CN104601977A - Sensing device and signal processing method thereof - Google Patents
Sensing device and signal processing method thereof Download PDFInfo
- Publication number
- CN104601977A CN104601977A CN201310525783.0A CN201310525783A CN104601977A CN 104601977 A CN104601977 A CN 104601977A CN 201310525783 A CN201310525783 A CN 201310525783A CN 104601977 A CN104601977 A CN 104601977A
- Authority
- CN
- China
- Prior art keywords
- sensor
- data stream
- frame
- data
- resolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims description 15
- 230000001360 synchronised effect Effects 0.000 claims abstract description 24
- 239000000872 buffer Substances 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 8
- 230000003190 augmentative effect Effects 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Studio Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种感测装置及其信号处理方法,尤其涉及一种合并多个具有不同分辨率的传感器的感测装置及其信号处理方法。 The invention relates to a sensing device and a signal processing method thereof, in particular to a sensing device incorporating multiple sensors with different resolutions and a signal processing method thereof.
背景技术 Background technique
近年来,随着立体显示技术的发展,立体影像的处理也越来越重要。一般而言,形成立体影像可通过下列几种方式,例如利用可得到深度信息的深度摄影机进行拍摄、由仿真人类双眼视觉的双摄影机进行拍摄、或是由二维影像经过适当的影像处理以得到立体影像。 In recent years, with the development of stereoscopic display technology, the processing of stereoscopic images is becoming more and more important. Generally speaking, stereoscopic images can be formed in the following ways, such as shooting with a depth camera that can obtain depth information, shooting with a dual camera that simulates human binocular vision, or obtaining a 2D image through appropriate image processing. Stereoscopic image.
其中深度摄影技术则是使用一部传统的RGB摄影机,同时搭配另一部深度摄影机以进行拍摄。所述深度摄影机是使用飞行时间(Time of Flight, ToF)的原理,通过计算其所发出的红外线在照射至拍摄物体后,反射回到深度摄影机所需的时间,由此计算出拍摄物体与摄影机的距离。 Among them, the depth photography technology uses a traditional RGB camera and another depth camera for shooting. The depth camera uses the principle of Time of Flight (ToF). By calculating the time required for the infrared rays emitted by the camera to reflect back to the depth camera after it irradiates the object, the distance between the object and the camera is calculated. distance.
深度摄影技术常见的产品有如微软的Kinect感应器,其应用于体感游戏,或者扩增实境(augmented reality, AR),如立体试衣间的应用等。然而,上述深度摄影技术的RGB摄影机及深度摄影机均采用各自的影像处理器,其具有体积庞大且成本高昂的问题。除此之外,RGB摄影机及深度摄影机所产生的数据一般均各自独立处理,因此,在现有实际的应用上会有使用经验不佳的问题。举例而言,在游戏上可能会有感应不灵敏或者反应慢的问题产生。而在扩增实境的例子中,可能会有人物与背景产生不匹配的状况产生,仍有使用上的缺憾。 Common products of depth photography technology include Microsoft’s Kinect sensor, which is used in somatosensory games, or augmented reality (augmented reality, AR), such as the application of three-dimensional fitting rooms. However, both the RGB camera and the depth camera of the aforementioned depth photography technology use their own image processors, which have problems of bulkiness and high cost. In addition, the data generated by the RGB camera and the depth camera are generally processed independently, so there is a problem of poor experience in existing practical applications. For example, in the game, there may be problems with insensitivity or slow response. However, in the example of augmented reality, there may be a situation where characters and backgrounds do not match, and there are still shortcomings in use.
发明内容 Contents of the invention
有鉴于此,本发明的目的在于提供一种感测装置,其可同步并结合两种不同分辨率的传感器的数据串流,使得上述两种传感器的图框处于同步状态,以提供后续较佳的应用。 In view of this, the object of the present invention is to provide a sensing device that can synchronize and combine the data streams of two sensors with different resolutions, so that the frames of the two sensors are in a synchronized state to provide subsequent better results. Applications.
本发明的另一目的在于提供一种感测装置的信号处理方法,其可控制上述两种不同分辨率的传感器的数据串流的时序,使得上述两种传感器具有同步的垂直同步信号,以解决上述影像与深度不匹配的问题。 Another object of the present invention is to provide a signal processing method for a sensing device, which can control the timing of the data streams of the above two sensors with different resolutions, so that the above two sensors have synchronous vertical synchronization signals to solve the problem of The imagery and depth mismatch issues mentioned above.
为实现上述目的,本发明提供的感测装置包含一第一传感器、一第二传感器、一同步器及一结合器。所述第一传感器具有一第一分辨率,并产生一第一数据串流。所述第二传感器具有一第二分辨率,并产生一第二数据串流,其中所述第二分辨率不同于所述第一分辨率。所述同步器电性连接于所述第一传感器及所述第二传感器,用于控制所述第一数据串流与所述第二数据串流的时序,使得所述第一数据串流与所述第二数据串流具有同步的垂直同步信号。所述结合器用于结合所述第一数据串流及所述第二数据串流以形成一数据输出串流。 To achieve the above object, the sensing device provided by the present invention includes a first sensor, a second sensor, a synchronizer and a combiner. The first sensor has a first resolution and generates a first data stream. The second sensor has a second resolution and generates a second data stream, wherein the second resolution is different from the first resolution. The synchronizer is electrically connected to the first sensor and the second sensor, and is used to control the timing of the first data stream and the second data stream, so that the first data stream and the second data stream The second data stream has a synchronous vertical sync signal. The combiner is used for combining the first data stream and the second data stream to form a data output stream.
在一优选实施例中,所述感测装置进一步包含一信号处理器,用以处理所述数据输出串流以供外部运用。 In a preferred embodiment, the sensing device further includes a signal processor for processing the data output stream for external use.
在一优选实施例中,所述数据输出串流产生形成一图框的多个数据行。此外,所述图框包含所述第一数据串流的一第一图框及所述第二数据串流的一第二图框,且所述第一图框及所述第二图框的大小分别对应所述第一分辨率及所述第二分辨率。具体来说,所述图框的大小为所述第一图框及所述第二图框两者中较大的图框的两倍。 In a preferred embodiment, the data output stream generates a plurality of data lines forming a frame. In addition, the frame includes a first frame of the first data stream and a second frame of the second data stream, and the first frame and the second frame The sizes respectively correspond to the first resolution and the second resolution. Specifically, the size of the frame is twice the larger frame of the first frame and the second frame.
在一优选实施例中,所述第一传感器为一深度传感器,所述第二传感器为一影像传感器,且所述深度传感器具有的所述第一分辨率小于所述影像传感器具有的所述第二分辨率。 In a preferred embodiment, the first sensor is a depth sensor, the second sensor is an image sensor, and the first resolution of the depth sensor is smaller than the first resolution of the image sensor. Second resolution.
在一优选实施例中,所述结合器包含一行缓冲器或一帧缓冲器。 In a preferred embodiment, the combiner comprises a line buffer or a frame buffer.
在一优选实施例中,所述同步器提供一控制频率信号至所述第一传感器及所述第二传感器。另外,所述同步器提供一控制延迟信号至所述第一传感器及所述第二传感器其中之一。 In a preferred embodiment, the synchronizer provides a control frequency signal to the first sensor and the second sensor. In addition, the synchronizer provides a control delay signal to one of the first sensor and the second sensor.
为实现上述目的,本发明提供的感测装置的信号处理方法包含下列步骤:通过一第一传感器产生一第一数据串流,所述第一传感器具有一第一分辨率;通过一第二传感器产生一第二数据串流,所述第二传感器具有一第二分辨率,其中所述第二分辨率不同于所述第一分辨率;控制所述第一数据串流与所述第二数据串流的时序,使得所述第一数据串流与所述第二数据串流具有同步的垂直同步信号;结合所述第一数据串流及所述第二数据串流以形成一数据输出串流;以及处理所述数据输出串流以供外部运用。 To achieve the above object, the signal processing method of the sensing device provided by the present invention includes the following steps: generating a first data stream through a first sensor, the first sensor having a first resolution; generating a first data stream through a second sensor generating a second data stream, the second sensor having a second resolution, wherein the second resolution is different from the first resolution; controlling the first data stream and the second data stream the timing of the streams such that the first data stream and the second data stream have a synchronized vertical synchronization signal; combining the first data stream and the second data stream to form a data output stream stream; and processing the data output stream for external use.
在一优选实施例中,所述数据输出串流产生形成一图框的多个数据行。所述图框包含所述第一数据串流的一第一图框及所述第二数据串流的一第二图框,且所述第一图框及所述第二图框的大小分别对应所述第一分辨率及所述第二分辨率。进一步来说,所述图框的大小为所述第一图框及所述第二图框两者中较大的图框的两倍。 In a preferred embodiment, the data output stream generates a plurality of data lines forming a frame. The frame includes a first frame of the first data stream and a second frame of the second data stream, and the sizes of the first frame and the second frame are respectively Corresponding to the first resolution and the second resolution. Further, the size of the frame is twice the larger frame of the first frame and the second frame.
在一优选实施例中,所述第一数据串流与所述第二数据串流具有同步的数据行信号。 In a preferred embodiment, the first data stream and the second data stream have synchronous data line signals.
在一优选实施例中,控制所述第一数据串流与所述第二数据串流的时序具体包含:提供一控制频率信号至所述第一传感器及所述第二传感器;以及提供一控制延迟信号至所述第一传感器及所述第二传感器其中之一。 In a preferred embodiment, controlling the timing of the first data stream and the second data stream specifically includes: providing a control frequency signal to the first sensor and the second sensor; and providing a control Delaying a signal to one of the first sensor and the second sensor.
相较于现有技术,本发明采用同步器来同步第一传感器及第二传感器的频率,并延迟分辨率较小的传感器发出的数据行信号,使得所述第一传感器及所述第二传感器可达到同步的图框传输。也就是说,所述第一传感器及所述第二传感器具有同步的垂直同步信号,从而克服现有技术中不匹配及使用经验不佳的缺点。 Compared with the prior art, the present invention uses a synchronizer to synchronize the frequencies of the first sensor and the second sensor, and delays the data line signal sent by the sensor with a smaller resolution, so that the first sensor and the second sensor Synchronous frame transfer can be achieved. That is to say, the first sensor and the second sensor have synchronous vertical synchronization signals, so as to overcome the disadvantages of mismatching and poor experience in the prior art.
附图说明 Description of drawings
为让本发明的上述和其它目的、特征、和优点能更明显易懂,配合所附图式,作详细说明如下: In order to make the above and other purposes, features, and advantages of the present invention more obvious and understandable, the detailed description is as follows in conjunction with the accompanying drawings:
图1为本发明一优选实施例所述的感测装置的示意图; FIG. 1 is a schematic diagram of a sensing device according to a preferred embodiment of the present invention;
图2为第一数据串流及第二数据串流的时序示意图; FIG. 2 is a timing diagram of a first data stream and a second data stream;
图3为本发明一优选实施例的第一数据串流、第二数据串流及数据输出串流的时序示意图; FIG. 3 is a timing diagram of a first data stream, a second data stream, and a data output stream according to a preferred embodiment of the present invention;
图4为结合后的图框示意图; Figure 4 is a schematic diagram of the combined frame;
图5为本发明一优选实施例所述的感测装置的信号处理方法的流程图。 FIG. 5 is a flowchart of a signal processing method of a sensing device according to a preferred embodiment of the present invention.
[主要组件符号说明] [Description of main component symbols]
100 感测装置 120 第一传感器 100 Sensing device 120 First sensor
140 第二传感器 160 同步器 140 Second sensor 160 Synchronizer
180 结合器 182 缓冲器 190 信号处理器 180 Combiner 182 Buffer 190 Signal Processor
220 第一数据串流 222 数据行信号 220 First Data Stream 222 Data Line Signal
222(1)~ 222(240) 第1行的数据行信号至第240行的数据行信号 222(1)~ 222(240) The data line signal of the first line to the data line signal of the 240th line
240 第二数据串流 244 数据行信号 240 Second Data Stream 244 Data Line Signal
244(1)~ 244(480) 第1行的数据行信号至第480行的数据行信号 244(1)~ 244(480) The data line signal of the first line to the data line signal of the 480th line
260 数据输出串流 310 控制频率信号 260 data output stream 310 control frequency signal
320 控制延迟信号 400 图框 320 Control delay signal 400 Frame
420 第一图框 440 第二图框。 420 First Frame 440 Second Frame.
具体实施方式 Detailed ways
本发明的多个优选实施例通过所附图式与下面的说明作详细描述,在不同的图式中,相同的组件符号表示相同或相似的组件。 A number of preferred embodiments of the present invention are described in detail by the accompanying drawings and the following descriptions. In different drawings, the same component symbols represent the same or similar components.
请参照图1,本发明一优选实施例所述的感测装置示意图,为了清楚说明,本实施例所述的感测装置100以虚线表示。所述感测装置100包括一第一传感器120、一第二传感器140、一同步器160、一结合器180及一信号处理器190。需注意的是,本实施例是以两个传感器来作说明,然而,本发明并不限制于两个传感器,两个以上的传感器也在本发明的范围内。上述的所述同步器160、结合器180及信号处理器190可各自为一芯片或是整合为一系统单芯片(System-on-a-Chip, SoC),以减少体积与成本。 Please refer to FIG. 1 , which is a schematic diagram of a sensing device according to a preferred embodiment of the present invention. For clarity, the sensing device 100 in this embodiment is represented by a dotted line. The sensing device 100 includes a first sensor 120 , a second sensor 140 , a synchronizer 160 , a combiner 180 and a signal processor 190 . It should be noted that this embodiment is described with two sensors, however, the present invention is not limited to two sensors, and more than two sensors are also within the scope of the present invention. The above-mentioned synchronizer 160 , combiner 180 and signal processor 190 can each be a chip or be integrated into a System-on-a-Chip (SoC) to reduce volume and cost.
具体来说,所述第一传感器120具有一第一分辨率,并产生一第一数据串流220。第一传感器120的第一分辨率指的是其所能感测的精细度。若以一RGB摄影机为例,则为RGB摄影机所能撷取的分辨率,例如VGA,即640*480。若以一深度摄影机为例,则为RGB摄影机所能撷取的深度图的分辨率,例如QVGA,即320*240。类似地,所述第二传感器140具有一第二分辨率,并产生一第二数据串流240。所述第二传感器140的第二分辨率指的是其所能感测的精细度。若以一RGB摄影机为例,则为RGB摄影机所能撷取的分辨率,例如VGA,即640*480。若以一深度摄影机为例,则为RGB摄影机所能撷取的深度图的分辨率,例如QVGA,即320*240。在本实施例中,其中所述第二分辨率不同于所述第一分辨率。需注意的是,本发明并不限制仅能以深度摄影机及RGB摄影机的组合,其它例如光传感器、红外线传感器、超音波传感器、CCD(Charge-Coupled Device)影像传感器、CMOS(Complementary Metal Oxide Semiconductor)影像传感器等的任意组合均在本发明的范围内。 Specifically, the first sensor 120 has a first resolution and generates a first data stream 220 . The first resolution of the first sensor 120 refers to the fineness it can sense. If an RGB camera is taken as an example, it is the resolution that the RGB camera can capture, such as VGA, which is 640*480. Taking a depth camera as an example, it is the resolution of the depth map captured by the RGB camera, such as QVGA, which is 320*240. Similarly, the second sensor 140 has a second resolution and generates a second data stream 240 . The second resolution of the second sensor 140 refers to the fineness it can sense. If an RGB camera is taken as an example, it is the resolution that the RGB camera can capture, such as VGA, which is 640*480. Taking a depth camera as an example, it is the resolution of the depth map captured by the RGB camera, such as QVGA, which is 320*240. In this embodiment, the second resolution is different from the first resolution. It should be noted that the present invention is not limited to the combination of a depth camera and an RGB camera, other such as light sensors, infrared sensors, ultrasonic sensors, CCD (Charge-Coupled Device) image sensors, CMOS (Complementary Metal Oxide Semiconductor) Any combination of image sensors and the like is within the scope of the present invention.
在此实施例中,所述第一传感器120为一深度传感器(如深度摄影机),所述第二传感器140为一影像传感器(如RGB摄影机),且所述深度传感器具有的所述第一分辨率小于所述影像传感器具有的所述第二分辨率。举例而言,所述第一分辨率(即深度图的分辨率)为QVGA,320*240。所述第二分辨率(即撷取的画面的分辨率)为VGA,640*480。然而,本发明并不限于此,例如两者分辨率可为其它不同倍数,甚至两者分辨率不成比例关系也在本发明的范围内。 In this embodiment, the first sensor 120 is a depth sensor (such as a depth camera), the second sensor 140 is an image sensor (such as an RGB camera), and the depth sensor has the first resolution rate is less than the second resolution that the image sensor has. For example, the first resolution (that is, the resolution of the depth map) is QVGA, 320*240. The second resolution (that is, the resolution of the captured image) is VGA, 640*480. However, the present invention is not limited thereto, for example, the resolutions of the two can be other different multiples, and even the disproportionate relationship between the resolutions of the two is also within the scope of the present invention.
请参照图1及图2,其中,图2为第一数据串流220及第二数据串流240的时序示意图。所述同步器160电性连接于所述第一传感器120及所述第二传感器140,用于控制所述第一数据串流220与所述第二数据串流240的时序,使得所述第一数据串流220与所述第二数据串流240具有同步的垂直同步信号(Vertical sync, VSYNC)。如图2所示,第一数据串流220具有多个数据行信号222,每一数据行信号222包含每一数据行的信息量,而所述多个数据行组成第一传感器120撷取的一第一图框(或称帧frame)数据。因此,所述多个数据行信号222包含第1行的数据行信号222(1)、第2行的数据行信号222(2)、第3行的数据行信号222(3)…至第240行的数据行信号222(240)。类似地,第二数据串流240具有多个数据行信号244,每一数据行信号244包含每一数据行的信息量,而所述多个数据行组成第二传感器140撷取的一第二图框数据。因此,所述多个数据行信号244包含第1行的数据行信号244(1)、第2行的数据行信号244(2)、第3行的数据行信号244(3)…至第480行的数据行信号244(480)。 Please refer to FIG. 1 and FIG. 2 , wherein FIG. 2 is a timing diagram of the first data stream 220 and the second data stream 240 . The synchronizer 160 is electrically connected to the first sensor 120 and the second sensor 140, and is used to control the timing of the first data stream 220 and the second data stream 240, so that the first A data stream 220 and the second data stream 240 have a vertical sync signal (Vertical sync, VSYNC) synchronous. As shown in FIG. 2 , the first data stream 220 has a plurality of data row signals 222, each data row signal 222 includes the information amount of each data row, and the plurality of data rows constitute the data captured by the first sensor 120. A first picture frame (or frame frame) data. Therefore, the plurality of data row signals 222 includes the data row signal 222(1) of the first row, the data row signal 222(2) of the second row, the data row signal 222(3) of the third row... to the 240th row Row data row signal 222 (240). Similarly, the second data stream 240 has a plurality of data row signals 244, each data row signal 244 includes the information amount of each data row, and the plurality of data rows constitute a second data row captured by the second sensor 140. plot frame data. Therefore, the plurality of data row signals 244 includes the data row signal 244(1) of the first row, the data row signal 244(2) of the second row, the data row signal 244(3) of the third row... to the 480th row Row data row signal 244 (480).
在此实施例中,所述同步器160控制所述第一传感器120输出第1行的数据行信号222(1)的时刻与所述第二传感器140输出第1行的数据行信号244(1)的时刻相同,如图2所示。也就是说,第一传感器120与第二传感器140输出所述第一图框及第二图框的时序同步,达成了具有同步的垂直同步信号。 In this embodiment, the synchronizer 160 controls the timing when the first sensor 120 outputs the data line signal 222(1) of the first line to be the same as the time when the second sensor 140 outputs the data line signal 244(1) of the first line. ) at the same moment, as shown in Figure 2. That is to say, the first sensor 120 and the second sensor 140 output the timings of the first frame and the second frame synchronously to achieve a synchronized vertical synchronization signal.
请再参照图1,所述结合器180用于结合所述第一数据串流220及所述第二数据串流240以形成一数据输出串流260。由于第一传感器120与第二传感器140具有同步的垂直同步信号,使得在一图框时间(frame time)内,所述结合器180接收到的都为第一传感器120与第二传感器140于相同时间撷取到的数据。因此具有不同分辨率的第一传感器120与第二传感器140可达到同步,从而解决了现有深度摄影机与RGB摄影机不匹配的问题。 Referring to FIG. 1 again, the combiner 180 is used to combine the first data stream 220 and the second data stream 240 to form a data output stream 260 . Since the first sensor 120 and the second sensor 140 have a synchronous vertical synchronous signal, within a frame time (frame time), what the combiner 180 receives is that the first sensor 120 and the second sensor 140 are in the same position. Time to retrieve the data. Therefore, the first sensor 120 and the second sensor 140 with different resolutions can be synchronized, thereby solving the problem of mismatch between the existing depth camera and the RGB camera.
在此实施例中,所述结合器180配合所述同步器160用来产生同步的数据输出串流260。具体来说,所述结合器180包含一缓冲器182。另外,所述同步器160提供一控制频率信号310至所述第一传感器120及所述第二传感器140。同时,所述同步器160提供一控制延迟信号320至所述第一传感器120及所述第二传感器140其中之一。详细来说,请参照图3,本发明一优选实施例的第一数据串流220、第二数据串流240及数据输出串流260的时序示意图。在此例中,同步器160提供所述控制延迟信号320至所述第一传感器120,使得所述第一传感器120输出的每一数据行信号222均延迟一个数据行周期。也就是说,等待所述第二传感器140输出两个数据行信号244后,第一传感器120才输出下一个数据行信号222。 In this embodiment, the combiner 180 cooperates with the synchronizer 160 to generate a synchronized data output stream 260 . Specifically, the combiner 180 includes a buffer 182 . In addition, the synchronizer 160 provides a control frequency signal 310 to the first sensor 120 and the second sensor 140 . At the same time, the synchronizer 160 provides a control delay signal 320 to one of the first sensor 120 and the second sensor 140 . In detail, please refer to FIG. 3 , which is a timing diagram of the first data stream 220 , the second data stream 240 and the data output stream 260 in a preferred embodiment of the present invention. In this example, the synchronizer 160 provides the control delay signal 320 to the first sensor 120 so that each data row signal 222 output by the first sensor 120 is delayed by one data row period. That is to say, the first sensor 120 outputs the next data line signal 222 after the second sensor 140 outputs two data line signals 244 .
另一方面,所述结合器180的缓冲器182优选为一行缓冲器(line buffer),其接收到第一数据串流220的第1行的数据行信号222(1)及接收到第二数据串流240的第1行的数据行信号244(1)与第2行的数据行信号244(2)后,将上述三者合并并送出。随后,所述行缓冲器接收到第一数据串流220的第2行的数据行信号222(2)及接收到第二数据串流240的第3行的数据行信号244(3)与第4行的数据行信号244(4)后,将上述三者合并并送出,依此类推,而形成数据输出串流260。因此,所述行缓冲器的容量可容纳一行数据行信号222及两行数据行信号244。 On the other hand, the buffer 182 of the combiner 180 is preferably a line buffer (line buffer), which receives the data line signal 222(1) of the first line of the first data stream 220 and receives the second data After the data row signal 244(1) of the first row and the data row signal 244(2) of the second row of the serial stream 240, the above three are combined and sent out. Subsequently, the line buffer receives the data line signal 222(2) of the 2nd line of the first data stream 220 and receives the data line signal 244(3) of the 3rd line of the second data stream 240 along with the data line signal 244(3). After the data line signal 244 (4) of 4 lines, the above three are combined and sent out, and so on, to form a data output stream 260 . Therefore, the capacity of the row buffer can accommodate one row of data row signals 222 and two rows of data row signals 244 .
因此,在第一传感器120为深度传感器(320*240)且第二传感器140为影像传感器(640*480)的例子中,当所述第一传感器120输出完一整幅图框的数据行后,即第240行,所述第二传感器140也输出完一整幅图框的数据行,即第480行,而使得所述第一数据串流220与所述第二数据串流240可以同步。接着,数据输出串流260提供至所述信号处理器190,所述信号处理器190将所述数据输出串流260格式化为适合外部运用的格式,例如提供显示器显示的信号,或者提供外部主机作其它的处理。因此,上述两个传感器可仅使用单一个信号处理器,从而可节省每一传感器各自使用其的信号处理器的成本。 Therefore, in the example where the first sensor 120 is a depth sensor (320*240) and the second sensor 140 is an image sensor (640*480), when the first sensor 120 outputs the data lines of a whole frame , that is, line 240, the second sensor 140 also outputs data lines of a complete picture frame, that is, line 480, so that the first data stream 220 and the second data stream 240 can be synchronized . Next, the data output stream 260 is provided to the signal processor 190, and the signal processor 190 formats the data output stream 260 into a format suitable for external use, such as providing a signal displayed on a monitor, or providing an external host Do other processing. Therefore, only a single signal processor can be used for the above-mentioned two sensors, thereby saving the cost of using its own signal processor for each sensor.
值得一提的是,所述结合器180的频率可为第一传感器120或第二传感器140频率的两倍或者其它倍数,以进行数据处理的同步化。 It is worth mentioning that the frequency of the combiner 180 may be twice or other multiples of the frequency of the first sensor 120 or the second sensor 140 to synchronize data processing.
然而,在其它实施例中,所述同步器160控制所述第一数据串流220与所述第二数据串流240的时序,使得所述第一数据串流220与所述第二数据串流240具有同步的数据行信号。也就是说,第一数据串流220的数据行信号可与第二数据串流240的数据行信号同步。 However, in other embodiments, the synchronizer 160 controls the timing of the first data stream 220 and the second data stream 240 such that the first data stream 220 and the second data stream Stream 240 has a synchronized data line signal. That is, the data line signals of the first data stream 220 can be synchronized with the data line signals of the second data stream 240 .
请参照图4,结合后的图框示意图。在此实施例中,所述数据输出串流260产生形成一图框400的多个数据行。所述图框400包含所述第一数据串流220的一第一图框420及所述第二数据串流240的一第二图框440,且所述第一图框420及所述第二图框440的大小分别对应所述第一分辨率及所述第二分辨率。也就是说,第一图框420的大小为320*240,第二图框440的大小为640*480。进一步来说,所述图框400的大小约等于所述第一图框420及所述第二图框440两者中较大的图框的两倍。在此例中,所述图框400的大小为1280*480。值得注意的是,在其它实施例中,所述图框400内的内容也可能是混和的第一图框420及所述第二图框440混和的信息,并非单纯的两张图框并在一起,然后实际的影像可由外部译码得出。 Please refer to Figure 4, a schematic diagram of the combined frame. In this embodiment, the data output stream 260 generates a plurality of data rows forming a frame 400 . The frame 400 includes a first frame 420 of the first data stream 220 and a second frame 440 of the second data stream 240, and the first frame 420 and the second The sizes of the two frames 440 respectively correspond to the first resolution and the second resolution. That is to say, the size of the first frame 420 is 320*240, and the size of the second frame 440 is 640*480. Further, the size of the frame 400 is approximately twice as large as that of the first frame 420 and the second frame 440 . In this example, the size of the frame 400 is 1280*480. It is worth noting that, in other embodiments, the content in the frame 400 may also be the mixed information of the first frame 420 and the second frame 440, not just two frames in one Together, then the actual image can be derived from external decoding.
在另一实施例中,所述结合器180的缓冲器182为一帧缓冲器(frame buffer)。也就是说,所述帧缓冲器的容量可容纳一幅第一图框420及一幅第二图框440。而同步器160提供所述控制延迟信号320至所述第一传感器120,使得第一传感器120输出完所述第一图框420后,停止输出第一图框420的时间,然后再输出下一幅第一图框420。也就是说,第一传感器120可等待第二传感器140输出完所述第二图框440后,再开始输出下一幅第一图框420,而达到同步的垂直同步信号。而帧缓冲器接收完第一图框420及一幅第二图框440的第一数据串流220及第二数据串流240后,再产生两者结合的数据输出串流260,以达到同步的要求。 In another embodiment, the buffer 182 of the combiner 180 is a frame buffer. That is to say, the capacity of the frame buffer can accommodate one first frame 420 and one second frame 440 . The synchronizer 160 provides the control delay signal 320 to the first sensor 120, so that the first sensor 120 stops outputting the time of the first frame 420 after outputting the first frame 420, and then outputs the next one. A first frame 420 is drawn. That is to say, the first sensor 120 may wait for the second sensor 140 to output the second frame 440 before starting to output the next first frame 420 to achieve a synchronized vertical synchronization signal. After the frame buffer has received the first data stream 220 and the second data stream 240 of the first picture frame 420 and a second picture frame 440, it generates the combined data output stream 260 to achieve synchronization. requirements.
以下将详细介绍采用本实施例所述的感测装置100的信号处理方法。请一并参照图1及图5,其中,图5为本发明一优选实施例所述的感测装置的信号处理方法的流程图。本实施例所述的信号处理方法是用于上述感测装置100,以下所提到组件请参照上述说明,在此不再赘述。 The signal processing method using the sensing device 100 described in this embodiment will be described in detail below. Please refer to FIG. 1 and FIG. 5 together, wherein FIG. 5 is a flowchart of a signal processing method of a sensing device according to a preferred embodiment of the present invention. The signal processing method described in this embodiment is used in the above-mentioned sensing device 100 . For the components mentioned below, please refer to the above-mentioned description, and details will not be repeated here.
所述信号处理方法开始于步骤S10,于步骤S10中,通过一第一传感器120产生一第一数据串流220,所述第一传感器120具有一第一分辨率。 The signal processing method starts at step S10. In step S10, a first data stream 220 is generated by a first sensor 120, and the first sensor 120 has a first resolution.
于步骤S20中,通过一第二传感器120产生一第二数据串流240,所述第二传感器140具有一第二分辨率,其中所述第二分辨率不同于所述第一分辨率。 In step S20 , a second data stream 240 is generated by a second sensor 120 having a second resolution, wherein the second resolution is different from the first resolution.
于步骤S30中,控制所述第一数据串流220与所述第二数据串流240的时序,使得所述第一数据串流220与所述第二数据串流240具有同步的垂直同步信号,然后执行步骤S40。值得注意的是,步骤S10至S30优选为同时进行的步骤。 In step S30, the timing of the first data stream 220 and the second data stream 240 is controlled so that the first data stream 220 and the second data stream 240 have synchronous vertical synchronization signals , and then execute step S40. It should be noted that steps S10 to S30 are preferably performed simultaneously.
于步骤S40中,结合所述第一数据串流220及所述第二数据串流240以形成一数据输出串流260,然后执行步骤S50。 In step S40, combine the first data stream 220 and the second data stream 240 to form a data output stream 260, and then execute step S50.
于步骤S50中,处理所述数据输出串流260以供外部运用。 In step S50, the data output stream 260 is processed for external use.
同样地,参照图4,所述数据输出串流260产生形成一图框400的多个数据行。所述图框400包含所述第一数据串流220的一第一图框420及所述第二数据串流240的一第二图框440,且所述第一图框420及所述第二图框440的大小分别对应所述第一分辨率及所述第二分辨率。进一步来说,所述图框400的大小约等于所述第一图框420及所述第二图框440两者中较大的图框的两倍。 Likewise, referring to FIG. 4 , the data output stream 260 generates a plurality of data rows forming a frame 400 . The frame 400 includes a first frame 420 of the first data stream 220 and a second frame 440 of the second data stream 240, and the first frame 420 and the second The sizes of the two frames 440 respectively correspond to the first resolution and the second resolution. Further, the size of the frame 400 is approximately twice as large as that of the first frame 420 and the second frame 440 .
详细来说,在步骤S30中,控制所述第一数据串流220与所述第二数据串流240的时序具体包含:提供一控制频率信号310至所述第一传感器120及所述第二传感器140;以及提供一控制延迟信号320至所述第一传感器120及所述第二传感器140其中之一。然而,在其它实施例中,两种不同的控制延迟信号也可同时提供至所述第一传感器120及所述第二传感器140,以达成更复杂的多传感器的同步化。 Specifically, in step S30, controlling the timing of the first data stream 220 and the second data stream 240 specifically includes: providing a control frequency signal 310 to the first sensor 120 and the second sensor 120 a sensor 140 ; and providing a control delay signal 320 to one of the first sensor 120 and the second sensor 140 . However, in other embodiments, two different control delay signals can also be provided to the first sensor 120 and the second sensor 140 at the same time, so as to achieve more complex multi-sensor synchronization.
综上所述,本发明优选实施例采用同步器160来同步第一传感器120及第二传感器140的频率,并延迟分辨率较小的传感器发出的数据行信号,使得所述第一传感器120及所述第二传感器140可达到同步的图框传输。也就是说,所述第一传感器120及所述第二传感器140具有同步的垂直同步信号,从而克服现有技术中不匹配及使用经验不佳的缺点。 In summary, the preferred embodiment of the present invention uses the synchronizer 160 to synchronize the frequencies of the first sensor 120 and the second sensor 140, and delays the data line signal sent by the sensor with a smaller resolution, so that the first sensor 120 and the second sensor 140 The second sensor 140 can achieve synchronous frame transmission. That is to say, the first sensor 120 and the second sensor 140 have synchronous vertical synchronization signals, so as to overcome the disadvantages of mismatching and poor experience in the prior art.
以上所述仅是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员,在不脱离本发明结构的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the structure of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be regarded as protection scope of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310525783.0A CN104601977A (en) | 2013-10-31 | 2013-10-31 | Sensing device and signal processing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310525783.0A CN104601977A (en) | 2013-10-31 | 2013-10-31 | Sensing device and signal processing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104601977A true CN104601977A (en) | 2015-05-06 |
Family
ID=53127435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310525783.0A Pending CN104601977A (en) | 2013-10-31 | 2013-10-31 | Sensing device and signal processing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104601977A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101201806A (en) * | 2006-12-14 | 2008-06-18 | 英业达股份有限公司 | Synchronous circuit of data transmission interface |
CN102404585A (en) * | 2010-08-27 | 2012-04-04 | 美国博通公司 | Method and system |
CN102630026A (en) * | 2011-02-03 | 2012-08-08 | 美国博通公司 | Method and system for processing video |
CN103329551A (en) * | 2011-01-19 | 2013-09-25 | 三星电子株式会社 | Reception device for receiving a plurality of real-time transfer streams, transmission device for transmitting same, and method for playing multimedia content |
-
2013
- 2013-10-31 CN CN201310525783.0A patent/CN104601977A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101201806A (en) * | 2006-12-14 | 2008-06-18 | 英业达股份有限公司 | Synchronous circuit of data transmission interface |
CN102404585A (en) * | 2010-08-27 | 2012-04-04 | 美国博通公司 | Method and system |
CN103329551A (en) * | 2011-01-19 | 2013-09-25 | 三星电子株式会社 | Reception device for receiving a plurality of real-time transfer streams, transmission device for transmitting same, and method for playing multimedia content |
CN102630026A (en) * | 2011-02-03 | 2012-08-08 | 美国博通公司 | Method and system for processing video |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11741916B2 (en) | Video frame rate compensation through adjustment of timing of scanout | |
US9706114B2 (en) | Image pickup apparatus, information processing apparatus, display apparatus, information processing system, image data sending method, image displaying method, and computer program | |
CN111656433B (en) | Apparatus, system, and method for mitigating motion display delay in head mounted displays | |
TWI571106B (en) | Video latency reduction | |
CN103595924B (en) | A cameralink-based image fusion system and its method | |
CN112995735A (en) | Distributed video display system, control device and control method | |
JP6218787B2 (en) | Imaging apparatus, information processing apparatus, display apparatus, information processing system, image data transmission method, and image display method | |
US9148564B2 (en) | Image pickup apparatus, information processing system and image data processing method | |
US20230222741A1 (en) | Video pass-through computing system | |
WO2015161574A1 (en) | Data processing method and device for led television, and led television | |
WO2018076354A1 (en) | Image data frame synchronization method, image signal processing device and terminal | |
Lin et al. | A wearable stereo vision system for visually impaired | |
CN104216533B (en) | A kind of wear-type virtual reality display based on DirectX9 | |
US20150116459A1 (en) | Sensing device and signal processing method thereof | |
US11373273B2 (en) | Method and device for combining real and virtual images | |
TWI516124B (en) | Displaying method of screen display information | |
CN104601977A (en) | Sensing device and signal processing method thereof | |
CN119137954A (en) | Camera frame extrapolation for video perspective | |
Li et al. | Real-time 3D video system based on FPGA | |
Lin et al. | Binocular stereo vision synchronous acquisition technique based on FPGA | |
CN118830240A (en) | Video communication method and device | |
Lin et al. | FPGA Based High Accuracy Synchronous Acquisition Design for Binocular Vision System | |
Yu et al. | Design of 3D-TV Horizontal Parallax Obtaining System Based on FPGA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150506 |
|
RJ01 | Rejection of invention patent application after publication |