CN104601240B - Millimeter wave generation system based on four-wave mixing effect in the optical fiber and method of chalcogenide glass - Google Patents

Millimeter wave generation system based on four-wave mixing effect in the optical fiber and method of chalcogenide glass Download PDF

Info

Publication number
CN104601240B
CN104601240B CN201410814527.8A CN201410814527A CN104601240B CN 104601240 B CN104601240 B CN 104601240B CN 201410814527 A CN201410814527 A CN 201410814527A CN 104601240 B CN104601240 B CN 104601240B
Authority
CN
China
Prior art keywords
optical
frequency
wave
input
millimeter
Prior art date
Application number
CN201410814527.8A
Other languages
Chinese (zh)
Other versions
CN104601240A (en
Inventor
应祥岳
刘太君
文化锋
李军
Original Assignee
宁波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大学 filed Critical 宁波大学
Priority to CN201410814527.8A priority Critical patent/CN104601240B/en
Publication of CN104601240A publication Critical patent/CN104601240A/en
Application granted granted Critical
Publication of CN104601240B publication Critical patent/CN104601240B/en

Links

Abstract

本发明公开了一种基于硫系玻璃光纤四波混频效应的毫米波生成系统及方法,激光器产生连续光载波信号输入到双电极马赫‑增德尔调制器,功分器将调制微波信号分为两路微波信号,一路输入到双电极马赫‑增德尔调制器的一个电极,另一路输入到移相器被移相180度后输入到双电极马赫‑增德尔调制器的另一个电极,双电极马赫‑增德尔调制器调制出两个边带的光波依次进行放大处理和滤波处理后输入到硫系玻璃光纤中,两个边带的光波发生四波混频效应产生梳状光波,梳状光波通过滤波处理后得到需要的两个光频分量输入到光衰减器中将光功率调整到0dBm后输入到光电探测器中拍频后输出高频毫米波;优点是降低调制微波信号源的频率和器件带宽要求,减少成本。 The present invention discloses a millimeter-wave generation system and method based on chalcogenide glass fiber FWM, the laser generates a continuous optical carrier signal is input to the dual electrode Mach - Zehnder modulator, the microwave power splitter modulated signal into two microwave signal, one input to the dual electrode Mach - Zehnder modulator is one electrode and the other input to the phase shifter is phase-shifted by 180 degrees to enter a two-electrode Mach - Zehnder modulator other electrode of the dual electrode Mach - Zehnder modulator modulates the input to the chalcogenide glass optical fiber with the two sides of the light wave amplifying process and sequentially filtering process, the two sidebands occur FWM light waves generated lightwave comb, comb lightwave to give the desired post-filter processing by two frequency components of light input to the optical attenuator in the optical power input to the photodetector output a millimeter wave after frequency beat frequency adjusted to 0dBm; advantage is to reduce the frequency of the modulation signal source and the microwave device bandwidth requirements, reduce costs.

Description

基于硫系玻璃光纤四波混频效应的毫米波生成系统及方法 Millimeter wave generation system based on four-wave mixing effect in the optical fiber and method of chalcogenide glass

技术领域 FIELD

[0001] 本发明涉及一种光生毫米波生成技术,尤其是涉及一种基于硫系玻璃光纤四波混频效应的毫米波生成系统及方法。 [0001] The present invention relates to a millimeter wave to generate photogenerated technology, particularly to a system and method for generating a millimeter wave FWM chalcogenide glass-based optical fibers. 背景技术 Background technique

[0002] 光纤通信具有低损耗、高带宽的特性,光纤无线电(R0F)技术是应高速大容量无线通信需求,新兴发展起来的将光纤通信和无线通信相结合起来的无线接入技术。 [0002] having a low-loss optical fiber communication, high bandwidth characteristics, radio over fiber (R0F) technology is a high speed large capacity should demand for wireless communication, the new developed optical communication and radio communication with the radio access technology combined. 光纤无线电(R0F)系统构成的具有超带宽的无线接入网络通过光纤实现中心处理站与基站之间远距离的连接,通过微波、毫米波系统实现几十米范围的无线覆盖。 Ultra wideband radio access network having a radio over fiber (R0F) system configured to achieve connection between a central processing station and remote base station through optical fiber, wireless coverage range of several tens of meters by microwave, millimeter-wave systems. 目前,许多国家已经将59-64GHz的毫米波段专门分配给无牌照的R0F技术应用,大大推动了毫米波段R0F技术的发展。 Currently, many countries have specifically allocated 59-64GHz millimeter wave band to unlicensed R0F technology applications, greatly promoted the development of millimeter wave band R0F technology. 高质量的毫米波信号生成是实现毫米波段R0F系统的关键技术之一。 Generating a millimeter wave signal quality is one of the key technologies in the millimeter waveband R0F system. 但制作窄线宽、低相位噪声、高稳定性且可调谐毫米波信号发生器时,对工艺的要求极高,毫米波在电域下生成比较困难,面临无法突破的电子瓶颈。 However, the production of narrow linewidth, low phase noise, high stability, and tunable millimeter wave signal generator, extremely high demands on the process, in the millimeter wave to generate an electrical field is difficult, unable to break the bottleneck facing the electron. 除此之外,直接调制毫米波信号的成熟商用电光调制器极其少见而且价格昂贵。 In addition, the millimeter wave signal directly modulated mature commercial electro-optic modulator is extremely rare and expensive. 因此研究如何利用光学方法产生毫米波段的载波信号一直是毫米波段R〇F研究领域中的热点问题。 So how an optical method for generating a carrier signal of a millimeter wave band has been a hot issue in the millimeter waveband R〇F research in the field. 用光学的方法来产生毫米波,一方面是出于成本的考虑, 另一方面,毫米波在电域下处理已经比较困难,面临无法突破的电子瓶颈,而用光学产生的毫米波,不仅具有相位噪声低的优点,而且由于光纤的损耗非常小,信号能够远距离传输, 便于分配到远端由天线发射。 The method used to generate optical millimeter-wave, on the one hand because of cost considerations, on the other hand, in the millimeter wave electric field process has been difficult, unable to break through the bottleneck faced by electronic, optical and millimeter wave generated, not only has the the advantages of low phase noise, and because of the very small loss in optical fibers, capable of long-distance transmission signal, assigned to facilitate distal transmitted by the antenna.

[0003] 目前,光学产生毫米波的技术主要有光外差技术、外调制技术和光学倍频技术等。 [0003] Currently, the optically generated millimeter wave technology is mainly an optical heterodyne technique, the optical frequency modulation and external technologies. 光外差技术的基本原理是利用两个频率差等于所需毫米波的频率的光载波,在光电探测器中拍频生成毫米波,该方法需要两个光载波的相位非常稳定并相关,实现时需要额外的相位锁定模块,难以获得低相位噪声的高质量毫米波。 The basic principle of optical heterodyne technique is the use of two frequency difference equal to the desired optical carrier frequency of a millimeter wave, millimeter wave beat frequency generated in a photodetector, this method requires two optical carrier phase is very stable and is associated, to achieve when additional phase locking module, the millimeter wave is difficult to obtain high-quality low phase noise. 外调制技术基于外部调制器的非线性响应,产生边带频率,在接收端由边带拍频得到毫米波信号,包括双边带调制、单边带调制和载波抑制调制等。 A nonlinear response outside the modulation technique based on an external modulator, frequency sidebands, the beat signal obtained on the receiving end side of the millimeter wave band, comprising a double sideband modulation, single sideband suppressed carrier modulation, and modulation. 外调制器有马赫-增德尔调制器(MZM)、电吸收调制器和相位调制器等。 External modulator has a Mach - Zehnder modulator (MZM), electro-absorption modulator and the phase modulator and the like. 但是这种方法需要很高频率的调制微波信号源,而高频微波信号源实现难度大,系统成本太高。 However, this method requires a high frequency modulated microwave signal, while the high frequency microwave signal source is difficult to achieve, the system cost is too high. 相对来讲,光学倍频技术更具优势。 Relatively speaking, the optical frequency doubling technology advantage. 光学倍频技术借助各种外调制器件及其它一些光学处理器件将低频微波信号调制到光波上,并产生高次谐波光边带,最后通过光电探测器拍频产生目标高频毫米波信号。 Optical frequency modulation technique with a variety of external devices and other optical low frequency microwave signal processing means to modulate the optical wave and the high harmonic sidebands of light, and finally generate the target frequency a high-frequency millimeter-wave signal by a photoelectric detector beat. 在这类方案中,倍频产生的毫米波信号的线宽和相位噪声等特性均与调制微波信号保持在相同量级,而与所用的光学器件无关,克服了电子倍频器件响应频率和带宽的限制,而且相位噪声低。 In such embodiment, the phase noise characteristics of the line width and the millimeter wave signal generated by the frequency modulated microwave signal and remain in the same order, regardless of the optical device used to overcome the electronic device in response to frequency and bandwidth multiplier limitations, and low phase noise. 与此同时,方案中需要的强度调制器、相位调制器和半导体光放大器等光学器件均为市面上常见的成熟商品化器件,因此方案实现简单且稳定性高,在毫米波R0F系统中比较常见。 At the same time, the intensity modulator, a phase modulator and a semiconductor optical amplifier and other optical devices are required in the program common market mature commercial devices, and so simple solutions high stability, is more common in the millimeter wave system R0F .

[0004] 现有的应用光学倍频技术的毫米波生成系统典型方案包括:利用马赫-增德尔调制器与滤波器串联产生四倍频毫米波信号;利用两个MZM级联产生四倍频毫米波信号;利用两个相位调制器并联产生六倍频毫米波信号等。 [0004] Typical solutions prior millimeter-wave generating system to which the optical frequency doubling technique comprises: using a Mach - Zehnder modulator in series with the filter to produce quadruple frequency millimeter wave signal; generated by using two cascaded MZM quadruple mm wave signal; using two phase modulators in parallel to generate six frequency millimeter-wave signals. 但是,这些毫米波生成系统实现的倍频数仍然较低,仍然需要较高频率的调制微波信号源,而且需要多个调制器,系统成本难以降低,大大限制了该技术的应用。 However, the number of millimeter wave frequency generating system implementation is still low, there remains a need modulated higher frequency microwave signal, but also a plurality of modulators, it is difficult to reduce the system cost, greatly limits the application of this technique. 发明内容 SUMMARY

[0005] 本发明所要解决的技术问题之一是提供一种基于硫系玻璃光纤四波混频效应的毫米波生成系统,该毫米波生成系统采用外部调制技术结合硫系玻璃光纤四波混频效应实现频率的上变换,产生六倍频甚至更高倍频的毫米波信号,大大降低调制微波信号源的频率,克服光纤无线通信技术中产生毫米波的微波驱动信号频率和调制器带宽问题,降低系统器件带宽要求,减少系统成本。 [0005] The present invention is one of the technical problem to be solved is to provide a millimeter wave generation system FWM chalcogenide glass-based optical fiber, the system uses millimeter wave to generate an external modulation optical glass fibers bound sulfur-based four-wave mixing effect implemented on a frequency transform, to generate a millimeter wave signal frequency even higher frequency of six, greatly reducing the frequency modulated microwave signal, to overcome the microwave drive signal frequency and modulation bandwidth problems millimeter-wave wireless communication technology optical fiber, the reduction system components bandwidth requirements, reduce system cost.

[0006] 本发明解决上述技术问题之一所采用的技术方案为:一种基于硫系玻璃光纤四波混频效应的毫米波生成系统,包括用于产生光功率为OdBm的连续光载波信号的激光器、用于将调制微波信号分为两路微波信号的功分器、用于将微波信号移相180度的移相器、双电极马赫_增德尔调制器、用于将光功率放大到25dBm的掺铒光纤放大器、第一光滤波器、硫系玻璃光纤、第二光滤波器、用于将光功率调整到OdBm的光衰减器和光电探测器;所述的调制微波信号的功率为15dBm; [0006] One aspect of the present invention to solve the above technical problem is adopted: one kind of a millimeter wave system generated FWM chalcogenide glass-based optical fiber, comprising means for generating an optical power of OdBm continuous optical carrier signal laser, for modulating the microwave signal is divided into two splitters microwave signal, a microwave signal for the phase shifter of the phase shifter 180, _ two-electrode Mach Zehnder modulator, for amplifying the optical power to 25dBm the erbium-doped fiber amplifier, a first optical filter, chalcogenide glass fiber, a second optical filter configured to adjust the optical power of OdBm optical attenuator and the photodetector; microwave power of the modulated signal is 15dBm ;

[0007] 所述的激光器的输出端与所述的双电极马赫-增德尔调制器的输入端连接;所述的功分器具有两个输出端,分别为第一输出端和第二输出端,所述的功分器的第一输出端与所述的双电极马赫-增德尔调制器的一个电极连接,所述的功分器的第二输出端与所述的移相器的输入端连接,所述的移相器的输出端与所述的双电极马赫-增德尔调制器的另一个电极连接;所述的双电极马赫-增德尔调制器的输出端与所述的掺铒光纤放大器的输入端连接,所述的掺铒光纤放大器的输出端与所述的第一光滤波器的输入端连接,所述的第一光滤波器的输出端与所述的硫系玻璃光纤的输入端连接,所述的硫系玻璃光纤的输出端与所述的第二光滤波器的输入端连接,所述的第二光滤波器的输出端与所述的光衰减器的输入端连接,所述的光衰减器的输出端与所述的光电探测器 [0007] The output of the laser with the two-electrode Mach - Zehnder modulator input; said power splitter has two outputs, respectively a first output terminal and a second output terminal , a first output terminal and the dual-electrode Mach said power splitter - connected to one electrode Zehnder modulator, a second output of the power splitter and the input of the phase shifter connected to a phase shifter output terminal of the dual electrode Mach - Zehnder modulator and the other electrode is connected; the two-electrode Mach - Zehnder modulator output terminal of the erbium doped fiber input of the amplifier is connected to the input of the first erbium-doped optical fiber filter output terminal of the amplifier is connected to the chalcogenide glass optical filter of the first output terminal of the optical fiber an input terminal connected to an input terminal of the second output of the optical filter of the chalcogenide glass optical fibers connected to said input terminal of said second output of said optical filter is an optical attenuator connected said output end of said optical attenuator and a photodetector 的输入端连接。 The input terminal is connected.

[0008] 所述的第二光滤波器的通带可调。 Passband [0008] the second tunable optical filter.

[0009] 所述的双电极马赫-增德尔调制器的调制微波信号频率在9.5-11GHz范围内连续可调。 [0009] The dual electrode Mach - Zehnder modulated microwave signal frequency modulator is continuously adjustable in the range of 9.5-11GHz.

[0010] 所述的激光器为分布反馈式激光器,所述的光衰减器为可调光衰减器。 [0010] The laser is a distributed feedback laser, the optical attenuator is a variable optical attenuator.

[0011] 与现有技术相比,本发明的毫米波生成系统的优点在于通过激光器产生光功率为OdBm的连续光载波信号输入到双电极马赫-增德尔调制器的输入端,功分器将功率为15dBm 的调制微波信号分为两路微波信号,一路微波信号输入到双电极马赫-增德尔调制器的一个电极,另一路微波信号输入到移相器被移相180度后输入到双电极马赫-增德尔调制器的另一个电极,双电极马赫_增德尔调制器对输入其内的连续光载波信号和微波信号进行载波抑制双边带调制后输出两个边带的光波,两个边带的光波首先通过掺铒光纤放大器进行放大处理,然后通过第一光滤波器滤除掺铒光纤放大器产生的带外噪声后注入硫系玻璃光纤内,放大后的两个边带的光波在硫系玻璃光纤发生四波混频效应产生梳状光波输出,第二光滤波器将梳状光波中的无用光频分量滤除,得到需要的 [0011] Compared with the prior art, the advantages of millimeter-wave generation system of the present invention is characterized by a laser light generating power of a continuous optical carrier signal is inputted to the dual electrode Mach OdBm - input Zehnder modulator, the power splitter 15dBm power is modulated microwave signal is divided into two microwave signal, a microwave signal is input to the way two-electrode Mach - one electrode Zehnder modulator, a microwave signal is input to the other path shifts the phase input to a two-electrode is phase-shifted by 180 degrees Mach - Zehnder modulator other electrode of the dual electrode Mach Zehnder modulator _ within the input carrier signal and the continuous light signal carrier suppression microwave output after the two sidebands double sideband modulated light waves, two sidebands the light wave amplifying process by the first erbium doped fiber amplifier, and then filtered through a first erbium-doped optical filter after injection of band noise generated in the optical fiber amplifier chalcogenide glass optical fiber, the light wave after the two sidebands of the sulfur-based amplification glass fiber FWM occurs comb generated output light waves, the comb filter of the second optical light wave frequency component unnecessary light filtered to give the desired 个光频分量后输入到光衰减器中,光衰减器将需要的两个光频分量的光功率调整到OdBm后输入到光电探测器中拍频后输出高频毫米波;由此采用外部调制技术结合四波混频效应实现频率的上变换,产生六倍频甚至更高倍频的毫米波信号,最终实现高次倍频产生毫米波信号,大大降低调制微波信号源的频率,克服光纤无线通信技术中产生毫米波的微波驱动信号频率和调制器带宽问题,降低系统器件带宽要求,减少系统成本; Rear light frequency component is input to the optical attenuator, the two optical attenuator optical power required to adjust the frequency components input to the photodetector to OdBm output frequency millimeter wave after the beat frequency; whereby external modulation FWM technologies implemented on a frequency transform, the millimeter wave signal to generate six frequency even higher frequency, and ultimately higher frequency millimeter wave signal is generated, drastically reduce the frequency modulated microwave signal, and optical wireless communication overcome art to produce a millimeter wave and microwave modulator driving signal frequency bandwidth issues, reducing system bandwidth devices, reducing system cost;

[0012] 当第二光滤波器的通带可调时,如果需要的两个光频分量的频率间隔为调制微波信号频率的6倍,则光电探测器拍频后可实现6次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的8倍,则光电探测器拍频后可实现8次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的10倍,则光电探测器拍频后可实现10次倍频产生高频毫米波,以此类推,可通过第二光滤波器的通带调整来选择该光生毫米波生成系统的倍频次数。 [0012] When the second optical tunable filter passband, if the frequency components of the two light frequency interval required six times the modulation frequency of the microwave signal, the photodetectors may be implemented after the beat frequency doubling 6 millimeter-wave frequency; if the two frequency components of the optical frequency interval required to 8 times the modulation frequency of the microwave signal, the photodetector 8 may be implemented after the beat frequency multiplier generates a high frequency millimeter-wave; two light if needed frequency component of the frequency modulated microwave signal frequency interval is 10 times, the photodetector 10 may be implemented after the beat frequency multiplier generates a high frequency millimeter-wave, and so on, can be selected by adjusting the second light band-pass filter the millimeter-wave frequency and frequency generated photocarriers system.

[0013] 本发明所要解决的技术问题之二是提供一种基于硫系玻璃光纤四波混频效应的毫米波生成方法,该毫米波生成系统采用外部调制技术结合硫系玻璃光纤四波混频效应实现频率的上变换,产生六倍频甚至更高倍频的毫米波信号,大大降低调制微波信号源的频率,克服光纤无线通信技术中产生毫米波的微波驱动信号频率和调制器带宽问题,降低器件带宽要求,减少系统成本。 [0013] The present invention to solve the second technical problem is to provide a chalcogenide glass optical millimeter-wave generating method based on four-wave mixing effect, the system uses millimeter wave to generate an external modulation optical glass fibers bound sulfur-based four-wave mixing effect implemented on a frequency transform, to generate a millimeter wave signal frequency even higher frequency of six, greatly reducing the frequency modulated microwave signal, to overcome the microwave drive signal frequency and modulation bandwidth problems millimeter-wave wireless communication technology optical fiber, the reduction device bandwidth requirements, reduce system cost.

[0014] 本发明解决上述技术问题之二所采用的技术方案为:一种基于硫系玻璃光纤四波混频效应的毫米波生成方法,包括以下步骤: [0014] The technical solution to the above second technical problem of the present invention is employed: one kind of method for generating a millimeter wave FWM chalcogenide glass-based optical fiber, comprising the steps of:

[0015] ①采用激光器产生光功率为OdBm的连续光载波信号,将该连续光载波信号输入到双电极马赫-增德尔调制器的输入端;[0〇16]②将功率为15dBm的调制微波信号通过功分器分为两路微波信号,将一路微波信号输入到双电极马赫_增德尔调制器的一个电极,将另一路微波信号输入到移相器中,移相器将另一路微波信号移相180度后输入到双电极马赫-增德尔调制器的另一个电极; [0015] ① using laser produces an optical power of OdBm continuous optical carrier signal, the continuous optical carrier signal is inputted to the dual electrode Mach - input Zehnder modulator; [0〇16] ② microwave power to 15dBm modulation of signal power splitter into two microwave signal, a microwave signal is input to the way one electrode of a two-electrode Mach Zehnder modulator _, the other channel signal is input to the microwave phase shifter, the phase shifter and the other way microwave signals after the 180 degrees phase shifted is input to the dual electrode Mach - Zehnder other electrode modulator;

[0017]③调节双电极马赫-增德尔调制器的偏压,实现载波抑制双边带调制,双电极马赫-增德尔调制器调制后输出两个边带的光波,两个边带的光波的频率差为调制微波信号频率的2倍;[〇〇18]④将两个边带的光波进行放大处理使其光功率放大到25dBm,然后进行滤波处理后输入到硫系玻璃光纤中,两个边带的光波在硫系玻璃光纤中发生四波混频效应产生梳状光波输出,该梳状光波的相邻光频成分之间的频率间隔为调制微波信号频率的2倍; [0017] ③ dual electrode Mach adjustment - Zehnder modulator biased to realize double-sideband suppressed carrier modulation, two-electrode Mach - Zehnder modulator modulates the output light waves of the two sidebands, the frequency of two light waves sidebands 2-fold difference modulated microwave signal frequency; [〇〇18] ④ the two sidebands of the optical light wave amplifying process so as to 25dBm power amplifier, and then input to the filtering process in the chalcogenide glass optical fiber, the two sides FWM generation with comb lightwave output light waves occurs chalcogenide glass optical fiber, the frequency between adjacent comb-like optical wave optical frequency interval of the modulated component of the frequency two times the microwave signal;

[0019] ⑤将梳状光波中的无用光频分量滤除,得到需要的两个光频分量; [0019] ⑤ The comb no light light wave frequency component filtered off to give the desired two frequency components of light;

[0020] ⑥采用光衰减器将需要的两个光频分量的光功率调整到OdBm后输入到光电探测器中拍频,输出高频毫米波,该毫米波的频率就等于输入到光电探测器的两个光频分量的频率差。 After [0020] ⑥ optical attenuator using the optical power of the two frequency components required to adjust input to the photodetector OdBm beat frequency, the output frequency millimeter wave, millimeter wave frequency is equal to the input to the photodetector the difference between the two frequency components of the optical frequency.

[0021] 所述的激光器为分布反馈式激光器,所述的光衰减器为可调光衰减器。 [0021] The laser is a distributed feedback laser, the optical attenuator is a variable optical attenuator. [〇〇22]所述的步骤④中采用掺铒光纤放大器进行放大处理,采用第一光滤波器进行滤波处理,所述的步骤⑤中采用第二光滤波器将梳状光波中的无用光频分量滤除。 [〇〇22] employed in said step ④ EDFA amplifies process, using a first optical filter for a filtering process, a second step of the optical filter used in the comb ⑤ light wave without light frequency components filtered out. [〇〇23]所述的第二光滤波器的通带可调。 Passband [〇〇23] said second tunable optical filter.

[0024] 所述的双电极马赫-增德尔调制器的调制微波信号频率在9.5-11GHz范围内连续可调。 [0024] The dual electrode Mach - Zehnder modulated microwave signal frequency modulator is continuously adjustable in the range of 9.5-11GHz.

[0025] 与现有技术相比,本发明的毫米波生成方法的优点在于首先通过激光器产生光功率为OdBm的连续光载波信号输入到双电极马赫-增德尔调制器的输入端,采用功分器将功率为15dBm的调制微波信号分为两路微波信号,一路微波信号输入到双电极马赫-增德尔调制器的一个电极,另一路微波信号输入到移相器被移相180度后输入到双电极马赫-增德尔调制器的另一个电极,双电极马赫-增德尔调制器对输入其内的连续光载波信号和微波信号进行载波抑制双边带调制后输出两个边带的光波,两个边带的光波进行放大处理使其光功率放大到25dBm,然后进行滤波处理后输入到硫系玻璃光纤中,两个边带的光波在硫系玻璃光纤中发生四波混频效应产生梳状光波输出,梳状光波中的无用光频分量被滤除后得到需要的两个光频分量输入到光衰减器中,光衰减器将需要的两 [0025] Compared with the prior art, the advantages of millimeter-wave generating method of the present invention is first generated by a laser light power of a continuous optical carrier signal is input to the dual electrode Mach OdBm - input Zehnder modulator using power divider the power is 15dBm modulated microwave signal is divided into two microwave signal, a microwave signal is input to the way two-electrode Mach - one electrode Zehnder modulator, a microwave signal is input to the other path the phase shifter is input to a phase shift of 180 degrees a two-electrode Mach - Zehnder modulator other electrode of the dual electrode Mach - Zehnder modulator continuous optical carrier signal and the microwave signal in which the input carrier-suppressed double sideband modulated output light waves of the two sidebands, two input to the chalcogenide glass optical fiber after the optical wave sideband enlargement processing so as to 25dBm optical power amplification, and filtering process, FWM light waves generated comb two sidebands of the light wave in the chalcogenide glass optical fiber output, no light component frequency comb filtered light wave after frequency components get two two light input to the optical attenuator, optical attenuator will require required 个光频分量的光功率调整到OdBm后输入到光电探测器中拍频后输出高频毫米波;由此采用外部调制技术结合四波混频效应实现频率的上变换,产生六倍频甚至更高倍频的毫米波信号,最终实现高次倍频产生毫米波信号,大大降低调制微波信号源的频率,克服光纤无线通信技术中产生毫米波的微波驱动信号频率和调制器带宽问题,降低系统器件带宽要求,减少毫米波生成方法成本; Optical power of optical frequency components adjusted to OdBm input to the photodetector output a millimeter wave after frequency beat frequency; thus an external modulation technique implemented in conjunction with the FWM frequency transform, to generate six frequency even more high frequency of the millimeter wave signal, and ultimately higher frequency millimeter wave signal is generated, greatly reducing the frequency modulation of the microwave signal, a wireless communication technology to overcome the optical drive signal generating microwave frequency and modulation bandwidth of the millimeter-wave problem, reducing system device bandwidth requirements, reduce the cost of millimeter wave generating method;

[0026] 当第二光滤波器的通带可调时,如果需要的两个光频分量的频率间隔为调制微波信号频率的6倍,则光电探测器拍频后可实现6次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的8倍,则光电探测器拍频后可实现8次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的10倍,则光电探测器拍频后可实现10次倍频产生高频毫米波,以此类推,可通过第二光滤波器的通带调整来选择该光生毫米波生成方法的倍频次数。 [0026] When the second optical tunable filter passband, if the frequency components of the two light frequency interval required six times the modulation frequency of the microwave signal, the photodetectors may be implemented after the beat frequency doubling 6 millimeter-wave frequency; if the two frequency components of the optical frequency interval required to 8 times the modulation frequency of the microwave signal, the photodetector 8 may be implemented after the beat frequency multiplier generates a high frequency millimeter-wave; two light if needed frequency component of the frequency modulated microwave signal frequency interval is 10 times, the photodetector 10 may be implemented after the beat frequency multiplier generates a high frequency millimeter-wave, and so on, can be selected by adjusting the second light band-pass filter the millimeter-wave frequency and frequency green light generation method. 附图说明 BRIEF DESCRIPTION

[0027] 图1为本发明的毫米波生成系统的原理框图; Block diagram [0027] FIG 1 millimeter wave generation system of the present invention;

[0028] 图2为本发明的各步骤光波频率不意图;[〇〇29]图3为本发明的梳状光波的光谱图; [0028] FIG. 2 the steps of the optical wave frequency present invention is not intended; [〇〇29] FIG comb spectrum lightwave FIG. 3 of the present invention;

[0030]图4为本发明的第二滤波器的滤波示意图;[0031 ]图5为本发明的光电探测器的输入端输入的光谱图; A schematic view of the second filter filtering [0030] FIG. 4 of the present invention; input of the photodetector [0031] FIG. 5 of the present invention, the input spectrum;

[0032] 图6为本发明的光电探测器的输出端输出的60GHz毫米波信号的频谱图。 FIG 60GHz spectrum millimeter wave signal output of the photodetector [0032] FIG. 6 of the present invention is output. 具体实施方式 Detailed ways

[0033] 以下结合附图实施例对本发明的毫米波生成系统作进一步详细描述。 [0033] The following embodiments in conjunction with the accompanying drawings of the millimeter wave generation system of the present invention will be further described in detail.

[0034] 实施例:如图1所示,一种基于硫系玻璃光纤四波混频效应的毫米波生成系统,包括用于产生光功率为OdBm的连续光载波信号的激光器1、用于将调制微波信号分为两路微波信号的功分器2、用于将微波信号移相180度的移相器3、双电极马赫-增德尔调制器(MZM) 4、用于将光功率放大到25dBm的掺铒光纤放大器(EDFA)5、第一光滤波器6、硫系玻璃光纤7、 第二光滤波器8、用于将光功率调整到OdBm的光衰减器9和光电探测器(PD)10;调制微波信号的功率为15dBm; [0034] Example: 1 A millimeter wave generation system based on four-wave mixing effect chalcogenide glass optical fiber, comprising means for generating an optical power of OdBm continuous optical carrier signal of a laser, for modulated microwave signal is divided into two microwave signal power divider 2, a microwave signal for shifting the phase shifter 3, dual-electrode Mach-phase 180 degrees - Zehnder modulator (MZM) 4, for amplifying the optical power 25dBm erbium-doped fiber amplifier (EDFA) 5, a first optical filter 6, 7 chalcogenide glass optical fiber, a second optical filter 8, for adjusting the optical power of OdBm into the optical attenuator 9 and a photodetector (PD ) 10; modulated microwave signal power is 15dBm;

[0035] 激光器1的输出端与双电极马赫-增德尔调制器4的输入端连接;功分器2具有两个输出端,分别为第一输出端和第二输出端,功分器2的第一输出端与双电极马赫-增德尔调制器4的一个电极连接,功分器2的第二输出端与移相器3的输入端连接,移相器3的输出端与双电极马赫_增德尔调制器4的另一个电极连接;双电极马赫-增德尔调制器4的输出端与掺铒光纤放大器5的输入端连接,掺铒光纤放大器5的输出端与第一光滤波器6的输入端连接,第一光滤波器6的输出端与硫系玻璃光纤7的输入端连接,硫系玻璃光纤7的输出端与第二光滤波器8的输入端连接,第二光滤波器8的输出端与光衰减器9的输入端连接,光衰减器9的输出端与光电探测器10的输入端连接。 An output terminal [0035] The laser 1 with a double electrode Mach - Zehnder connected to an input terminal of the modulator 4; 2 power divider having two outputs, respectively a first output terminal and a second output terminal, the power splitter 2 a first output terminal and the dual-electrode Mach - Zehnder electrode connected to a modulator 4, and a second output of power splitter 2 and the phase shifter 3 is connected to the input terminal, the output of the phase shifter and the dual-electrode Mach 3 _ Zehnder modulator 4 and the other electrode is connected; dual electrode Mach - Zehnder modulator connected to the output terminal 4 and the input end of the erbium-doped fiber amplifier 5, the output of erbium-doped fiber amplifier 5 and the first optical filter 6 an input terminal connected to an input terminal of the first optical filter 6 and the output terminal chalcogenide glass fiber 7 is connected to the output terminal chalcogenide glass optical fiber 7 is connected to the input of a second optical filter 8, a second optical filter 8 the output terminal and the input end of the optical attenuator 9 is connected to the output terminal of the input terminal 9 and the optical attenuator 10 is connected to the photodetector.

[0036] 本实施例中,激光器1为分布反馈式激光器,光衰减器9为可调光衰减器。 [0036] In this embodiment, the laser 1 is a distributed feedback laser, optical attenuator 9 is a variable optical attenuator.

[0037] 本实施例中,第二光滤波器8的通带可调;双电极马赫-增德尔调制器4的调制微波信号频率在9.5-11GHz范围内连续可调。 [0037] In this embodiment, the second optical band pass filter 8 adjustable; dual electrode Mach - Zehnder modulator modulates the microwave signal frequency is continuously adjustable 4 9.5-11GHz range.

[0038] 本实施例的毫米波生成系统的工作过程如下所述:激光器1、功分器2、移相器3和双电极马赫-增德尔调制器4组合实现载波抑制双边带调制功能,掺铒光纤放大器(EDFA)5、 第一光滤波器6和硫系玻璃光纤7组合视线四波混频功能,第二光滤波器8、光衰减器9和光电探测器(PD)10组合实现毫米波生成功能;激光器1产生光功率为OdBm的连续光载波信号输入到双电极马赫-增德尔调制器4的输入端,功分器2将功率为15dBm的调制微波信号分为两路微波信号,一路微波信号输入到双电极马赫_增德尔调制器4的一个电极,另一路微波信号输入到移相器3被移相180度后输入到双电极马赫-增德尔调制器4的另一个电极,双电极马赫_增德尔调制器4对输入其内的连续光载波信号和微波信号进行载波抑制双边带调制后输出两个边带的光波,两个边带的光波首先通过掺铒光纤放大器5进 [0038] The working process of generating a millimeter wave system according to the present embodiment is as follows: a laser 1, a power divider 2, a phase shifter 3 and the dual-electrode Mach - Zehnder modulator 4 a combination carrier-suppressed double sideband modulation function, mixed doped fiber amplifier (EDFA) 5, a first optical filter 6 and 7 chalcogenide glass fiber four-wave mixing in combination sight function, a second optical filter 8, the optical attenuator 9 and a photodetector (PD) 10 mm combination thereof wave generating function; generating a laser light power of OdBm continuous optical carrier signal is inputted to the dual electrode Mach - Zehnder modulator an input terminal 4, the power divider 2 to the power of 15dBm modulated microwave signal is divided into two microwave signal, one electrode along the microwave signal is input to a two-electrode Mach-Zehnder modulator _ 4, and the other way microwave signal to the input to the dual electrode Mach phase after 180-degree phase shifter 3 - other electrode Zehnder modulator 4, _ dual electrode Mach Zehnder modulator 4 successive input optical carrier signal and the microwave signal is within the double sideband suppressed carrier modulated output light waves of the two sidebands, two sidebands by the first light waves 5 into the erbium doped fiber amplifier 放大处理,然后通过第一光滤波器6滤除掺铒光纤放大器5产生的带外噪声后注入硫系玻璃光纤7内,放大后的两个边带的光波在硫系玻璃光纤7发生四波混频效应产生梳状光波输出,该梳状光波的光谱图如图3所示;第二光滤波器8将梳状光波中的无用光频分量滤除,得到需要的两个光频分量后输入到光衰减器9中,光衰减器9将需要的两个光频分量的光功率调整到OdBm后输入到光电探测器10中拍频后输出高频毫米波。 Enlargement processing, and then filtered by the first optical filter 6 after the erbium-doped fiber amplifier band noise generator 5 is injected into the chalcogenide glass optical fiber 7, the light waves of the two sidebands enlarged chalcogenide glass fiber occurs four-wave 7 after the second optical comb filter 8 no light in the optical wave frequency component filtered off to give the two required components of the optical frequency; mixing comb generated output light waves, the comb-shaped spectrum shown in Figure 3 light wave two optical power input to the frequency component of the optical attenuator 9, the optical attenuator 9 is adjusted to the required OdBm input to the photodetector 10 outputs a high-frequency millimeter waves after the beat frequency.

[0039] 本实施例中,可通过调整第二光滤波器8的通带来调整毫米波生成系统的倍频次数。 [0039] In this embodiment, the second optical filter can be adjusted through adjustment brought the number of millimeter wave frequency generated by the system 8. 如果需要的两个光频分量的频率间隔为调制微波信号频率的6倍,则光电探测器拍频后可实现6次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的8倍,则光电探测器拍频后可实现8次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的10倍,则光电探测器拍频后可实现10次倍频产生高频毫米波,以此类推,可通过第二光滤波器8来选择该光生毫米波生成系统的倍频次数。 If two frequency components of the optical frequency is six times the interval required for a microwave signal frequency modulation, the photodetectors may be implemented after the beat frequency multiplier 6 generates a high frequency millimeter wave; if the optical frequency components of the two required frequency interval 8 times the modulation frequency of the microwave signal, then the beat frequency can be achieved photodetector 8 generates a high frequency millimeter-wave frequency multiplier; 10 two times if the optical frequency components of the modulation frequency interval required for a microwave signal frequency, the photoelectric 10 can be realized after the frequency detector generates a high frequency millimeter-wave beat frequency, and so on, may be selected frequency and millimeter wave frequency of the photocarriers generated by the second optical filter system 8. 当需要的两个光频分量的频率间隔为调制微波信号频率的6倍时,光电探测器10的输出端输出的60GHz毫米波信号,该光生毫米波生成系统各步骤光波频率示意图如图2所示,图2中f。 When the frequencies of the two required components of the optical frequency interval of 6 times the modulation frequency of the microwave signal, 60GHz millimeter wave signal output terminal of the photodetector 10, the frequency of the light waves in each step of generating photocarriers millimeter wave system diagram shown in Figure 2 shown, in Figure 2 f. 为连续光载波信号的频率,f为调制微波信号的频率;第二滤波器的滤波示意图如图4所示;光电探测器的输入端输入的光谱图如图5所示;光电探测器10的输出端输出的60GHz毫米波信号的频谱图如图6所示。 A continuous optical carrier frequency signal, f is the modulation frequency of the microwave signal; a second filter filtering a schematic diagram shown in FIG. 4; FIG input spectrum inputted photodetector shown in Figure 5; photodetector 10 FIG 60GHz spectrum millimeter wave signal output terminal is shown in Fig.

[0040] 本实施例中,双电极马赫-增德尔调制器(MZM) 4的调制微波信号频率在9.5-11 GHz 范围内连续可调,如果需要的两个光频分量的频率间隔为调制微波信号频率的6倍,则光电探测器拍频后可获得57-66GHZ频率范围内连续可调的毫米波信号,可覆盖59-64GHZ的无牌照的毫米波段。 Modulated microwave signal frequency Zehnder modulator (MZM) 4 is continuously adjustable in the range of 9.5-11 GHz, if the two components of the optical frequency interval required to modulate the frequency of the microwave - [0040] embodiment, the dual electrode Mach present embodiment 6 times the signal frequency, the millimeter wave signal within the photodetector 57-66GHZ obtained continuously adjustable frequency range of the beat frequency, may cover unlicensed 59-64GHZ millimeter wave band.

[0041] 本发明还提供了一种基于硫系玻璃光纤四波混频效应的毫米波生成方法,以下结合附图实施例对本发明的光生毫米波生成方法作进一步详细描述。 [0041] The present invention further provides a method of generating the millimeter wave based chalcogenide glass fiber four-wave mixing effect, the following embodiments in conjunction with the accompanying drawings of photogenerated millimeter wave generating method according to the present invention will be described in further detail.

[0042] 实施例:一种基于硫系玻璃光纤四波混频效应的毫米波生成方法,其特征在于包括以下步骤:[〇〇43]①采用激光器产生光功率为OdBm的连续光载波信号,将该连续光载波信号输入到双电极马赫-增德尔调制器的输入端; [0042] Example: one kind of method for generating a millimeter wave FWM chalcogenide glass-based optical fiber, comprising the steps of: [〇〇43] ① using laser produces an optical power of OdBm continuous optical carrier signal, the continuous optical carrier signal is input to the dual electrode Mach - input Zehnder modulator;

[0044] ②将功率为15dBm的调制微波信号通过功分器分为两路微波信号,将一路微波信号输入到双电极马赫_增德尔调制器的一个电极,将另一路微波信号输入到移相器中,移相器将另一路微波信号移相180度后输入到双电极马赫-增德尔调制器的另一个电极; [0044] ② modulated microwave signal power is 15dBm microwave signal is divided into two paths by the power splitter, a phase signal is input to the electrode along the microwave _ a two-electrode Mach-Zehnder modulator, a microwave signal is input to the other path to the mobile vessel, the phase shifter further shifted input microwave signal path 180 with respect to the two-electrode Mach - Zehnder other electrode modulator;

[0045] ③调节双电极马赫-增德尔调制器的偏压,实现载波抑制双边带调制,双电极马赫-增德尔调制器调制后输出两个边带的光波,两个边带的光波的频率差为调制微波信号频率的2倍;[〇〇46]④将两个边带的光波进行放大处理使其光功率放大到25dBm,然后进行滤波处理后输入到硫系玻璃光纤中,两个边带的光波在硫系玻璃光纤中发生四波混频效应产生梳状光波输出,该梳状光波的相邻光频成分之间的频率间隔为调制微波信号频率的2倍; [0045] ③ dual electrode Mach adjustment - Zehnder modulator biased to realize double-sideband suppressed carrier modulation, two-electrode Mach - Zehnder modulator modulates the output light waves of the two sidebands, the frequency of two light waves sidebands 2-fold difference modulated microwave signal frequency; [〇〇46] ④ the two sidebands of the optical light wave amplifying process so as to 25dBm power amplifier, and then input to the filtering process in the chalcogenide glass optical fiber, the two sides FWM generation with comb lightwave output light waves occurs chalcogenide glass optical fiber, the frequency between adjacent comb-like optical wave optical frequency interval of the modulated component of the frequency two times the microwave signal;

[0047]⑤将梳状光波中的无用光频分量滤除,得到需要的两个光频分量;[〇〇48] ⑥采用光衰减器将需要的两个光频分量的光功率调整到OdBm后输入到光电探测器中拍频,输出毫米波,该毫米波的频率就等于输入到光电探测器的两个光频分量的频率差。 [0047] ⑤ no light will be frequency components in the comb filtered light waves, two optical frequency components obtained desired; [〇〇48] ⑥ the optical attenuator using two optical power frequency component needs to be adjusted to OdBm after entering the photodetector beat frequency output millimeter wave, millimeter wave frequency is equal to the input to the two photodetector optical frequency components of the frequency difference.

[0049] 本实施例中,激光器为分布反馈式激光器,光衰减器为可调光衰减器。 [0049] In this embodiment, the laser is a distributed feedback laser, an optical attenuator is a variable optical attenuator.

[0050] 本实施例中,步骤④中采用掺铒光纤放大器进行放大处理,采用第一光滤波器进行滤波处理,步骤⑤中采用第二光滤波器将梳状光波中的无用光频分量滤除。 [0050] In this embodiment, the step ④ amplifier using erbium-doped fiber amplification processing, using a first optical filter for a filtering process, a second step ⑤ optical filter used in the comb filter frequency component light without light wave except. 第二光滤波器8的通带可调;双电极马赫-增德尔调制器4的调制微波信号频率在9.5-llGHz范围内连续可调。 The second optical band pass filter 8 adjustable; dual electrode Mach - Zehnder modulator modulates the microwave signal frequency is continuously adjustable 4 9.5-llGHz range.

[0051] 本实施例中,可通过调整第二光滤波器8的通带来调整毫米波生成系统的倍频次数。 [0051] In the present embodiment, can be adjusted through the second optical filter 8 is adjusted to bring the number of millimeter wave frequency generated by the system. 如果需要的两个光频分量的频率间隔为调制微波信号频率的6倍,则光电探测器拍频后可实现6次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的8倍,则光电探测器拍频后可实现8次倍频产生高频毫米波;如果需要的两个光频分量的频率间隔为调制微波信号频率的10倍,则光电探测器拍频后可实现10次倍频产生高频毫米波,以此类推,可通过第二光滤波器来选择该光生毫米波生成系统的倍频次数。 If two frequency components of the optical frequency is six times the interval required for a microwave signal frequency modulation, the photodetectors may be implemented after the beat frequency multiplier 6 generates a high frequency millimeter wave; if the optical frequency components of the two required frequency interval 8 times the modulation frequency of the microwave signal, then the beat frequency can be achieved photodetector 8 generates a high frequency millimeter-wave frequency multiplier; 10 two times if the optical frequency components of the modulation frequency interval required for a microwave signal frequency, the photoelectric 10 can be realized after the frequency detector generates a high frequency millimeter-wave beat frequency, and so on, may be selected frequency and millimeter wave frequency generating system of the green light by the second optical filter. 当需要的两个光频分量的频率间隔为调制微波信号频率的6倍时,光电探测器10的输出端输出的60GHz毫米波信号,该光生毫米波生成方法各步骤光波频率示意图如图2所示,图2中f。 When the frequencies of the two required components of the optical frequency interval of 6 times the modulation frequency of the microwave signal, 60GHz millimeter wave signal output terminal of the photodetector 10, the photo-generated millimeter-wave generating method, the steps shown in FIG 2 a schematic view of the optical wave frequency shown, in Figure 2 f. 为连续光载波信号的频率,f为调制微波信号的频率;第二滤波器的滤波示意图如图4所示,其中«。 A continuous optical carrier frequency signal, f is the frequency modulation of the microwave signal; a second filter filtering a schematic diagram shown in Figure 4, wherein «. 为连续光载波信号的频率,《 RF为调制微波信号的频率,3 co RF表示《 RF的3倍,5 co RF表示«RF的5倍,6 ORF表不WRF的6倍;光电探测器的输入端输入的光谱图如图5所不;光电探测器10的输出端输出的60GHz毫米波信号的频谱图如图6所示。 A continuous optical carrier frequency signal, "RF signal as the modulation frequency of the microwave, 3 co RF indicates" RF 3 times, 5 co RF represents «the RF of 5 times, 6 times the ORF 6 of table is not WRF; photodetector spectrum of the input terminal not shown in FIG 5; FIG 60GHz spectrum millimeter wave signal output of the photodetector 10 is output as shown in FIG. [〇〇52]本实施例中,双电极马赫-增德尔调制器(MZM)的调制微波信号频率在9.5-11 GHz 范围内连续可调,如果需要的两个光频分量的频率间隔为调制微波信号频率的6倍,则光电探测器拍频后可获得57-66GHZ频率范围内连续可调的毫米波信号,可覆盖59-64GHZ的无牌照的毫米波段。 Modulated microwave signal frequency Zehnder modulator (the MZM) is continuously adjustable within a range of 9.5-11 GHz, if the two components of the optical frequency interval required frequency modulation - [〇〇52] embodiment, the dual electrode Mach present embodiment 6 times the frequency of the microwave signal, then the millimeter wave signal within the photodetector 57-66GHZ obtained continuously adjustable frequency range of the beat frequency, may cover unlicensed 59-64GHZ millimeter wave band.

Claims (9)

1.一种基于硫系玻璃光纤四波混频效应的毫米波生成系统,其特征在于包括用于产生光功率为OdBm的连续光载波信号的激光器、用于将调制微波信号分为两路微波信号的功分器、用于将微波信号移相180度的移相器、双电极马赫-增德尔调制器、用于将光功率放大到25dBm的掺铒光纤放大器、第一光滤波器、硫系玻璃光纤、第二光滤波器、用于将光功率调整到OdBm的光衰减器和光电探测器;所述的调制微波信号的功率为15dBm;所述的激光器的输出端与所述的双电极马赫-增德尔调制器的输入端连接;所述的功分器具有两个输出端,分别为第一输出端和第二输出端,所述的功分器的第一输出端与所述的双电极马赫-增德尔调制器的一个电极连接,所述的功分器的第二输出端与所述的移相器的输入端连接,所述的移相器的输出端与所述的双电极马赫-增德尔调制器的另一 A millimeter wave system generated FWM chalcogenide glass-based optical fiber, comprising a laser for generating optical power OdBm continuous optical carrier signal for a modulating microwave signal is divided into two microwave signal splitters, microwave signal phase shifter for shifting the phase by 180 degrees, the two-electrode Mach - Zehnder modulator, for amplifying the optical power of 25dBm EDFA, a first optical filter, sulfur based glass optical fiber, a second optical filter configured to adjust the optical power of OdBm optical attenuator and the photodetector; microwave power of the modulated signal is 15dBm; output of the laser with the double electrode Mach - Zehnder modulator an input terminal connected; said power splitter has two outputs, respectively a first output terminal and a second output terminal, said first output terminal and said power splitter dual electrode Mach - a second output terminal connected Zehnder modulator is connected to one electrode of the power splitter and the input of the phase shifter, the phase shifter and the output terminal a two-electrode Mach - Zehnder modulator further 电极连接;所述的双电极马赫-增德尔调制器的输出端与所述的掺铒光纤放大器的输入端连接,所述的掺铒光纤放大器的输出端与所述的第一光滤波器的输入端连接,所述的第一光滤波器的输出端与所述的硫系玻璃光纤的输入端连接,所述的硫系玻璃光纤的输出端与所述的第二光滤波器的输入端连接,所述的第二光滤波器的输出端与所述的光衰减器的输入端连接,所述的光衰减器的输出端与所述的光电探测器的输入端连接。 Electrode; the two-electrode Mach - EDFA input terminal output terminal Zehnder modulator with said connector, said first erbium-doped optical fiber amplifier of the filter output of the an input terminal connected to an input terminal an output terminal, said first optical filter and said chalcogenide glass optical fiber is connected, the input of the second output of the optical filter chalcogenide glass optical fiber with said an input terminal connected to an output terminal, said second optical filter with the optical attenuator is connected to an input terminal of the output end of the optical attenuator and the photodetector is connected.
2.根据权利要求1所述的基于硫系玻璃光纤四波混频效应的毫米波生成系统,其特征在于所述的第二光滤波器的通带可调。 The chalcogenide glass fiber four-wave mixing effect of the millimeter wave generation system based on, characterized in that said second band pass tunable optical filter according to claim 1.
3.根据权利要求2所述的基于硫系玻璃光纤四波混频效应的毫米波生成系统,其特征在于所述的双电极马赫-增德尔调制器的调制微波信号频率在9.5-llGHz范围内连续可调。 The millimeter-wave systems generated FWM chalcogenide glass-based optical fiber, wherein said two-electrode Mach according to claim 2 - 9.5-llGHz the range of frequency modulated microwave signal in Zehnder modulator Continuously adjustable.
4.根据权利要求1所述的基于硫系玻璃光纤四波混频效应的毫米波生成系统,其特征在于所述的激光器为分布反馈式激光器,所述的光衰减器为可调光衰减器。 The chalcogenide glass fiber four-wave mixing effect of the millimeter wave generation system based on, characterized in that the laser according to claim 1 for the distributed feedback laser, the optical attenuator is a variable optical attenuator .
5.—种基于硫系玻璃光纤四波混频效应的毫米波生成方法,其特征在于包括以下步骤:① 采用激光器产生光功率为OdBm的连续光载波信号,将该连续光载波信号输入到双电极马赫-增德尔调制器的输入端;② 将功率为15dBm的调制微波信号通过功分器分为两路微波信号,将一路微波信号输入到双电极马赫-增德尔调制器的一个电极,将另一路微波信号输入到移相器中,移相器将另一路微波信号移相180度后输入到双电极马赫-增德尔调制器的另一个电极;③ 调节双电极马赫-增德尔调制器的偏压,实现载波抑制双边带调制,双电极马赫-增德尔调制器调制后输出两个边带的光波,两个边带的光波的频率差为调制微波信号频率的2倍;④ 将两个边带的光波进行放大处理使其光功率放大到25dBm,然后进行滤波处理后输入到硫系玻璃光纤中,两个边带的光波在硫系玻璃 5.- kinds of chalcogenide glass optical millimeter-wave generating method based on four-wave mixing effect, characterized by comprising the following: ① From using laser produces an optical power of OdBm continuous optical carrier signal, the continuous optical carrier signal is inputted to the dual electrode Mach - input Zehnder modulator; ② a modulated microwave signal power is 15dBm microwave signal is divided into two by the power splitter, the way a microwave signal is input to a two-electrode Mach - one electrode Zehnder modulator, the another way microwave signal is input to the phase shifter, the phase shifter and the other channel input microwave signal after the phase shift of 180 degrees to the dual electrode Mach - Zehnder modulator other electrode of; ③ dual electrode Mach adjustment - Zehnder modulator bias voltage, to achieve double-sideband suppressed carrier modulation, two-electrode Mach - Zehnder modulator modulates the output light waves of the two sidebands, the frequency difference between the light waves of the two sidebands is twice the modulation frequency of the microwave signal; ④ the two after the optical wave sideband enlargement processing so as to 25dBm optical power amplifier, and then input to the filtering process chalcogenide glass optical fiber, the two sidebands in the chalcogenide glass optical wave 纤中发生四波混频效应产生梳状光波输出,该梳状光波的相邻光频成分之间的频率间隔为调制微波信号频率的2倍;⑤ 将梳状光波中的无用光频分量滤除,得到需要的两个光频分量;⑥ 采用光衰减器将需要的两个光频分量的光功率调整到OdBm后输入到光电探测器中拍频,输出毫米波,该毫米波的频率就等于输入到光电探测器的两个光频分量的频率差。 FWM occurs comb generated output lightwave fiber in frequency between the adjacent comb-like optical frequency component of optical wave modulated microwave signal frequency interval is twice; ⑤ the comb filter frequency component light without light wave in addition, two to give the desired optical frequency components; ⑥ after the optical attenuator using two frequency components of the optical power required to adjust input to the photodetector OdBm beat frequency, millimeter-wave output, the frequency of the millimeter wave to input to the photodetector is equal to the optical frequency of the two frequency components of the difference.
6.根据权利要求5所述的基于硫系玻璃光纤四波混频效应的毫米波生成方法,其特征在于所述的激光器为分布反馈式激光器,所述的光衰减器为可调光衰减器。 The millimeter-wave generation based FWM chalcogenide glass fiber according to claim 5, wherein said laser is a distributed feedback laser, the optical attenuator is a variable optical attenuator .
7.根据权利要求5所述的基于硫系玻璃光纤四波混频效应的毫米波生成方法,其特征在于所述的步骤④中采用掺铒光纤放大器进行放大处理,采用第一光滤波器进行滤波处理,所述的步骤⑤中采用第二光滤波器将梳状光波中的无用光频分量滤除。 The millimeter-wave generation based FWM chalcogenide glass fiber according to claim 5, wherein in said step ④ using erbium-doped fiber amplifier amplification processing, using a first optical filter filtering process, said step ⑤ a second optical filter used in the frequency component of the light non-comb filtered light wave.
8.根据权利要求7所述的基于硫系玻璃光纤四波混频效应的毫米波生成方法,其特征在于所述的第二光滤波器的通带可调。 8. chalcogenide glass optical millimeter-wave generating method based on four-wave mixing effect, characterized in that said second band pass tunable optical filter according to claim 7.
9.根据权利要求5所述的基于硫系玻璃光纤四波混频效应的毫米波生成方法,其特征在于所述的双电极马赫-增德尔调制器的调制微波信号频率在9.5-llGHz范围内连续可调。 According to claim chalcogenide glass optical millimeter-wave generating method based on four-wave mixing effect, characterized in that the dual electrode Mach 5 - 9.5-llGHz the range of frequency modulated microwave signal in Zehnder modulator Continuously adjustable.
CN201410814527.8A 2014-12-24 2014-12-24 Millimeter wave generation system based on four-wave mixing effect in the optical fiber and method of chalcogenide glass CN104601240B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410814527.8A CN104601240B (en) 2014-12-24 2014-12-24 Millimeter wave generation system based on four-wave mixing effect in the optical fiber and method of chalcogenide glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410814527.8A CN104601240B (en) 2014-12-24 2014-12-24 Millimeter wave generation system based on four-wave mixing effect in the optical fiber and method of chalcogenide glass

Publications (2)

Publication Number Publication Date
CN104601240A CN104601240A (en) 2015-05-06
CN104601240B true CN104601240B (en) 2017-02-22

Family

ID=53126787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410814527.8A CN104601240B (en) 2014-12-24 2014-12-24 Millimeter wave generation system based on four-wave mixing effect in the optical fiber and method of chalcogenide glass

Country Status (1)

Country Link
CN (1) CN104601240B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337144A (en) * 2015-09-23 2016-02-17 宁波大学 System and method for generating terahertz wave on the basis of taper chalcogenide fiber four-wave mixing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789826A (en) * 2009-12-31 2010-07-28 北京北方烽火科技有限公司 Method and device for generating frequency doubling millimeter wave
CN101982983A (en) * 2010-10-18 2011-03-02 电子科技大学 Method for generating millimetre waves by utilizing semiconductor optical amplifier (SOA) and method and device for applying millimetre waves in radio over fiber (ROF) communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500635B2 (en) * 2012-12-31 2016-11-22 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789826A (en) * 2009-12-31 2010-07-28 北京北方烽火科技有限公司 Method and device for generating frequency doubling millimeter wave
CN101982983A (en) * 2010-10-18 2011-03-02 电子科技大学 Method for generating millimetre waves by utilizing semiconductor optical amplifier (SOA) and method and device for applying millimetre waves in radio over fiber (ROF) communication system

Also Published As

Publication number Publication date
CN104601240A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
Mohamed et al. Frequency sixupler for millimeter-wave over fiber systems
US8027589B2 (en) All-optical frequency upconverter and all-optical frequency upconversion method in radio-over-fiber system
WO2006012849A1 (en) Device for producing and modulating a high frequency signal
JP2004252386A (en) Method for generating optical millimeter wave/microwaving signal and apparatus therefor
CN101090300B (en) Method for generating and transmitting multi-wave signal in light carrier radio communication system
CN1926791A (en) Method and device for carrier residual signal generation
JPH11205240A (en) Optical transmitter
CN101964683B (en) Serial-parallel connection modulation optical frequency multiplication millimeter-wave RoF (Radio Over Fiber) system and QPSK (Quadrature Phase Shift Keying) /16QAM (Quadrature Amplitude Modulation) modulation method thereof
Li et al. Improvement of linearity in phase-modulated analog photonic link
CN101742738B (en) Full duplex optical carrier radio frequency RoF link system
Lin et al. Optical millimeter-wave up-conversion employing frequency quadrupling without optical filtering
Ma et al. Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation
CN101599800A (en) Device and method for generating 8 times frequency optical millimeter waves by utilizing lithium niobate modulator
CN101794953A (en) Terahertz wave generating device and method based on optical four-wave mixing effect
Chen et al. A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators
US7668463B2 (en) Method and apparatus for generating and transmitting WDM MWOF signals
CN101217318B (en) A frequency multiplication millimeter wave generation and simplification device based on optics four-wave mixing effect
US8693875B2 (en) Method and apparatus for optimized analog RF optical links
Shi et al. A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator
CN102183303B (en) Comb spectrum generating system and method based on circulating frequency shift mode
CN100536371C (en) Microwave photon down conversion method and device based on electrooptical modulator and optical fiber raster
CN100536373C (en) Microwave photon mixing method and device based on excited Brillouin scatter
CN103166706A (en) Tunable-frequency photoelectric oscillation device based on wide spectrum light source
CN103368654B (en) Based on Microwave Photonics uplink wideband linearization method of dual drive dpmzm
CN103324002A (en) Reconfigurable single-band-pass microwave photon filtering system and method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model