行性疾病如阿尔茨海默氏症。其他的示例性慢性疾病包括但不限于自身免疫性疾病包括自身免疫性血管炎、软骨损伤、慢性炎症性多发性神经病(CIDP)、囊性纤维化、糖尿病(例如胰岛素糖尿病)、移植物抗宿主病、血友病、感染或其他疾病过程、炎性关节炎、炎性肠病、由劳损(strain)导致的炎性状况、炎性关节病、狼疮、多发性硬化、重症肌无力、肌炎、矫形手术、骨关节炎、帕金森氏症、牛皮癣性关节炎、类风湿性关节炎、镰状细胞贫血、扭伤、移植排斥、创伤等。
在一些实施方式中,可以给予对象治疗有效量的包含抗血管生成剂(例如但不限于贝伐单抗)的丝微球或包含此类丝微球的药物组合物以治疗癌症。适合于本申请所述的治疗的癌症的示例包括但不限于实体瘤,包括各种器官系统的恶性肿瘤(例如肉瘤和癌(例如腺癌或鳞状细胞癌)),如脑、肺、乳腺、淋巴、胃肠道(例如结肠)和生殖泌尿道(例如肾脏、泌尿道上皮或睾丸肿瘤)、咽部、前列腺和卵巢。示例性的腺癌包括结直肠癌、肾细胞癌、肝癌、非小细胞肺癌和小肠癌。所述癌症可以是癌、肉瘤、骨髓瘤、白血病或混合型。
在一些实施方式中,可以给予对象治疗有效量的包含抗血管生成剂(例如但不限于贝伐单抗、兰尼单抗或其混合物)的丝微球或包含此类丝微球的药物组合物用于治疗年龄相关的黄斑变性。
在一些实施方式中,可以给予对象治疗有效量的包含NMDA受体拮抗剂(例如但不限于美金刚)的丝微球或包含此类丝微球的药物组合物用于治疗神经退行性疾病或病症如阿尔茨海默氏症。
在本申请所述方法的一些实施方式中还可以包含选择已确诊或疑似患有慢性疾病或病症的对象。可以基于产生的与所述慢性疾病或病症相关的至少一种症状选择患有慢性疾病或病症的对象。
在一些实施方式中,本申请提供了一种通过给予所述对象包含一种或多种治疗剂的丝基质或丝微球的药物组合物从而向所需治疗的对象中的靶位点持续递送一种或多种(例如1、2、3、4种或更多种)治疗剂的方法。不希望受到理论的束缚,如上文所述治疗剂可以以治疗有效量每日从所述丝基质(例如丝微球)中释放。在通常情况下,治疗有效量可以随对象的病史、年龄、状况、性别、以及在对象中的医疗状况的严重程度和类型、和给予的其他用于治疗的药剂的变化而改变。本领域技术人员能够从待治疗状况的动物模型容易地获得关于递送治疗有效量的化合物的效能和剂量的指导。
可以由医师根据需要确定和调整治疗或持续递送的方法的剂量以适应所观察到的治疗作用。在通常情况下,给予所述治疗剂以使得所述治疗剂以从1μg/kg至100mg/kg、1μg/kg至50mg/kg、1μg/kg至20mg/kg、1μg/kg至10mg/kg、1μg/kg至1mg/kg、100μg/kg至100mg/kg、100μg/kg至50mg/kg、100μg/kg至20mg/kg、100μg/kg至10mg/kg、100μg/kg至1mg/kg、1mg/kg至100mg/kg、1mg/kg至50mg/kg、1mg/kg至20mg/kg、1mg/kg至10mg/kg、10mg/kg至100mg/kg、10mg/kg至50mg/kg或者10mg/kg至20mg/kg的剂量给予。对于抗体化合物,一个优选的剂量为0.1mg/kg体重(通常为10mg/kg至20mg/kg)。
不受限制的,本申请所述的治疗或持续递送的方法可以用于给予对象需要相对频繁给药的治疗剂。例如,在一段时间内例如至少一周、至少2周、至少3周、至少4周、至少1个月、至少2个月、至少3个月、至少4个月、至少5个月、至少6个月、至少1年、至少2年或更长的一段时间内需要给予至少每日一次、至少每2日一次、至少每3日一次、至少每4日一次、至少每5日一次、至少每6日一次、至少每周1次、至少每2周一次、至少每3周一次、至少每月1次、至少每2个月一次、至少每3个月一次的治疗剂。
“治疗”指推迟或阻止此类病症的发病或者逆转、减轻、改善、抑制、延缓或终止此类状况的进展、加重或所述进展的恶化或严重程度。在一些实施方式中,至少一种症状减轻至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%或至少95%而非100%,即不是完全减轻。在一些实施方式中,至少一种症状完全缓解。
在本申请中使用的“对象”可以指人或动物。对象的示例包括灵长类(例如人和猴)。通常所述动物是脊椎动物如灵长类、啮齿类、家畜或狩猎动物。灵长类包括黑猩猩、短尾猴、蜘蛛猴和猕猴例如恒河猴。啮齿动物包括小鼠、大鼠、土拨鼠、雪貂、家兔和仓鼠。家畜和狩猎动物包括奶牛、马、猪、鹿、野牛、水牛、猫物种例如家猫和犬物种例如犬、狐狸、狼。患者或对象包括前述的任意亚类,例如上述全部,或包括一个或多个组或物种如人、灵长类或啮齿类。在本申请所述方面的某些实施方式中,所述对象是哺乳动物,例如灵长类,例如人。术语“患者”和“对象”在本申请中可以互换使用。对象可以是雄性或雌性。在一些实施方式中,对象可以是任意年龄,包括婴儿。
在一个实施方式中,所述对象是哺乳动物。所述哺乳动物可以是人、非人灵长类、小鼠、大鼠、犬、家兔、猫、马或奶牛,但不限于这些例子。可以有利地使用人以外的哺乳动物作为对象,所述对象表示治疗特定疾病或病症的动物模型。此外,可以在家畜和/或宠物中使用本申请所述的方法和组合物。
药物递送装置和试剂盒
本申请还提供了药物递送装置和试剂盒,例如以便于所述组合物的任意实施方式的给药,和/或其使用方法。在一些实施方式中,药物递送装置可以包含本申请所述组合物的任意实施方式。药物递送装置可以以任意形式存在,例如,在一些实施方式中,所述装置可以是具有注射针头的注射器,例如具有约25至约34号或者约27至约30号针头。可以适用于所述丝基质(例如丝微球)和/或所述药物组合物的药物递送装置的其他示例可以包括但不限于隐形眼镜、滴管、微针(例如丝微针)、植入物及其任意组合。
在所述药物递送装置的任意实施方式中,分散或包封在丝基质中的所述治疗剂可以随所需的给药方案和/或所述治疗剂的释放性质的改变而改变。例如,所述治疗剂能够在给药后超过2天的时间段内以足以维持其递送至靶位点的治疗有效量的量存在于丝基质中,包括例如超过3天、超过1周、超过2周、超过3周、超过1个月、超过2个月、超过3个月、超过4个月、超过5个月、超过6个月、超过9个月、超过12个月或更长时间。在通常情况下,所述治疗剂向靶位点的持续释放时间越长,则所需的给药频率越低。在根据本申请所述的组合物的任意实施方式中描述的丝基质中,包封或分散的所述治疗剂的量或剂量可以应用于本申请所述的药物递送装置的任意实施方式。
本申请提供的试剂盒通常可以包括至少一个容器,所述容器含有一种或多种本申请所述组合物的实施方式,或至少一种根据本申请所述的任意实施方式的药物递送装置。在一些实施方式中,例如其中所述组合物并不是被提供或被预先装载于递送装置中时,所述试剂盒还可以包含例如注射器和注射针。在一些实施方式中,所述试剂盒还可以包含麻醉剂。在一些实施方式中,所述试剂盒还可以包含消毒剂,例如以便对给药部位消毒。在一些实施方式中,所述试剂盒还可以包含一个或多个拭子以便将所述消毒剂涂抹在给药部位上。
不受限制的,本申请所述的持续递送方法、药物递送装置和/或试剂盒能够用于给予对象需要相对频繁给药的治疗剂。例如,在一段时间内例如至少一周、至少2周、至少3周、至少4周、至少1个月、至少2个月、至少3个月、至少4个月、至少5个月、至少6个月、至少1年、至少2年或更长的一段时间内需要给予至少每3个月一次、至少每2个月一次、至少每周一次、至少每日一次的治疗剂。
本申请所述不同方面的实施方式可以在任意下述编号的段落中定义:
1.一种制备丝微球的方法,所述方法包括:
在丝溶液中诱导丝蛋白的β-片层结构的形成;和从所述丝溶液诱导微球的形成。
2.根据段落1所述的方法,其中所述丝蛋白的β-片层结构的所述形成和所述微球的所述形成是同时诱导的。
3.根据段落1或2所述的方法,其中所述丝溶液中所述丝蛋白的β-片层结构的所述形成是通过超声诱导的。
4.根据段落1-3中任意一段所述的方法,其中来自所述丝溶液的微球的所述形成是通过雾化所述丝溶液诱导的。
5.根据段落2所述的方法,其中所述丝蛋白的β-片层结构的所述形成和所述微球的所述形成是通过将所述丝溶液流过超声活化的流通室或超声雾化器来同时诱导的。
6.根据段落5所述的方法,其中所述丝溶液以约0.001mL/min至约5mL/min的流速流过所述流通室或所述超声雾化器。
7.根据段落6所述的方法,其中所述丝溶液以约0.05mL/min至约0.3mL/min的流速流过所述流通室或所述超声雾化器。
8.根据段落3-7中任意一段所述的方法,其中所述超声以至少约10kHz、或约20kHz至约40kHz的频率进行。
9.根据段落3-8中任意一段所述的方法,其中所述超声功率输出范围为约1瓦至约50瓦、或约2瓦至约20瓦。
10.根据段落1-9中任意一段所述的方法,所述方法还包括冷冻所述丝微球。
11.根据段落10所述的方法,其中可以通过将所述丝微球暴露于零下温度将所述丝微球冷冻。
12.根据段落10或11所述的方法,其中通过将所述丝微球收集在通过冷却剂冷却的容器中使所述丝微球暴露于零下温度。
13.根据段落1-12中任意一段所述的方法,所述方法还包括将所述丝微球冻干。
14.根据段落1-13中任意一段所述的方法,其中所述丝微球具有至少约30%的孔隙度。
15.根据段落1-14中任意一段所述的方法,其中所述丝微球具有约1nm至约500μm、或10nm至约50μm的孔径。
16.根据段落1-15中任意一段所述的方法,其中所述丝溶液包含浓度为约1%(w/v)至约30%(w/v)的丝蛋白。
17.根据段落16所述的方法,其中所述丝溶液包含浓度为约5%(w/v)的丝蛋白。
18.根据段落1-17中任意一段所述的方法,其中所述丝微球包含活性剂。
19.根据段落18所述的方法,其中所述活性剂包括温度敏感性活性剂。
20.根据段落18或19所述的方法,其中所述活性剂是治疗剂。
21.根据段落20所述的方法,其中所述治疗剂选自下组:有机或无机小分子;糖;寡糖;聚糖;生物大分子,例如肽、蛋白和肽类似物和衍生物;拟肽;核酸;核酸类似物和衍生物;抗体和其抗原结合蛋白;由生物材料如细菌、植物、真菌或动物细胞制备的提取物;动物组织;天然存在的或合成的组合物;及其任意组合。
22.根据段落20或21所述的方法,其中所述治疗剂包括贝伐单抗、美金刚或其组合。
23.根据段落18-22中任意一段所述的方法,其中所述活性剂以约0.1%(w/w)至约50%(w/w)的量存在于所述丝微球中。
24.根据段落23所述的方法,其中所述活性剂以约1%(w/w)至约30%(w/w)的量存在于所述丝微球中。
25.根据段落18-24中任意一段所述的方法,其中所述活性剂存在于所述丝溶液中。
26.根据段落1-25中任意一段所述的方法,其中所述丝微球包含占微球总重量约30%(w/w)至约100%(w/w)的量的丝。
27.根据段落1-26中任意一段所述的方法,其中所述丝溶液还包含添加剂。
28.根据段落27所述的方法,其中在所述丝溶液中所述添加剂与丝的重量比为约1:100至约100:1。
29.根据段落27或28所述的方法,其中在所述丝溶液中所述添加剂与丝的重量比为约1:10至约10:1。
30.根据段落27-29中任意一段所述的方法,其中所述添加剂选自下组:生物聚合物、致孔剂、磁性粒子、增塑剂、检测标签及其任意组合。
31.根据段落27-30中任意一段所述的方法,其中所述添加剂是增塑剂。
32.根据段落30或31所述的方法,其中所述增塑剂诱导在所述丝中的丝蛋白的β-片层结晶结构的形成。
33.根据段落30-32中任意一段所述的方法,其中所述增塑剂选自下组:甘油、聚乙烯醇、胶原蛋白、明胶、藻酸盐、壳聚糖、透明质酸、聚乙二醇、聚环氧乙烷及其任意组合。
34.根据段落1-33中任意一段所述的方法,所述方法还包括对所述丝微球进行后处理。
35.根据段落34所述的方法,其中所述后处理进一步诱导所述丝微球中丝蛋白的β-片层结晶结构的形成。
36.根据段落34-35中任意一段所述的方法,其中所述后处理选自下组:酒精浸泡、水蒸气退火、热退火及其任意组合。
37.根据段落34-36中任意一段所述的方法,其中所述丝微球在所述后处理前在水中的溶解度低于50%。
38.根据段落34-37中任意一段所述的方法,其中所述丝微球在所述后处理前在水中的溶解度低于30%。
39.根据段落1-38中任意一段所述的方法,其中所述丝微球的尺寸为约10μm至约1000μm。
40.根据段落1-39中任意一段所述的方法,其中所述丝微球的尺寸为约50μm至约100μm。
41.根据段落4-40中任意一段所述的方法,所述雾化包括使用液滴发生器的喷嘴系统。
42.根据段落4-41中任意一段所述的方法,其中所述雾化包括注射器喷出、同轴空气流法、机械扰动法、静电力法或静电珠发生器法。
43.根据段落4-42中任意一段所述的方法,其中所述雾化包括通过空气驱动的液滴产生包封单元的喷嘴喷雾所述丝溶液。
44.根据段落1-43中任意一段所述的方法,其中通过改变一个或多个选自下组的参数改变所述丝微球的形状或尺寸:喷嘴直径;喷雾流速;喷雾压力;收集所述丝微球的容器与喷嘴的距离;丝溶液的浓度;超声波的功率;超声处理时间;及其任意组合。
45.一种使用段落1-44中任意一段所述的方法制备的丝微球。
46.根据段落45所述的丝微球,其中所述丝微球在至少约10天时间里释放在其中负载的至少约5%的活性剂。
47.一种药物组合物,所述药物组合物包含段落45-46中任意一段所述的丝微球和药学上可接受的赋形剂。
48.根据段落47所述的组合物,其中所述组合物被制成是可注射的。
49.一种在体内持续递送治疗剂的方法,所述方法包括给予需要其的对象段落47-48中任意一项所述的药物组合物。
50.一种组合物,所述组合物具有尺寸为约10μm至约2000μm的丝微球。
51.根据段落50所述的组合物,其中所述丝微球的尺寸为约30μm至约1000μm。
52.根据段落50或51所述的组合物,其中所述丝微球是不溶于水的。
53.根据段落50-52中任意一段所述的组合物,其中所述不溶于水的丝微球具有至少约50%或更高的β片层结晶含量。
54.根据段落50-53中任意一段所述的组合物,其中所述丝微球还包含活性剂。
55.根据段落54所述的组合物,其中所述活性剂是溶剂敏感性和/或温度敏感性活性剂。
56.根据段落50-55中任意一段所述的组合物,其中所述活性剂选自下组:有机或无机小分子;糖;寡糖;聚糖;生物大分子,例如肽、蛋白和肽类似物和衍生物;拟肽;核酸;核酸类似物和衍生物;抗体和其抗原结合蛋白;由生物材料如细菌、植物、真菌或动物细胞制备的提取物;动物组织;天然存在的或合成的组合物;及其任意组合。
57.根据段落56所述的组合物,其中所述治疗剂包含贝伐单抗、美金刚或其组合。
58.根据段落54-57中任意一段所述的组合物,其中所述含有治疗剂的丝微球的释放特征为在5天时间里释放所述活性剂的总负荷的约1%至约5%。
59.根据段落58所述的组合物,其中所述释放特征包括持续释放。
60.根据段落59所述的组合物,其中所述释放特征还包括立即释放。
61.根据段落50-60中任意一段所述的组合物,其中所述活性剂在所述丝微球中存在的量为约0.1%(w/w)至约50%(w/w)。
62.根据段落50-61中任意一段所述的组合物,其中所述丝微球包含占所述微球总重量约10%(w/w)至约100%(w/w)的量的丝蛋白。
63.根据段落50-62中任意一段所述的组合物,其中所述丝微球还包含添加剂。
64.根据段落63所述的组合物,其中在所述丝微球中所述添加剂与丝蛋白的重量比为约1:100至约100:1。
65.根据段落63或64所述的组合物,其中所述添加剂选自下组:生物聚合物、致孔剂、磁性粒子、增塑剂、检测标签及其任意组合。
66.根据段落65所述的组合物,其中所述添加剂包含增塑剂。
67.根据段落66所述的组合物,其中所述增塑剂诱导在所述丝中的丝蛋白的β-片层结晶结构的形成。
68.根据段落66或67所述的组合物,其中所述增塑剂选自下组:甘油、聚乙烯醇、胶原蛋白、明胶、藻酸盐、壳聚糖、透明质酸、聚乙二醇、聚环氧乙烷及其任意组合。
69.根据段落68所述的组合物,其中所述添加剂包含甘油。
70.根据段落69所述的组合物,其中在所述丝微球中甘油与丝蛋白的比例范围为约1:10至约10:1。
71.根据段落50-70中任意一段所述的组合物,其中所述组合物是可注射的。
72.根据段落50-71中任意一段所述的组合物,其中所述组合物是药物组合物。
73.根据段落72所述的组合物,所述组合物还包含药学上可接受的赋形剂。
74.根据段落72或73所述的组合物,其中所述药物组合物是片剂、胶囊剂、锭剂、粉剂、糊剂、颗粒剂、液体、溶液剂、凝胶剂或其任意组合的形式。
75.根据段落50-74中任意一段所述的组合物,其中所述丝微球是多孔的。
一些选定的定义
除非另有说明,或从上下文中暗示,下述的术语和短语包括下文中提供的含义。除非明确说明,或从上下文清楚地看出,下文中的术语和短语不排除所述术语或短语在其所属领域中获得的含义。提供所述定义以辅助描述特定的实施方式,其并非旨在限制所主张的发明,因为所述发明的范围仅由权利要求限定。而且,除非上下文另有要求,单数形式的术语应包括复数形式和复数形式的术语应包括单数形式。
本申请中使用的术语“包含(comprising)”或“含有(comprises)”用于指发明所必需的组合物、方法及其各组分,还是开放的以包括未指明的元素,无论其是否是必需的。
除非上下文另外明确指出,单数形式的术语“a(一个)”、“an(一种)”和“the(所述)”包括复数形式的对象。类似地,除非上下文另外明确指出,单词“或”旨在包括“和”。
除了在操作实施例中或另有说明外,在本申请中用于表示成分的数量或反应条件的所有数字均应理解为在所有例子中均以术语“约”修饰。术语“约”当与百分率结合使用时可以表示所指的值的±5%。例如,约100指95至105。
尽管与本申请所描述的那些类似或等价的方法和材料可以用于本发明的实施或检测中,但是下文中描述了适宜的方法和材料。所述“包含”表示“包括”。缩写“e.g.”来源于拉丁语exempli gratia,并且在本申请中使用以表示非限制性示例。因此缩写“e.g.”与所述“例如”是同义的。
在本申请中使用的术语“蛋白”和“肽”在本申请中可以互换使用以指示与其他氨基酸残基通过相邻残基的α氨基和羧基之间的肽键连接的一系列氨基酸残基。术语“蛋白”和“肽”在本申请中可以互换使用,指蛋白氨基酸的聚合物,包括经修饰的氨基酸(例如磷酸化、糖基化等)和氨基酸类似物,无论其尺寸或功能。尽管“蛋白”通常用于指相对较大的多肽,并且“肽”通常用于指较小的多肽,但是这些术语在本领域中的用法重叠和具有变化。除非另有说明,在本申请中使用的术语“肽”指肽、多肽、蛋白和蛋白的片段。当指基因产物及其片段时,术语“蛋白”和“肽”在本申请中可以互换使用。因此,示例性的肽或蛋白包括基因产物、天然存在的蛋白,上述物质的同源物、直系同源物、旁系同源物、片段和其他等价物、变体、片段和类似物。
本申请中使用的术语“核酸”指多核苷酸如脱氧核糖核酸(DNA),并且在适当的情况下,指核糖核酸(RNA),其单链或双链形式的聚合物。除非特别限制,该术语包括含有天然核苷酸的已知类似物的核酸,其与对照核酸具有相似的结合性质并且以与天然存在的核苷酸类似的方式代谢。除非另外指出,特定的核酸序列还隐含地包括其经保守修饰的变体(例如简并密码子取代)和互补序列,以及明确指出的序列。特别地,简并密码子取代可以通过在一个或多个选定的(或全部)密码子的第三个位置被混合碱基和/或脱氧肌苷残基取代产生的序列实现(Batzer等,Nucleic Acid Res.19:5081(1991);Ohtsuka等,J.Biol.Chem.260:2605-2608(1985)和Rossolini等,Mol.Cell.Probes 8:91-98(1994))。术语“核酸”还应理解为包括由核酸类似物和单链(有意义或反义)和双链多核苷酸制备的RNA或DNA的等效物、衍生物、变体和类似物。
术语“短干扰RNA”(siRNA)在本申请中还指“小干扰RNA”,其被定义为具有例如通过RNAi抑制靶基因表达的功能的试剂。siRNA可以化学合成,其可以通过体外转录生产,或者其可以在宿主细胞中生产。siRNA分子还可以通过切割双链RNA生成,其中与信使相同的一条链被灭活。术语“siRNA”指诱导RNA干扰(RNAi)通路的小的抑制性RNA双螺旋体。这些分子的长度可以改变(通常为18-30个碱基对)并且具有与反义链中的其靶mRNA不同程度的互补性。一些但并不是全部的siRNA在有意义链和/或反义链的5'或3'末端具有未配对的突出碱基。术语“siRNA”包括两条单独链的双螺旋体以及能够形成包含双螺旋区的发夹结构的单链。
在本申请中使用的术语“shRNA”指短的发夹RNA,其功能与RNAi和/或siRNA相同,但不同的是shRNA是双链发夹样结构,因此具有增加的稳定性。在本申请中使用的术语“RNAi”指干扰RNA,或RNA干扰分子,其是核酸分子或其类似物,例如抑制基因表达的基于RNA的分子。RNAi指一种选择性转录后基因沉默的方法。RNAi能够导致特定mRNA的破坏,或者阻止RNA如mRNA的加工或转录。
在本申请中使用的术语“酶”指催化其他物质的化学反应,但其在反应完成后不被破坏或基本上不发生改变的蛋白分子。该术语可以包括天然存在的酶和生物工程改造的酶或其混合物。酶家族的示例包括激酶、脱氢酶、氧化还原酶、GTPase、羧基转移酶、酰基转移酶、脱羧酶、转氨酶、消旋酶、甲基转移酶、甲酰基转移酶和α-酮基脱羧酶
在本申请中使用的术语“疫苗”指任意死微生物、活的减毒生物、亚基抗原、类毒素抗原、缀合物抗原或其他类型的抗原分子的制品,当将其引入对象机体时通过引起免疫系统的活化、抗体形成和/或形成T-细胞和/或B-细胞应答产生针对特定疾病的免疫力。在通常情况下,针对微生物的疫苗直接作用于病毒、细菌、寄生虫、支原体或其他传染性病原体的至少一部分。
在本申请中使用的术语“适体”指能够特异性识别选定的非寡核苷酸分子或分子群的单链、部分单链、部分双链或双链核苷酸序列。在一些实施方式中,所述适体通过不同于沃森-克里克碱基配对或三螺旋形成的机制识别所述非寡核苷酸分子或分子群。适体可以包括但不限于确定的序列区段和序列,其包含核苷酸、核糖核苷酸、脱氧核糖核苷酸、核苷酸类似物、经修饰的核苷酸和包含骨架修饰、分支点和非核苷酸残基、基团或桥接的核苷酸。选择用于与分子连接的适体的方法是本领域广泛知晓的和本领域的普通技术人员易于获得的。
在本申请中使用的术语“抗体”指完整的免疫球蛋白或具有Fc(可结晶的片段)区或所述Fc区的FcRn接合片段的单克隆或多克隆的抗原结合片段。术语“抗体”还包括“抗体样分子”,如抗体的一部分,例如抗原结合片段。抗原结合片段可以由重组DNA技术或通过对完整抗体的酶促或化学切割生产。“抗原结合片段”特别地包括Fab、Fab'、F(ab')2、Fv、dAb、互补性决定区(CDR)片段、单链抗体(scFv)、单结构域抗体、嵌合抗体、双体和多肽,所述多肽含有足以使特定的抗原与所述多肽结合的至少一部分免疫球蛋白。还包括用于本申请所述目的的线性抗体。术语Fab、Fc、pFc'、F(ab')2和Fv使用标准的免疫学含义(Klein,Immunology(免疫学)(John Wiley,New York,N.Y.,1982);Clark,W.R.(1986)The Experimental Foundations of Modern Immunology(现代免疫学实验基础)(Wiley&Sons,Inc.,New York);和Roitt,I.(1991)Essential Immunology(基础免疫学),第7版,(Blackwell Scientific Publications,Oxford))。特异性针对各种抗原的抗体或抗原结合片段是可从供应商如R&D Systems、BD Biosciences、e-Biosciences和Miltenyi处购买得到的,或可以采用本领域技术人员公知的方法针对这些细胞表面标记物而升高。
在本申请中使用的术语“互补性决定区”(CDR;即CDR1、CDR2和CDR3)指其存在为抗原结合所必需的抗体可变结构域的氨基酸残基。各个可变结构域通常具有被标识为CDR1、CDR2和CDR3的三个CDR区。各个互补性决定去可以包含根据由kabat所定义的“互补性决定区”的氨基酸残基(即在轻链可变结构域中的残基24-34(L1)、50-56(L2)和89-97(L3)和在重链可变结构域中的31-35(H1)、50-65(H2)和95-102(H3);Kabat等,Sequences of Proteins of Immunological Interest(免疫学有趣的蛋白序列),第5版,Public Health Service,National Institutes of Health,Bethesda,Md.(1991))和/或来自“高变环”的那些残基(即在轻链可变结构域中的残基26-32(L1)、50-52(L2)和91-96(L3)和在重链可变结构域中的26-32(H1)、53-55(H2)和96-101(H3);Chothia和Lesk J.Mol.Biol.196:901-917(1987))。在一些例子中,互补性决定区可以包括来自根据Kabat和高变环二者所定义的CDR区的氨基酸。
表述“线性抗体”指在Zapata等,Protein Eng.,8(10):1057-1062(1995)中描述的抗体。简言之,这些抗体包括串联的Fd区段(VH-CH1-VH-CH1)对与互补的轻链多肽一起形成的抗原结合区对。线性抗体可以是双特异性的或单特异性的。
在本申请中使用的表述“单链Fv”或“scFv”抗体片段旨在指包含抗体的VH和VL结构域的抗体片段,其中这些结构域存在于单一多肽链中。优选地,所述Fv多肽还包含在VH和VL结构域之间的多肽接头,其能够使所述scFv形成用于抗原结合的所需的结构。(The Pharmacology of Monoclonal Antibodies(单克隆抗体的药理学),vol.113,Rosenburg和Moore eds.,Springer-Verlag,New York,pp.269-315(1994))。
在本申请中使用的术语“双体”指具有两个抗原结合位点的小的抗体片段,所述片段包含在同一多肽链中(VH-VL)中与轻链可变结构域(VL)连接的重链可变结构域(VH)。通过使用非常短的不能在同一链上的两个结构域之间配对的接头,迫使所述结构域与另一条链的互补结构域配对以形成两个抗原结合位点。(EP 404,097;WO 93/11161;Hollingeret ah,Proc.Natl.Acad.Sd.USA,P0:6444-6448(1993))。
在本申请中使用术语“抗生素”以描述降低微生物活力或抑制微生物的生长或繁殖的化合物或组合物。在本申请中使用的抗生素还旨在包括抗微生物剂、抑菌剂或杀菌剂。示例性的抗生素包括但不限于青霉素类、头孢菌素类、青霉烯类、碳青霉烯类、单酰胺菌素类、氨基糖苷类、磺胺类、大环内酯类、四环素类、林可霉素类(lincosides)、喹诺酮类、氯霉素、万古霉素、甲硝唑、利福平、异烟肼、大观霉素、甲氧苄啶、磺胺甲噁唑等。
在本申请中使用的术语“抗原”指能够被选择性结合剂如抗体所结合的分子或分子的一部分,此外其能够在动物中使用以激发产生能够与该抗原的表位结合的抗体。抗原可以具有一个或多个表位。术语“抗原”还可以指能够被抗体或者如果被MHC分子提呈被T细胞受体(TCR)所结合的分子。在本申请中使用的术语“抗原”还包括T-细胞表位。抗原还能够被免疫系统所识别和/或能够诱导导致B-和/或T-淋巴细胞活化的体液免疫应答和/或细胞免疫应答。但是,这可能至少在某些情况下需要所述抗原含有Th细胞表位或与Th细胞表位连接并提供佐剂。抗原可以具有一个或多个表位(B-和T-表位)。上文中提及的所述特异性反应旨在表明所述抗原将优选地通常以较高的选择性方式与其相应的抗体或TCR反应并且不与多种可以由其他抗原激发的其他抗体或TCR反应。在本申请中使用的抗原还可以是若干个体抗原的混合物。
术语“免疫原”指能够在生物体中激发免疫应答的任意物质例如疫苗。“免疫原”在给予对象后能够诱导针对其自身的免疫应答。在本申请中使用的术语“免疫学”在针对免疫应答时指在接受体对象中发展出直接针对免疫原的体液(抗体介导的)和/或细胞(由抗原特异性T细胞或其分泌产物介导)应答。此类应答可以是由给予对象免疫原或免疫原性肽而诱导的主动应答或由给予直接针对所述免疫原的抗体或已接触抗原的T-细胞而诱导的被动应答。细胞免疫应答由结合I类或II类MHC分子的多肽表位的提呈从而活化抗原特异性CD4+T辅助细胞和/或CD8+细胞毒性T细胞所激发。此类应答还可能涉及单核细胞、巨噬细胞、NK细胞、嗜碱性粒细胞、树突状细胞、星形胶质细胞、小胶质细胞、嗜酸性粒细胞或先天性免疫的其他组分的活化。
术语“统计学上显著的”或“显著地”指具有统计学显著性并且通常指距离对照水平至少两个标准偏差(2D)。该术语指存在差异的统计学证据。将其定义为:当零假设实际上为真时,做出拒绝所述零假设的概率。
在本申请中可以互换使用的术语“基本上”和“实质上”指至少约60%的比例,或优选地至少约70%、或至少约80%、或至少约90%、至少约95%、至少约97%、或至少约99%或更高的,或者70%和100%之间的任意整数。在一些实施方式中,术语“基本上”指至少约90%、至少约95%、至少约98%、至少约99%或更高的,或者90%和100%之间的任意整数的比例。在一些实施方式中,术语“基本上”可以包括100%。
尽管在本申请中已经详细地示出和描述了优选的实施方式,但是在不脱离本发明精神的前提下做出的各种修改、增加、取代等对相关领域的技术人员而言将是显而易见的,因此这些被认为是在根据下述的权利要求所定义的本发明的范围内。而且,在没有已指出的程度上,本领域的普通技术人员将理解可以对本申请所描述和解释的各种实施方式中的任意一个进行进一步的修改以引入本申请所述的任意其他实施方式的特征。
本申请通过下述实施例的进一步说明不应被解释为限制。所述实施例仅是说明性的,而并非旨在以任何方式限制本申请所述的任何方面。下述实施例并非以任何方式限制本发明。
实施例
实施例1:示例性的材料和方法
材料:脱胶丝纤维购自Suho生物材料科技公司(苏州,中国)。贝伐单抗( 美国基因工程技术公司,南旧金山,加州)购自CuraScript公司(奥兰多,Fl)。盐酸美金刚和所有其他化学药品购自西格玛奥德里奇(圣路易斯,密苏里州)。
丝蛋白的纯化。为了从脱胶丝纤维中获得丝蛋白溶液,进行了包括溴化锂溶解、透析和离心的多个纯化步骤。简言之,称取5g脱胶纤维并加入至含有20ml新制的9.3M溴化锂溶液的容器例如玻璃烧杯中。丝的终浓度为约20%(w/v)。然后加热所述混合物直至丝纤维完全溶解。例如,将所述容器用铝箔覆盖并在60℃的烘箱中放置4小时直至丝纤维完全溶解。使用超纯水(例如具有约18.2MΩcm的电导率)对该溶液进行透析,例如使用Slide-a-Lyzer透析盒(MWCO 3500,Pierce/赛默飞公司,罗克福德,伊利诺伊州)透析48小时以除去溴化锂盐。将经透析的溶液在艾本德5804R离心机中使用50-ml锥形管以8,700rpm在4℃下离心两次,每次约20分钟。丝蛋白水溶液的终浓度为约8%(w/v),通过将已知体积的溶液在60℃下干燥过夜并且将残余固体称重测得。将8%的丝储备液在4℃保存并且在使用前用超纯水稀释。
喷雾结晶冷冻干燥(SCFD)的设定。尽管在该实施例中描述了示例性的SCFD的设定,但是本领域技术人员对其作出的任何其他修改也仍在本申请所述的范围内。在一个实施方式中,在制备过程中使用配有流通臂和注射泵(KDS230,KD Scientific,Holliston,MA)的细胞破碎仪(Branson,Danbury,CT)以雾化所述丝溶液并且同时在丝溶液中诱导β-片层结晶结构的形成。将丝溶液通过注射泵以所需的流速注射进入流通臂并且喷雾通过所述臂直接进入快速冷冻容器(例如600-ml快速冷冻瓶,其可以从Labconco Corp.获得,Kansas City,MO)。将该瓶保持浮动在液氮中(图1),同时对所述臂的尖端和所述瓶的底部之间的距离进行调整以确保所述喷雾的立即冷冻和喷雾的均匀性。在喷雾后,将该瓶立即放入Virtis Genesis冻干器(SP Scientific,Warminster,PA)中并冻干过夜。
SCFD微球的制备。改变丝溶液的组成、流速(通过注射泵控制)和超声的功率输出以制备不同的SCFD微球。为了便于对不同的SCFD微球之间进行比较,保持所有批次的溶液体积恒定为5mL,同时对其他变量进行调整,如丝的量、添加剂(例如甘油以降低丝微球的溶解度)的量、流速和超声功率。用于生产丝微球的那些变量的一些示例性的值列于表1。
表1:用于生产本申请所述的丝微球的示例性参数(基于大约5-mL溶液体积)
丝的量 大约50–大约400mg
甘油的量 大约0-大约170mg
流速 大约0.1-大约1.0mL/min
超声功率 大约25-大约55%振幅
微球的表征(尺寸、形态和溶解度)。在冷冻干燥(粉末)形式和在超纯水中将干燥粉末悬浮后对SCFD微球的尺寸和表面形态进行评估,例如使用倒置光学显微镜(卡尔蔡司,Jena,德国)和扫描电子显微镜(SEM,JSM 840A,日本电子株式会社,皮博迪,马萨诸塞州)。对于使用光学显微镜对SCFD微球的评估而言,将微球的干燥粉末或约20μL水悬浮液直接加在载玻片上。对于SEM而言,将干燥粉末直接涂覆在使用导电性带(JEOLPeabody,MA)覆盖的SEM导体棒上,将微球的水悬浮液负载在具有导电性带的SEM导体棒上并在室温下干燥过夜。在进行SEM分析前,使用约20nm的金溅射涂覆所述样品。
可以通过任意本领域公知的方法估算SCFD微球的溶解度。在一个实施方式中,使用例如下述的方案估算SCFD微球的溶解度。首先,在搅拌条件下在37℃下孵育约2小时后(例如将悬浮液置于摇床上),将水性微球悬浮液(1%w/v)在15000rpm下离心约10分钟(例如使用艾本德5424微量离心机)。在除去上清液后,将剩余的微球在60℃下干燥过夜,随后称重以获得干燥球团的重量。通过初始微球重量与干燥球团重量之差与初始微球重量之比估算微球的溶解度。
载药SCFD球的制备。对于负载治疗药物的SCFD球(例如负载贝伐单抗的SCFD球:A-球;或负载盐酸美金刚的SCFD球:M-球)而言,在喷雾前将药物溶液与丝和甘油溶液混合。将总的溶液体积保持恒定为5mL,同时改变不同组分(例如药物、丝和甘油)的混合比率和超声功率,如表2所示。
表2:用于制备载药丝-甘油微球的示例性参数
从SCFD微球中的药物释放。在进行释放研究前将丝微球在4℃下贮存在密封的玻璃瓶中。使用前,称取约10mg粉末并加入15-mL塑料管中,在其中加入4ml含有0.02%(w/v)叠氮钠的PBS缓冲液,pH 7.4。然后将所述微球悬浮液在37℃下孵育。在所需时间点,将含有丝微球的管10000rpm离心约10min(例如使用艾本德5804R离心机),并且收集上清液并在4℃下保存以供分析。将微球球团重悬于4ml PBS/叠氮钠缓冲液pH 7.4中并孵育至下一时间点。使用以前的在Suckow RF等人,“Sensitive and selective liquidchromatographic assay of memantine in plasma with fluorescence detection after pre-columnderivatization.(经预柱衍生化后使用荧光检测对血浆中的美金刚进行的灵敏的和选择性的液相色谱检测)”J Chromatogr B Biomed Sci Appl 1999;729:217-224中所述方法的修订方法测定美金刚在释放介质中的浓度。一些修订包括使用丹磺酰氯进行荧光标记反应和使用配有反相柱(安捷伦Eclipse plus C-18柱,4.6mm I.D.x 75mm L)的安捷伦1200串联HPLC(安捷伦,圣塔克拉拉,加州)仪器进行高效液相色谱(HPLC)。使用配有安捷伦Bio SEC-3柱(孔径为300埃,4.6mm I.D.x 300mm L)的相同HPLC系统对贝伐单抗的浓度进行分析。
实施例2:超声在丝SCFD微球制备中的作用
超声已被用于诱导丝蛋白的胶凝,例如根据Wang X等人“Sonication-induced gelationof silk fibroin for cell encapsulation.(超声诱导的用于细胞包封的丝蛋白的胶凝)”生物材料2008;29:1054-64的报道。丝胶凝的时间取决于丝溶液的浓度、超声功率输出和超声持续时间,参考同上。然而,Wang X等的参考文献没有描述使用超声生产丝微球。本申请提出的是制备丝微球的方法的一个实施方式,其中使用配有流通臂的超声仪(Branson细胞破碎仪)以使得丝溶液在通过所述臂的内槽时被连续地超声,并且在所述臂的喷嘴(例如尖端)被同时雾化成细喷雾(图1)。经雾化的喷雾以冷冻粒子的形式被收集至瓶中,所述瓶至少部分地被液氮包绕,并且随后将所述冷冻粒子冻干成干燥的粒子。
不希望受到理论的束缚,冻干后的干燥丝粒子由于进行了超声能够获得一定量的β-片层结晶结构,其能够导致水不溶性粒子的形成。因此,进行进一步的溶剂处理以诱导结晶形成可能是不必要的。此前已报道了通过喷雾干燥工艺制备的丝微球所获得的一定量的β-片层结构是由于在喷雾干燥器中的高温(Hino T.等人,“Silk microspheres prepared byspray-drying of an aqueous system.(通过水系统喷雾干燥制备的丝微球)”Pharm PharmacolCommun 2000;6:335-339;Yeo JH.等人,“Simple preparation and characteristics of silk fibroinmicrosphere.(简单的丝蛋白微球的制备和表征)”Eur Polym J 2003;39:1195-1199)或者是由于使用甲醇或水蒸汽进行的冻干后处理(Wenk E.等人,“Silk fibroin spheres as a platformfor controlled drug delivery.(作为药物控释递送平台的丝蛋白微球)”J Control Release2008;132:26-34)。然而,与本申请所述的方法不同的是,此前报道的这些方法需要加热和/或使用甲醇或水蒸气进行后处理以便在丝微球中诱导产生足量的丝蛋白的β-片层结构,以使得所述丝微球具有较低的溶解度或在水中变成不溶的。
不希望受到理论的束缚,在丝蛋白中β-片层含量的增加导致微球的形状和尺寸在水中的保持。通过使用光学和扫描电子显微镜对干湿状态下的粒径和形态进行比较来评估SCFD微粒在水中的溶解度。对由于溶解在水中导致的丝材料的重量损失进行进一步的定量。显微镜和溶解检测的结果汇总于表3。
表3:丝微球制备的示例性参数
N.T.=未检测
*通过光学显微镜测定。
**微球丧失其球形形状并形成在水中漂浮的聚集的簇。
如表3所示,丝微球通常在较高的丝溶液浓度例如大约5-8%(w/v)下获得,而非在较低的浓度下(例如大约1%(w/v))。但是,丝浓度过高时,丝溶液更倾向于更迅速的胶凝,这会导致流通臂的阻塞。因此,在本申请所述的实施例中使用大约5%(w/v)的丝浓度。除了丝浓度以外,流速和/超声功率输出也能够对丝微球的显微结构和/或水溶解度产生显著的影响。在一些实施方式中,在高于0.1ml/min的流速下和低于35%振幅的超声功率输出下制备的丝微球在水中具有较高的溶解性,这可能是由于其β-片层含量较低所致。这些微球在水化后数分钟内塌落并最终变性成聚集的纤维,其在水中具有以重量计约80%以上的较高的溶解度(图2C和2D,上述表3)。在一些实施方式中,如表3中所示,在超声功率输出大于35%振幅的条件下制备的丝微球具有较低的收率,这可能是由于在超声过程中的胶凝导致,但是具有明显更低的溶解度(以重量计大约8-20%),这表明在这些条件下能够形成大量的β-片层结晶结构。然而,在水化后,所述丝微球形成聚集的、漂浮在水中的低密度的簇。为了获得具有较低的水溶解度的不产生聚集的丝微球混悬液,在一个实施方式中,可以在流动超声前将至少一种能够增加丝β-片层结晶度的添加剂加入丝溶液中(Lu S.等人,“Insoluble and flexible silk films containing glycerol.(含有甘油的不溶性的和柔性的丝膜)”生物大分子2010;11:143-150)。
实施例3:诱导β-片层结构的添加剂在丝SCFD微球制备中的作用
接下来试图确定各种β-片层结构诱导添加剂对丝SCFD微球溶解度的影响。此前已使用聚(乙烯醇)(PVA)以通过相分离获得水不溶性丝纳米/微球(参见例如Wang X.等,“Silk nanospheres and microspheres from silk/PVA blend films for drug delivery.(来自丝/PVA混合膜的用于药物递送的丝纳米球和微球)”生物材料2010;31:1025-1035)。然而,聚(乙烯醇)(PVA)并不会显著影响采用本申请所述的方法生产的微球的溶解度。甘油是此前用于生产不溶性和柔性丝膜的添加剂(Lu S.等,“Insoluble and flexible silk films containingglycerol.(含有甘油的不溶性和柔性丝膜)”Biomacromolecules 2010;11:143-150)。本发明人已证实与PVA不同,甘油能够降低由本申请所述的方法生产的丝微球的溶解度,同时使其在水中保持不产生聚集的球形形态。表4显示了一些被改变以优化微球生产的工艺条件的示例性参数(例如但不限于流速、超声功率、丝与甘油的比例以及丝和甘油的浓度)。
表4:用于制备丝-甘油微球的示例性参数
N.T.=未分析
*通过光学显微镜测定。
**在超声过程中丝在流通臂中胶凝。
与单独的丝相比(表3),丝/甘油混合溶液(表4)对超声功率输出和/或流速变化更加敏感。在一些实施方式中,将约0.17ml/min的流速和约25%振幅的超声振幅确定为最佳的工艺条件,在此条件下生产出具有低于30%的水溶解度的主要的微球形态,表明其具有相对较高的β-片层含量(表4,图3A-3B)。在对丝-甘油混合膜此前的报道中(参考同上),膜水化后在约1小时内几乎所有的甘油均溶解在水中,根据傅里叶变换红外(FTIR)光谱的测定结果,在此期间总的丝β-片层含量由约10%增加至约50%。其结果是,这些膜不仅保持了其原有的三维结构,还具有改善的机械强度,参考同上。在本申请所述的实施例中,不希望受到理论的束缚,可以将微球水合后30%的质量损失主要归因于甘油溶解在水中。因此,在一些实施方式中,所述丝微球能够具有高于90%的有效溶解度。在其他实施方式中,在丝/甘油微球中可以具有超过50%的总的β-片层结晶含量。不希望受到理论的束缚,较高的流速(>大约0.17ml/min)和/或较低的超声振幅(<25%)导致缺乏喷雾或微球具有高水溶解度,而较低的流速和/或较高的超声振幅通常会导致过早的丝胶凝,例如在超声波仪中。在此前对丝/甘油混合膜的报道中,将甘油与丝的重量比报道为超过1/3,以制备水不溶性膜,参考同上。然而,那些此前的报道未显示甘油与丝在微球中的重量比。本申请确定了甘油与丝的比例为约1/3时能够产生球形形态和较低的水溶解度。另一方面,甘油与丝的比例大大高于约1/3会导致丝/甘油在超声器中过早的胶凝和/或非球形粒子的形成。然而,在特定实施方式中,当甘油与丝的比例低于约1/3时,在流速约0.17ml/min和超声振幅约25%的条件下,水溶性微球的制备是不可能的。因此,在一个实施方式中,使用大约5%的丝/大约1.67%的甘油(w/v)包封用于药物递送应用的药物。在此类实施方式中,根据通过光学和扫描电子显微镜的所目测的,所述丝微球可以具有范围从约50μm至约100μm的尺寸并且具有较高的纳米/微米孔隙度(图4A-4D)。
实施例4:用于药物递送的示例性丝SCFD微球
美金刚-丝SCFD微球。图5显示了经FDA批准的用于治疗阿尔茨海默氏症的药物(美金刚,例如MW(盐酸美金刚)=215.76g/摩尔,水溶解度≈大约50mg/mL)从SCFD微球中释放的释放动力学所述SCFD微球是从具有不同甘油含量(0%、大约15%和大约25%)的大约5%的丝溶液在大约25%的超声振幅下和大约0.17mL/min的流速下制备的SCFD微球(表2)。对于所评估的制剂而言,如图5所示,美金刚的释放维持至少超过17天。在仅含有丝的SCFD球的例子中(例如不含甘油的丝SCFD球),初始的突释例如最初从SCFD微球中释放的所包封的药物的百分率(例如在第一个时间点(3天)测定,如图5所示)和在17天后所释放药物的累积百分率均是最低的,而初始突释(对于0%、大约15%和大约25%的甘油分别为大约50.8%、大约57.4%和大约67.3%)和17天后的累积释放(对于0%、大约15%和大约25%的甘油分别为大约66.4%、大约76%和大约81.9%)随着甘油含量的增加而增加。出乎意料的,与未使用美金刚制备的丝SCFD微球相比,丝/美金刚SCFD微球具有更低的溶解性,例如在释放介质中。这表明在所述丝SCFD微球中包封美金刚能够增加总的β-片层结晶含量和/或降低所述丝微球的水溶解度。而且,图5中的数据表明药物例如FDA批准的小分子药物的释放动力学能够至少部分地通过调节制剂中的甘油含量被有效控制。能够影响小分子药物的释放动力学的其他因素包括但不限于药物负载、丝浓度或其组合。
阿瓦斯丁-丝SCFD微球。图6显示了经FDA批准的用于治疗年龄相关的(wet)黄斑变性的药物(贝伐单抗,例如MW=149KDa,储备液为大约25mg/ml)从SCFD微球释放的释放动力学,所述SCFD微球是从具有不同甘油含量(0%、大约15%和大约25%的甘油)的大约5%的丝溶液在大约25%的超声振幅下和大约0.17mL/min的流速下制备的SCFD微球(表2)。与美金刚包封的SCFD丝微球的制备相比,当制备贝伐单抗包封的SCFD丝微球时,在超声过程中所述丝/贝伐单抗溶液更容易胶凝或聚集,这表明在丝与贝伐单抗分子之间具有更强的分子间相互作用。而且,初始突释(对于0%、大约15%和大约25%的甘油分别为13.8%、18.3%和6.5%)和13天后贝伐单抗-丝微球的累积释放(对于0%、大约15%和大约25%的甘油分别为15.6%、20%和6.5%)显著低于来自美金刚-丝微球的那些(图6)。此外,与从美金刚-丝微球中的释放相比,在贝伐单抗-丝微球中将甘油的含量增加至约25%未显示出药物释放速率增加的趋势。与具有0%或约15%甘油含量的贝伐单抗-丝微球相比,具有最高的甘油含量(大约25%)的贝伐单抗-丝微球显示出最低的初始突释水平和在13天后最低的持续释放(图6)。不希望受到理论的束缚,这可能是高浓度的甘油(富含羟基)能够增强贝伐单抗与丝之间通过氢键的相互作用。此前已报道了蛋白分子与丝材料的较强的结合,但是未阐明其机理(Wang X.等人,“Silkmicrospheres for encapsulation and controlled release.(用于包封和控制释放的丝微球)”JControl Release(2007)117:360-70;Wang X等人,“Silk nanospheres and microspheres fromsilk/PVA blend films for drug delivery.(用于药物递送的来自丝/PVA混合膜的丝纳米球和微球)”生物材料(2010)31:1025-1035;Lu Q.等人,“Stabilization and release of enzymes fromsilk films.(来自丝膜的酶的稳定作用和释放)”Macromol Biosci(2010)10:359-368)。由于丝材料总体上具有疏水性性质,预计疏水性相互作用将是结合的主要作用力,即使静电相互作用(丝蛋白的pI值为约3)和氢键也起到了重要作用(Lu Q.等,同上)。在一些实施方式中,调整能够影响丝与蛋白药物(例如贝伐单抗)之间的分子内相互作用的其他因素,包括但不限于丝浓度和/或影响亲和性相互作用的添加剂的存在情况,能够控制蛋白药物从丝材料载体中的释放。
实施例5:丝SCFD微球的注射器注射能力
冻干的丝微球或丝-药物微球(例如丝-美金刚和丝-贝伐单抗微球)能够悬浮在约1%至约3%羧甲基纤维素钠溶液(CMC,粘度=在4%的水溶液中50-200cP,25℃)中,形成均匀的悬浮液。根据所述丝微球的尺寸,包括丝-药物微球的所述丝微球的CMC悬浮液可以通过针头注射,例如使用21号针头,这表明了通过非侵入性给药途径例如皮下、肌内注射将丝SCFD微球制剂用于临床应用的可能性。
通过本申请所述的新型喷雾结晶冷冻干燥法制备的丝微球在水化后能够保持其尺寸(大约50-大约100μm)和微球形态。在一些实施方式中,在丝微球制备前,可以将诱导β-片层结构的添加剂例如甘油与丝混合,以便在水化后进一步保持其尺寸和形态。本申请所述的生产丝微球的方法在时间、能耗和成本上均是高效的,因此适于丝微球的大规模生产。在一些实施方式中,本申请所述的方法可以是全水性过程。在一些实施方式中,在本申请所述的方法中不需要高温和/或有机溶剂(例如全水性过程),因此能够以较高的收率(例如达100%)包封敏感性或不稳定的药物(例如热不稳定药物)。本申请所述的微球的多孔性性质能够增加药物释放可以利用的表面积。本领域技术人员能够容易地对SCFD微球的制备方法进行修改以优化特定治疗药物的药物负载和释放性质。
参考文献
[1]Chiellini F,Piras AM,Errico C,Chiellini E.Micro/nanostructured polymeric systems forbiomedical and pharmaceutical applications(用于生物医学和药学应用的微米/纳米结构的聚合物系统).Nanomed 2008;3:367-93。
[2]Ranade VV,Hollinger MA.Drug delivery systems(药物递送系统),第2版,BocaRaton:CRC Press,2004。
[3]Ye M,Kim S,Park K.Issues in long-term protein delivery using biodegradablemicroparticles(使用生物可降解的微粒的长期蛋白递送的问题).J Control Release2010;146:241-260。
[4]Omenetto FG,Kaplan DL.New opportunities for an ancient material(古老材料的新机遇).Science 2010;329:528-531。
[5]Leal-A,Scheibel T.Silk-based materials for biomedical applications(用于生物医学应用的基于丝的材料).Biotechnol Appl Biochem 2010;55:155-167。
[6]Rajkhowa R,Wang L,Wang X.Ultra-fine silk powder preparation through rotary and ballmilling(通过旋转和球磨制备超细丝粉末).Powder Technol 2008;185:87-95。
[7]Rajkhowa R,Gil ES,Kluge J,Numata K.,Wang L,Wang X,Kaplan DL.Reinforcing silkscaffolds with silk particles(具有丝粒子的增强的丝支架).Macromol Biosci2010;10:599-611。
[8]Rockwood DN,Gil ES,Park SH,Kluge JA,Grayson W,Bhumiratana S,Rajkhowa R,Wang X,Kim SJ,Vunjak-Novakovic G,Kaplan DL.Ingrowth of human mesenchymal stemcells into porous silk particle reinforced silk composite scaffolds:An in vitro study(人间充质干细胞向多孔性丝粒子增强的丝复合材料支架的内向生长:一项体外研究).Acta Biomater2011;7:144-151。
[9]Hino T,Shimabayashi S,Nakai A.Silk microspheres prepared by spray-drying of anaqueous system(通过水性系统喷雾干燥制备的丝微球).Pharm Pharmacol Commun2000;6:335-339。
[10]Yeo JH,Lee KG,Lee YW,Kim SY.Simple preparation and characteristics of silk fibroinmicrosphere(简单的丝蛋白微球的制备和表征).Eur Polym J 2003;39:1195-1199。
[11]Wenk E,Wandrey AJ,Merkle HP,Meinel L.Silk fibroin spheres as a platform forcontrolled drug delivery(作为控释药物递送平台的丝蛋白球).J Control Release2008;132:26-34。
[12]Wang X,Wenk E,Matsumoto A,Meinel L,Li C,Kaplan DL.Silk microspheres forencapsulation and controlled release(用于包封和控制释放的丝微球).J Control Release2007;117:360-70。
[13]Wang X,Wenk E,Zhang X,Meinel L,Vunjak-Novakovic G,Kaplan DL.Growth factorgradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering(用于软骨组织工程化的在生物聚合物支架中通过微球递送的生长因子梯度).J ControlRelease 2009;134:81-90。
[14]Wang X,Yucel T,Lu Q,Hu X,Kaplan DL.Silk nanospheres and microspheres fromsilk/pva blend films for drug delivery(来自丝/pva混合膜的用于药物递送的丝纳米球和微球).Biomaterials 2010;31:1025-1035。
[15]Suckow RF,Zhang MF,Collins ED,Fischman MW,Cooper TB.Sensitive and selectiveliquid chromatographic assay of memantine in plasma with fluorescence detection afterpre-column derivatization(经预柱衍生化后使用荧光检测对血浆中的美金刚进行的灵敏的和选择性的液相色谱检测).J Chromatogr B Biomed Sci Appl 1999;729:217-224。
[16]Wang X,Kluge JA,Leisk GG,Kaplan DL.Sonication-induced gelation of silk fibroin forcell encapsulation(用于细胞包封的超声诱导的丝蛋白的胶凝).Biomaterials2008;29:1054-64。
[17]Lu S,Wang X,Lu Q,Zhang X,Kluge JA,Uppal N,Omenetto F,Kaplan DL.Insoluble andflexible silk films containing glycerol(含有甘油的不溶性和柔性丝膜).Biomacromolecules2010;11:143-150。
[18]Lu Q,Wang X,Hu X,Cebe P,Omenetto F,Kaplan DL.Stabilization and release of enzymesfrom silk films(来自丝膜的酶的稳定作用和释放).Macromol Biosci 2010;10:359-368。
在说明书和实施例中标识出的所有专利和其他出版物均针对所有目的明确地通过引用并入本申请。这些出版物先于本申请的申请日公开的内容均单独地提供。在这一点上不应解释为发明人没有资格通过在先的发明或出于任何其他原因早于这些公开的内容。所有关于日期的陈述或关于这些文件内容的表述均是基于申请人所获得的信息并且不构成对这些文件的日期或内容的正确性的任何接纳。

Claims (75)

1.一种制备丝微球的方法,所述方法包括:
在丝溶液中诱导丝蛋白的β-片层结构的形成;和从所述丝溶液诱导微球的形成。
2.根据权利要求1所述的方法,其中所述丝蛋白的β-片层结构的所述形成和所述微球的所述形成是同时诱导的。
3.根据权利要求1或2所述的方法,其中所述丝溶液中所述丝蛋白的β-片层结构的所述形成是通过超声诱导的。
4.根据权利要求1-3中任意一项所述的方法,其中来自所述丝溶液的微球的所述形成是通过雾化所述丝溶液诱导的。
5.根据权利要求2所述的方法,其中所述丝蛋白的β-片层结构的所述形成和所述微球的所述形成是通过将所述丝溶液流过超声活化的流通室或超声雾化器来同时诱导的。
6.根据权利要求5所述的方法,其中所述丝溶液以约0.001mL/min至约5mL/min的流速流过所述流通室或所述超声雾化器。
7.根据权利要求6所述的方法,其中所述丝溶液以约0.05mL/min至约0.3mL/min的流速流过所述流通室或所述超声雾化器。
8.根据权利要求3-7中任意一项所述的方法,其中所述超声以至少约10kHz、或约20kHz至约40kHz的频率进行。
9.根据权利要求3-8中任意一项所述的方法,其中所述超声功率输出范围为约1瓦至约50瓦、或约2瓦至约20瓦。
10.根据权利要求1-9中任意一项所述的方法,所述方法还包括冷冻所述丝微球。
11.根据权利要求10所述的方法,其中可以通过将所述丝微球暴露于零下温度将所述丝微球冷冻。
12.根据权利要求10或11所述的方法,其中通过将所述丝微球收集在通过冷却剂冷却的容器中使所述丝微球暴露于零下温度。
13.根据权利要求1-12中任意一项所述的方法,所述方法还包括将所述丝微球冻干。
14.根据权利要求1-13中任意一项所述的方法,其中所述丝微球具有至少约30%的孔隙度。
15.根据权利要求1-14中任意一项所述的方法,其中所述丝微球具有约1nm至约500μm、或10nm至约50μm的孔径。
16.根据权利要求1-15中任意一项所述的方法,其中所述丝溶液包含浓度为约1%(w/v)至约30%(w/v)的丝蛋白。
17.根据权利要求16所述的方法,其中所述丝溶液包含浓度为约5%(w/v)的丝蛋白。
18.根据权利要求1-17中任意一项所述的方法,其中所述丝微球包含活性剂。
19.根据权利要求18所述的方法,其中所述活性剂包括温度敏感性活性剂。
20.根据权利要求18或19所述的方法,其中所述活性剂是治疗剂。
21.根据权利要求20所述的方法,其中所述治疗剂选自下组:有机或无机小分子;糖;寡糖;聚糖;生物大分子,例如肽、蛋白和肽类似物和衍生物;拟肽;核酸;核酸类似物和衍生物;抗体和其抗原结合蛋白;由生物材料如细菌、植物、真菌或动物细胞制备的提取物;动物组织;天然存在的或合成的组合物;及其任意组合。
22.根据权利要求20或21所述的方法,其中所述治疗剂包括贝伐单抗、美金刚或其组合。
23.根据权利要求18-22中任意一项所述的方法,其中所述活性剂以约0.1%(w/w)至约50%(w/w)的量存在于所述丝微球中。
24.根据权利要求23所述的方法,其中所述活性剂以约1%(w/w)至约30%(w/w)的量存在于所述丝微球中。
25.根据权利要求18-24中任意一项所述的方法,其中所述活性剂存在于所述丝溶液中。
26.根据权利要求1-25中任意一项所述的方法,其中所述丝微球包含占微球总重量约30%(w/w)至约100%(w/w)的量的丝。
27.根据权利要求1-26中任意一项所述的方法,其中所述丝溶液还包含添加剂。
28.根据权利要求27所述的方法,其中在所述丝溶液中所述添加剂与丝的重量比为约1:100至约100:1。
29.根据权利要求27或28所述的方法,其中在所述丝溶液中所述添加剂与丝的重量比为约1:10至约10:1。
30.根据权利要求27-29中任意一项所述的方法,其中所述添加剂选自下组:生物聚合物、致孔剂、磁性粒子、增塑剂、检测标签及其任意组合。
31.根据权利要求27-30中任意一项所述的方法,其中所述添加剂是增塑剂。
32.根据权利要求30或31所述的方法,其中所述增塑剂诱导在所述丝中的丝蛋白的β-片层结晶结构的形成。
33.根据权利要求30-32中任意一项所述的方法,其中所述增塑剂选自下组:甘油、聚乙烯醇、胶原蛋白、明胶、藻酸盐、壳聚糖、透明质酸、聚乙二醇、聚环氧乙烷及其任意组合。
34.根据权利要求1-33中任意一项所述的方法,所述方法还包括对所述丝微球进行后处理。
35.根据权利要求34所述的方法,其中所述后处理进一步诱导所述丝微球中丝蛋白的β-片层结晶结构的形成。
36.根据权利要求34-35中任意一项所述的方法,其中所述后处理选自下组:酒精浸泡、水蒸气退火、热退火及其任意组合。
37.根据权利要求34-36中任意一项所述的方法,其中所述丝微球在所述后处理前在水中的溶解度低于50%。
38.根据权利要求34-37中任意一项所述的方法,其中所述丝微球在所述后处理前在水中的溶解度低于30%。
39.根据权利要求1-38中任意一项所述的方法,其中所述丝微球的尺寸为约10μm至约1000μm。
40.根据权利要求1-39中任意一项所述的方法,其中所述丝微球的尺寸为约50μm至约100μm。
41.根据权利要求4-40中任意一项所述的方法,所述雾化包括使用液滴发生器的喷嘴系统。
42.根据权利要求4-41中任意一项所述的方法,其中所述雾化包括注射器喷出、同轴空气流法、机械扰动法、静电力法或静电珠发生器法。
43.根据权利要求4-42中任意一项所述的方法,其中所述雾化包括通过空气驱动的液滴产生包封单元的喷嘴喷雾所述丝溶液。
44.根据权利要求1-43中任意一项所述的方法,其中通过改变一个或多个选自下组的参数改变所述丝微球的形状或尺寸:喷嘴直径;喷雾流速;喷雾压力;收集所述丝微球的容器与喷嘴的距离;丝溶液的浓度;超声波的功率;超声处理时间;及其任意组合。
45.一种使用权利要求1-44中任意一项所述的方法制备的丝微球。
46.根据权利要求45所述的丝微球,其中所述丝微球在至少约10天时间里释放在其中负载的至少约5%的活性剂。
47.一种药物组合物,所述药物组合物包含权利要求45-46中任意一项所述的丝微球和药学上可接受的赋形剂。
48.根据权利要求47所述的组合物,其中所述组合物被制成是可注射的。
49.一种在体内持续递送治疗剂的方法,所述方法包括给予需要其的对象权利要求47-48中任意一项所述的药物组合物。
50.一种组合物,所述组合物具有尺寸为约10μm至约2000μm的丝微球。
51.根据权利要求50所述的组合物,其中所述丝微球的尺寸为约30μm至约1000μm。
52.根据权利要求50或51所述的组合物,其中所述丝微球是不溶于水的。
53.根据权利要求50-52中任意一项所述的组合物,其中所述不溶于水的丝微球具有至少约50%或更高的β片层结晶含量。
54.根据权利要求50-53中任意一项所述的组合物,其中所述丝微球还包含活性剂。
55.根据权利要求54所述的组合物,其中所述活性剂是溶剂敏感性和/或温度敏感性活性剂。
56.根据权利要求50-55中任意一项所述的组合物,其中所述活性剂选自下组:有机或无机小分子;糖;寡糖;聚糖;生物大分子,例如肽、蛋白和肽类似物和衍生物;拟肽;核酸;核酸类似物和衍生物;抗体和其抗原结合蛋白;由生物材料如细菌、植物、真菌或动物细胞制备的提取物;动物组织;天然存在的或合成的组合物;及其任意组合。
57.根据权利要求56所述的组合物,其中所述治疗剂包含贝伐单抗、美金刚或其组合。
58.根据权利要求54-57中任意一项所述的组合物,其中所述含有治疗剂的丝微球的释放特征为在5天时间里释放所述活性剂的总负荷的约1%至约5%。
59.根据权利要求58所述的组合物,其中所述释放特征包括持续释放。
60.根据权利要求59所述的组合物,其中所述释放特征还包括立即释放。
61.根据权利要求50-60中任意一项所述的组合物,其中所述活性剂在所述丝微球中存在的量为约0.1%(w/w)至约50%(w/w)。
62.根据权利要求50-61中任意一项所述的组合物,其中所述丝微球包含占所述微球总重量约10%(w/w)至约100%(w/w)的量的丝蛋白。
63.根据权利要求50-62中任意一项所述的组合物,其中所述丝微球还包含添加剂。
64.根据权利要求63所述的组合物,其中在所述丝微球中所述添加剂与丝蛋白的重量比为约1:100至约100:1。
65.根据权利要求63或64所述的组合物,其中所述添加剂选自下组:生物聚合物、致孔剂、磁性粒子、增塑剂、检测标签及其任意组合。
66.根据权利要求65所述的组合物,其中所述添加剂包含增塑剂。
67.根据权利要求66所述的组合物,其中所述增塑剂诱导在所述丝中的丝蛋白的β-片层结晶结构的形成。
68.根据权利要求66或67所述的组合物,其中所述增塑剂选自下组:甘油、聚乙烯醇、胶原蛋白、明胶、藻酸盐、壳聚糖、透明质酸、聚乙二醇、聚环氧乙烷及其任意组合。
69.根据权利要求68所述的组合物,其中所述添加剂包含甘油。
70.根据权利要求69所述的组合物,其中在所述丝微球中甘油与丝蛋白的比例范围为约1:10至约10:1。
71.根据权利要求50-70中任意一项所述的组合物,其中所述组合物是可注射的。
72.根据权利要求50-71中任意一项所述的组合物,其中所述组合物是药物组合物。
73.根据权利要求72所述的组合物,所述组合物还包含药学上可接受的赋形剂。
74.根据权利要求72或73所述的组合物,其中所述药物组合物是片剂、胶囊剂、锭剂、粉剂、糊剂、颗粒剂、液体、溶液剂、凝胶剂或其任意组合的形式。
75.根据权利要求50-74中任意一项所述的组合物,其中所述丝微球是多孔的。
CN201380030726.3A 2012-04-13 2013-04-12 用于制备丝微球的方法和组合物 Pending CN104602713A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261623970P 2012-04-13 2012-04-13
US61/623,970 2012-04-13
PCT/US2013/036356 WO2013155404A1 (en) 2012-04-13 2013-04-12 Methods and compositions for preparing a silk microsphere

Publications (1)

Publication Number Publication Date
CN104602713A true CN104602713A (zh) 2015-05-06

Family

ID=49328198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380030726.3A Pending CN104602713A (zh) 2012-04-13 2013-04-12 用于制备丝微球的方法和组合物

Country Status (9)

Country Link
US (2) US20150056294A1 (zh)
EP (1) EP2836236B1 (zh)
JP (1) JP2015512944A (zh)
CN (1) CN104602713A (zh)
AU (1) AU2013245785A1 (zh)
CA (1) CA2869967A1 (zh)
HK (1) HK1207292A1 (zh)
MX (1) MX2014012208A (zh)
WO (1) WO2013155404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108553690A (zh) * 2018-04-13 2018-09-21 浙江大学 一种掺锶的多孔丝素微球及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2836236B1 (en) 2012-04-13 2019-01-02 Trustees Of Tufts College Methods and compositions for preparing a silk microsphere
WO2013163407A1 (en) 2012-04-25 2013-10-31 Trustees Of Tufts College Silk microspheres and methods for surface lubrication
CN105188684B (zh) 2013-03-15 2019-07-19 帕西恩软胶公司 基于丝的胶囊
ITTO20130284A1 (it) * 2013-04-09 2014-10-10 Fond Istituto Italiano Di Tecnologia Procedimento per la produzione di microparticelle polimeriche sagomate
AU2015358537B2 (en) 2014-12-02 2021-08-19 Evolved By Nature, Inc. Silk performance apparel and products and methods of preparing the same
US11512425B2 (en) 2015-07-14 2022-11-29 Evolved By Nature, Inc. Silk performance apparel and products and methods of preparing the same
CN105854825A (zh) * 2016-04-29 2016-08-17 浙江大学 一种具有吸附重金属离子功能的丝素多孔复合微球制备方法
WO2018081159A1 (en) * 2016-10-24 2018-05-03 Trustees Of Tufts College Biomimetic multilayer compositions
TWI631985B (zh) * 2016-10-26 2018-08-11 財團法人金屬工業研究發展中心 微粒製造方法
US11617815B2 (en) 2016-10-31 2023-04-04 Sofregen Medical, Inc. Compositions comprising silk fibroin particles and uses thereof
CN111712514A (zh) 2017-09-27 2020-09-25 自然进化公司 丝涂布织物和产品及其制备方法
WO2019094702A1 (en) * 2017-11-10 2019-05-16 Cocoon Biotech Inc. Ocular applications of silk-based products
CN108393046B (zh) * 2018-01-14 2020-11-20 浙江工商大学 一种微波合成SF-Cd缓释微球及其应用
CA3142608A1 (en) 2019-06-04 2020-12-10 Cocoon Biotech Inc. Silk-based products, formulations, and methods of use
WO2021076798A1 (en) 2019-10-15 2021-04-22 Sofregen Medical, Inc. Delivery devices for delivering and methods of delivering compositions
US20240050353A1 (en) 2020-12-24 2024-02-15 University Of Tsukuba Fibroin micro-sphere and method for producing same
WO2024015959A1 (en) * 2022-07-15 2024-01-18 Praful Doshi Methods of making and using contact lenses including medicaments and stabilizers of labile components such as drugs

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US387413A (en) 1888-08-07 Wire fence
US4806355A (en) 1983-06-06 1989-02-21 Connaught Laboratories Limited Microencapsulation of living tissue and cells
US5263992A (en) 1986-10-17 1993-11-23 Bio-Metric Systems, Inc. Biocompatible device with covalently bonded biocompatible agent
EP0330134A1 (de) 1988-02-25 1989-08-30 Akzo Nobel N.V. Modifizierte Cellulose für biocompatible Dialysemembranen IV und Verfahren zu deren Herstellung
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5015476A (en) 1989-08-11 1991-05-14 Paravax, Inc. Immunization implant and method
US5270419A (en) 1990-01-19 1993-12-14 Nova Pharmaceutical Corporation Polyanhydrides of oligomerized unsaturated aliphatic acids
US5245012A (en) 1990-04-19 1993-09-14 The United States Of America As Represented By The Secretary Of The Army Method to achieve solubilization of spider silk proteins
ATE207080T1 (de) 1991-11-25 2001-11-15 Enzon Inc Multivalente antigen-bindende proteine
AU7152996A (en) 1995-08-22 1997-03-19 Richard M. Basel Cloning methods for high strength spider silk proteins
US5576881A (en) 1995-08-29 1996-11-19 Lucent Technologies Inc. Multi-frequency optical signal source having reduced distortion and crosstalk
US5855613A (en) 1995-10-13 1999-01-05 Islet Sheet Medical, Inc. Retrievable bioartificial implants having dimensions allowing rapid diffusion of oxygen and rapid biological response to physiological change
US5814328A (en) 1997-01-13 1998-09-29 Gunasekaran; Subramanian Preparation of collagen using papain and a reducing agent
ES2285770T3 (es) 1997-05-12 2007-11-16 Metabolix, Inc. Polihidroxialcanoato para aplicaciones en vivo.
NZ502815A (en) 1997-08-22 2002-03-01 Denki Kagaku Kogyo Kk Hyaluronic acid gel formed from a freeze/thawing process of an acidified hyaluronic acid aqueous solution
US5932552A (en) 1997-11-26 1999-08-03 Keraplast Technologies Ltd. Keratin-based hydrogel for biomedical applications and method of production
US5902800A (en) 1998-03-27 1999-05-11 Glenpharma Dextran formulations and method for treatment of inflammatory joint disorders
CA2314156C (en) 1998-05-29 2010-05-25 Sugen, Inc. Pyrrole substituted 2-indolinone protein kinase inhibitors
US6302848B1 (en) 1999-07-01 2001-10-16 Sonotech, Inc. In vivo biocompatible acoustic coupling media
AU3996800A (en) * 1998-12-10 2000-07-12 Zms, Llc Expandable polymeric microspheres, their method of production, and uses and products thereof
US6103255A (en) 1999-04-16 2000-08-15 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US6267776B1 (en) 1999-05-03 2001-07-31 O'connell Paul T. Vena cava filter and method for treating pulmonary embolism
US6325810B1 (en) 1999-06-30 2001-12-04 Ethicon, Inc. Foam buttress for stapling apparatus
US6310188B1 (en) 2000-01-24 2001-10-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method for producing chitin or chitosan
US7842780B2 (en) 2003-01-07 2010-11-30 Trustees Of Tufts College Silk fibroin materials and use thereof
WO2005012606A2 (en) 2003-04-10 2005-02-10 Tufts University Concentrated aqueous silk fibroin solution and use thereof
WO2006076711A2 (en) 2005-01-14 2006-07-20 Trustees Of Tufts College Fibrous protein fusions and use thereof in the formation of advanced organic/inorganic composite materials
US9290579B2 (en) 2005-04-20 2016-03-22 Trustees Of Tufts College Covalently immobilized protein gradients in three-dimensional porous scaffolds
EP1915436B1 (en) 2005-08-02 2011-09-28 Trustees Of Tufts College Methods for stepwise deposition of silk fibroin coatings
GB2435646A (en) 2006-03-01 2007-09-05 Spin Tec Engineering Gmbh Apparatus and method of extraction of an arthropod gland
US20100028451A1 (en) * 2006-09-26 2010-02-04 Trustees Of Tufts College Silk microspheres for encapsulation and controlled release
ES2527125T3 (es) 2007-05-29 2015-01-20 Trustees Of Tufts College Método para la gelificación de fibroína de seda usando sonicación
US8206774B2 (en) 2008-03-13 2012-06-26 Trustees Of Tufts College Diazonium salt modification of silk polymer
US8501172B2 (en) 2008-09-26 2013-08-06 Trustees Of Tufts College pH-induced silk gels and uses thereof
BRPI0920453A2 (pt) * 2008-10-09 2015-12-22 Tufts College pelicula de seda, construção para engenharia de tecido, metodos para preparar uma película de seda, para cobrir uma superfície de um substrato com uma composição de seda, e para embutir pelo menos um agente ativo em uma película de seda, e, substrato coberto com película de sedal
US9427499B2 (en) 2008-11-17 2016-08-30 Trustees Of Tufts College Surface modification of silk fibroin matrices with poly(ethylene glycol) useful as anti-adhesion barriers and anti-thrombotic materials
US20120052124A1 (en) * 2009-03-04 2012-03-01 Trustees Of Tufts College Silk fibroin systems for antibiotic delivery
US20110111031A1 (en) * 2009-04-20 2011-05-12 Guang-Liang Jiang Drug Delivery Platforms Comprising Silk Fibroin Hydrogels and Uses Thereof
US20120070427A1 (en) 2009-06-01 2012-03-22 Trustees Of Tufts College Vortex-induced silk fibroin gelation for encapsulation and delivery
CA2805403A1 (en) 2009-07-10 2011-01-13 Trustees Of Tufts College Bioengineered silk protein-based nucleic acid delivery systems
WO2011011347A2 (en) 2009-07-21 2011-01-27 Trustees Of Tufts College Functionalization of silk material by avidin-biotin interaction
JP5730317B2 (ja) * 2009-09-29 2015-06-10 タフツ ユニバーシティー/トラスティーズ オブ タフツ カレッジ 絹ナノスフェアおよび絹マイクロスフェアならびにこれらを作製する方法
US9603971B2 (en) 2010-03-05 2017-03-28 Trustees Of Tufts College Silk-based ionomeric compositions
JP6170906B2 (ja) 2011-04-21 2017-07-26 トラスティーズ・オブ・タフツ・カレッジTrustees Of Tufts College 活性物質を安定化させるための組成物および方法
EP2836236B1 (en) 2012-04-13 2019-01-02 Trustees Of Tufts College Methods and compositions for preparing a silk microsphere

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ESTHER WENK ET AL.: "Silk fibroin spheres as a platform for controlled drug delivery", 《JOURNAL OF CONTROLLED RELEASE》 *
XIAOQIN WANG ET AL.: "Sonication-induced gelation of silk fibroin for cell encapsulation", 《BIOMATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108553690A (zh) * 2018-04-13 2018-09-21 浙江大学 一种掺锶的多孔丝素微球及其制备方法

Also Published As

Publication number Publication date
WO2013155404A1 (en) 2013-10-17
US20170333351A1 (en) 2017-11-23
EP2836236A4 (en) 2015-12-02
EP2836236B1 (en) 2019-01-02
CA2869967A1 (en) 2013-10-17
US11576862B2 (en) 2023-02-14
JP2015512944A (ja) 2015-04-30
HK1207292A1 (zh) 2016-01-29
EP2836236A1 (en) 2015-02-18
US20150056294A1 (en) 2015-02-26
MX2014012208A (es) 2015-05-08
AU2013245785A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
US11576862B2 (en) Methods and compositions for preparing a silk microsphere
JP7217247B2 (ja) ポリマータンパク質微粒子
Elsaid et al. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab
Tan et al. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery
WO2013142611A2 (en) Silk reservoirs for drug delivery
JP2015508104A (ja) 治療薬の眼への送達のための組成物および方法
CN102686235A (zh) 包含格拉默或其药用盐的储药系统
CN104918638A (zh) 用于持续递送抗癌剂的丝储库
Lee et al. Subcutaneous vaccination using injectable biodegradable hydrogels for long-term immune response
CN107335048A (zh) 载促性腺激素释放激素类化合物缓释微球及其制备方法
CN105997889B (zh) 一种皮下注射用氨磷汀缓释微球及其制备方法
Marques et al. PKPD of PLGA-PEG-PLGA Copolymeric Micelles
Surya et al. PLGA–the smart polymer for drug delivery
RU2797114C2 (ru) Наночастица и фармацевтическая композиция для лечения глазных заболеваний или рака
Shete Microspheres as a Unique Drug Carrier for Controlled Drug Delivery: A Review
Bhange et al. A review on microsphere as a nasal drug delivery system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150506