CN104600334A - 纤维状电化学发光电池及其制备方法 - Google Patents
纤维状电化学发光电池及其制备方法 Download PDFInfo
- Publication number
- CN104600334A CN104600334A CN201510006681.7A CN201510006681A CN104600334A CN 104600334 A CN104600334 A CN 104600334A CN 201510006681 A CN201510006681 A CN 201510006681A CN 104600334 A CN104600334 A CN 104600334A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- electrochemical luminescence
- fibrous
- light
- nanotube film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于电化学发光电池技术领域,具体为一种纤维状电化学发光电池及其制备方法。本发明采用取向碳纳米管薄膜同轴缠绕的方法,使取向碳纳米管薄膜均匀的缠绕在纤维基底上作为纤维状发光器件的两极。发光聚合物夹在两极之间,形成纤维状电化学发光电池。取向碳纳米管薄膜具有良好的透光性和导电性,是一种良好的透明电极材料,使纤维状电化学发光电池的发光效率大大提高,而成本却大大的降低。
Description
技术领域
本发明属于电化学发光电池技术领域,具体一种涉及纤维状电化学发光电池及其制备方法。
背景技术
自从1991年日本Iijima首次发现碳纳米管以来,碳纳米管以其独特的力学、电学、热学等性能受到人们广泛的重视,具有良好的发展前景,必将成为新一代热门材料。
碳纳米管是可以根据石墨片层的数目分为单壁碳纳米管和多壁碳纳米管。独特的碳纳米管结构赋予了其优异的力学、电学性能, 如杨氏模量高达1000吉帕(约为钢的5倍),拉伸强度高达63吉帕(约为钢的50倍). 由于碳纳米管较低的密度(约为钢的1/6)、较高的强度、较高的电导率以及其他优异的物理性能, 碳纳米管被认为在结构材料、电子器件、场发射、生物医药和电化学等广泛领域有着巨大的应用前景。同时,碳纳米管被广泛应用于发光器件、聚合物太阳能电池和超级电容器等领域。
随着现代电子事业的发展需要,柔性发光器件变得越来越重要。如采用柔性基底的有机发光二极管和电化学发光电池等,形成可以柔性发光器件[1-20,24]。然而这些柔性发光器件不能满足轻质、小巧和可编织的发展要求。
未来的发展要求是微型器件具有发光或者显示功能,目前尚没有文献报道纤维状电化学发光电池。制作纤维状电化学发光电池的主要难关在于其良好的界面接触,以及寻找合适的透明柔性电极。如果能够解决上述问题,纤维状电化学发光电池在未来的发展中会具有非常好的前景。在不久的将来,将纤维状电化学发光电池将具有非常重要的意义。
发明内容
本发明的目的在于提供一种发光效率高、成本低的纤维状电化学发光电池及其制备方法。
本发明提供的纤维状电化学发光电池,包括:
一纤维电极,由取向碳纳米管薄膜同轴缠绕在一纤维基底上形成;
一发光聚合物层,沾涂在上述取向碳纳米管薄膜的表面;
一透明电极,由取向碳纳米管薄膜以同轴缠绕在沾涂了发光聚合物层的纤维基底上组成。结构如图1所示。
由于取向碳纳米管薄膜具有良好的透明性和导电性,作为透明电极,使纤维状电化学发光电池的发光的效率大大提高,而成本却大大的降低。
本发明还提出了纤维状电化学发光电池的制备方法,具体步骤如下:
(1)制备纤维状电极:把取向碳纳米管同轴缠绕在一定直径大小的纤维基底上,得到取向碳纳米管薄膜修饰的纤维电极,纤维基底可以是任何纤维,如高分子纤维等;
(2)沾涂发光聚合物层:在上述取向碳纳米管薄膜表面(纤维电极表面)沾涂一发光聚合物层,并在真空环境中放置1-10小时;
(3)制备透明电极:将取向碳纳米管薄膜均匀的缠绕在发光聚合物层上面,作为透明电极,得到完整的线状发光器件;
(4)最后,将得到的线状发光器件在干燥的惰性气体环境下采用密封性较好的高分子材料封装。
本发明中,发光聚合物层材料如聚芴,SuperYellow等不同颜色发光聚合物。沾涂时,把聚合物层材料(如聚芴的衍生物PF-B(20-60 mg/mL)),乙氧基化三羟甲基丙烷三丙烯酸酯和三氟甲基磺酸锂,溶于四氢呋喃中,混合均匀后沾涂于纤维电极表面,然后真空环境中放置1-10小时。
所述取向碳纳米管薄膜中使用的碳纳米管阵列采用常规技术制备,具体步骤为:
合成碳纳米管阵列的催化剂结构为Si/SiO2/Al2O3/Fe,其中,SiO2厚度为300-1000 μm,Al2O3厚度为1-30 nm,Fe厚度为0.5-1.5 nm,Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂,它们分别通过电子束蒸发镀膜仪在硅片上沉积一层纳米厚度的膜;采用化学气相沉积法,用乙烯做碳源,以氩气和氢气作为载气,在有氧化层Si基片上合成高度取向的碳纳米管阵列;其中乙烯流量为190-290 sccm,氩气流量为400-620 sccm,氢气流量为20-48 sccm,在管式炉中生长5-20 min。
本发明制备的纤维状电化学发光电池,能够有效的实现360度发光,并且具有很好的柔性以及可编织性能。同轴结构对于器件的发光具有非常明显的优势。对于发光器件来说,在径向方向上相似于平面状发光器件,大大的降低了接触电阻,同轴结构具有高的接触面积,有利于电子的快速传递和转移;同时采用取向碳纳米管薄膜作为透明电极,大大的改善了器件的发光效率,具有广阔的发展前景。取向碳纳米管薄膜是通过将化学气相沉积法合成的可纺碳纳米管阵列进行干法纺丝得到的[21-23]。电化学发光电池的机理是当器件两端受到足够的电压,电致发光共轭聚合物两端发生化学掺杂,在靠近阴极的一端发生N型掺杂,在靠近阳极的一端发生P型掺杂。由于掺杂,聚合物层具有较高的电导率。形成PIN结,有利于电子和空穴在两端的有效注入,最终电子和空穴发生复合,产生光。在未来,纤维状电化学发光电池在光电子织物技术领域具有广阔的发展前景。
附图说明
图1是纤维状电化学发光电池的制作步骤和示意图。
图2对纤维状电化学发光电池各部分进行了SEM表征。其中,a为纤维基底。b为内层均匀缠绕取向碳纳米管薄膜后的低倍SEM图片。c为沾涂聚合物发光层之后的SEM表征。d为均最外层均匀缠绕取向碳纳米管薄膜后的高倍SEM图片。
图3为纤维状电化学发光电池的电压-电流-亮度测试曲线。
图4是缠绕取向碳纳米管薄膜的示意图。
图5是纤维状电化学发光电池的不同角度发光性能测试。
图6是器件的可编织性能。
图7是可纺碳纳米管阵列的低倍SEM扫描电镜照片。
图8是可纺碳纳米管阵列的高倍SEM扫描电镜照片。
具体实施方式
1. 制备取向碳纳米管薄膜,在可纺碳纳米管阵列上拉出取向碳纳米管薄膜;
2. 制备纤维状电极:把取向碳纳米管薄膜同轴缠绕在一定直径大小的纤维基底上作为纤维电极,得到取向碳纳米管薄膜修饰的纤维电极,纤维基底可以是任何纤维,如高分子纤维等;
3. 沾涂一发光聚合物层:在上述取向碳纳米管薄膜表面沾涂一发光聚合物层,并在真空环境中放置1-10小时。该发光聚合物层,是将聚芴的共聚物,离子导电溶液以及离子组分三氟甲基磺酸锂溶解于四氢呋喃溶剂中(质量比为20:10:1),并在真空环境中放置1-10小时得到;
4.制备透明电极:再将取向碳纳米管薄膜均匀的缠绕在发光聚合物层上面,作为透明电极,得到完整的线状发光器件;
5. 最后将得到的纤维状电化学发光电池在干燥的惰性气体环境下采用密封性较好的高分子材料封装。
纤维状电化学发光电池结构是通过扫描电镜(Hitachi FE-SEM S-4800 operated at 1 kV)来表征的。电流-电压-亮度测试曲线采用Keithley 2400源表和Photoresearch PR-650。取向碳纳米管薄膜透过率由Shimadzu UV-2550 spectrophotometer测定。
参考文献
1. Shao, Y., Bazan, G.C. & Heeger, A.J. Long-Lifetime Polymer Light-Emitting Electrochemical Cells. Adv. Mater. 19, 365-370 (2007).
2. Yu, Z. et al. Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes. Adv. Mater. 23, 664-668 (2011).
3. Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A.J. Polymer Light-Emitting Electrochemical Cells. Science 269, 1086-1088 (1995).
4. Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nature Photon. 7, 817-824 (2013).
5. Shao, Y., Gong, X., Heeger, A.J., Liu, M. & Jen, A.K.Y. Long-Lifetime Polymer Light-Emitting Electrochemical Cells Fabricated with Crosslinked Hole-Transport Layers. Adv. Mater. 21, 1972-1975 (2009).
6. Li, L. et al. Efficient Flexible Phosphorescent Polymer Light-Emitting Diodes Based on Silver Nanowire-Polymer Composite Electrode. Adv. Mater. 23, 5563-5567 (2011).
7. Kuik, M. et al. 25th Anniversary Article: Charge Transport and Recombination in Polymer Light-Emitting Diodes. Adv. Mater. 26, 512-531 (2014).
8. H?fle, S., Schienle, A., Bruns, M., Lemmer, U. & Colsmann, A. Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers. Adv. Mater. 26, 2750-2754 (2014).
9. Ying, L., Ho, C.-L., Wu, H., Cao, Y. & Wong, W.-Y. White Polymer Light-Emitting Devices for Solid-State Lighting: Materials, Devices, and Recent Progress. Adv. Mater. 26, 2459-2473 (2014).
10. Matyba, P., Yamaguchi, H., Chhowalla, M., Robinson, N.D. & Edman, L. Flexible and Metal-Free Light-Emitting Electrochemical Cells Based on Graphene and PEDOT-PSS as the Electrode Materials. ACS Nano 5, 574-580 (2010).
11. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234-238 (2009).
12. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234-238 (2012).
13. Groves, C. Organic light-emitting diodes: Bright design. Nature Mater. 12, 597-598 (2013).
14. Sun, Y. & Forrest, S.R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photon. 2, 483-487 (2008).
15. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photon. 6, 105-110 (2012).
16. White, M.S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nature Photon. 7, 811-816 (2013).
17. Wu, H.B. et al. Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes. Adv. Mater. 20, 696-702 (2008).
18. Kabra, D., Lu, L.P., Song, M.H., Snaith, H.J. & Friend, R.H. Efficient Single-Layer Polymer Light-Emitting Diodes. Adv. Mater. 22, 3194-3198 (2010).
19. Yook, K.S. & Lee, J.Y. Small Molecule Host Materials for Solution Processed Phosphorescent Organic Light-Emitting Diodes. Adv. Mater. 26, 4218-4233 (2014).
20. Pei, Q., Yang, Yu, G., Zhang, C. & Heeger, A.J. Polymer Light-Emitting Electrochemical Cells:? In Situ Formation of a Light-Emitting p?n Junction. J. Am. Chem. Soc. 118, 3922-3929 (1996).
21. Sun, X. et al. Electric Current Test Paper Based on Conjugated Polymers and Aligned Carbon Nanotubes. Angew. Chem. Int. Ed.52, 7776-7780 (2013).
22. Peng, H. Aligned Carbon Nanotube/Polymer Composite Films with Robust Flexibility, High Transparency, and Excellent Conductivity. J. Am. Chem. Soc. 130, 42-43 (2007).
23. Zhang, M. et al. Strong, Transparent, Multifunctional, Carbon Nanotube Sheets. Science 309, 1215-1219 (2005).
24. Liu, D. et al. Solid-State, Polymer-Based Fiber Solar Cells with Carbon Nanotube Electrodes. ACS Nano 6, 11027-11034 (2012)。
Claims (4)
1. 一种纤维状电化学发光电池,其特征在于包括:
一纤维电极,由取向碳纳米管薄膜同轴缠绕在一纤维基底上形成;
一发光聚合物层,沾涂在上述取向碳纳米管薄膜的表面;
一透明电极,由取向碳纳米管薄膜以同轴缠绕在沾涂了发光聚合物层的纤维基底上组成。
2. 一种如权利要求1所述的纤维状电化学发光电池的制备方法,具体步骤如下:
(1)制备纤维状电极:把取向碳纳米管同轴缠绕在一定直径大小的纤维基底上,得到取向碳纳米管薄膜修饰的纤维电极;
(2)沾涂发光聚合物层:在上述取向碳纳米管薄膜表面沾涂一发光聚合物层,并在真空环境中放置1-10小时;
(3)制备透明电极:将取向碳纳米管薄膜均匀的缠绕在山上发光聚合物层表面,作为透明电极,得到完整的线状发光器件;
(4)最后,将得到的线状发光器件在干燥的惰性气体环境下采用密封性较好的高分子材料封装。
3. 根据权利要求2所述的纤维状电化学发光电池的制备方法,其特征在于所述发光聚合物层材料为:聚芴或SuperYellow。
4. 根据权利要求3所述的纤维状电化学发光电池的制备方法,其特征在于所述碳纳米管阵列的制备步骤为:
采用结构为Si/SiO2/Al2O3/Fe的催化剂,其中,SiO2厚度为300-1000 μm,Al2O3厚度为1-30 nm,Fe厚度为0.5-1.5 nm,Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂,它们分别通过电子束蒸发镀膜仪在硅片上沉积一层纳米厚度的膜;采用化学气相沉积法,用乙烯做碳源,以氩气和氢气作为载气,在有氧化层Si基片上合成高度取向的碳纳米管阵列;其中乙烯流量为190-290 sccm,氩气流量为400-620 sccm,氢气流量为20-48 sccm,在管式炉中生长5-20 min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510006681.7A CN104600334A (zh) | 2015-01-07 | 2015-01-07 | 纤维状电化学发光电池及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510006681.7A CN104600334A (zh) | 2015-01-07 | 2015-01-07 | 纤维状电化学发光电池及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104600334A true CN104600334A (zh) | 2015-05-06 |
Family
ID=53125967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510006681.7A Pending CN104600334A (zh) | 2015-01-07 | 2015-01-07 | 纤维状电化学发光电池及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104600334A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107564730A (zh) * | 2017-07-06 | 2018-01-09 | 复旦大学 | 一种荧光纤维状超级电容器纤维及其制备方法 |
CN109659447A (zh) * | 2018-12-21 | 2019-04-19 | 上海集成电路研发中心有限公司 | 纤维状自供能发光器件及其制备方法 |
CN110987245A (zh) * | 2019-12-13 | 2020-04-10 | 复旦大学 | 一种纤维状压力发光传感器及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101019248A (zh) * | 2004-07-16 | 2007-08-15 | 普林斯顿大学理事会 | 具有纤维结构的有机器件 |
CN101523628A (zh) * | 2006-05-01 | 2009-09-02 | 维克森林大学 | 纤维光电器件及其应用 |
CN102391618A (zh) * | 2011-08-11 | 2012-03-28 | 复旦大学 | 一种取向碳纳米管/聚合物复合膜的制备方法 |
US20130119889A1 (en) * | 2010-05-19 | 2013-05-16 | Universitaet Paderborn | Layered structure of a luminescent device, method for producing and operating a luminescent device and correspondingly produced luminescent device |
-
2015
- 2015-01-07 CN CN201510006681.7A patent/CN104600334A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101019248A (zh) * | 2004-07-16 | 2007-08-15 | 普林斯顿大学理事会 | 具有纤维结构的有机器件 |
CN101523628A (zh) * | 2006-05-01 | 2009-09-02 | 维克森林大学 | 纤维光电器件及其应用 |
US20130119889A1 (en) * | 2010-05-19 | 2013-05-16 | Universitaet Paderborn | Layered structure of a luminescent device, method for producing and operating a luminescent device and correspondingly produced luminescent device |
CN102391618A (zh) * | 2011-08-11 | 2012-03-28 | 复旦大学 | 一种取向碳纳米管/聚合物复合膜的制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107564730A (zh) * | 2017-07-06 | 2018-01-09 | 复旦大学 | 一种荧光纤维状超级电容器纤维及其制备方法 |
CN109659447A (zh) * | 2018-12-21 | 2019-04-19 | 上海集成电路研发中心有限公司 | 纤维状自供能发光器件及其制备方法 |
CN110987245A (zh) * | 2019-12-13 | 2020-04-10 | 复旦大学 | 一种纤维状压力发光传感器及其制备方法和应用 |
CN110987245B (zh) * | 2019-12-13 | 2021-04-30 | 复旦大学 | 一种纤维状压力发光传感器及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lv et al. | Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes | |
Wu et al. | Carbon‐nanomaterial‐based flexible batteries for wearable electronics | |
Zhu et al. | Ag-Doped PEDOT: PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480% | |
Wang et al. | All-in-one fiber for stretchable fiber-shaped tandem supercapacitors | |
Qiu et al. | An all-solid-state fiber-type solar cell achieving 9.49% efficiency | |
Lin et al. | Flexible electrochemical energy storage: the role of composite materials | |
Lee et al. | Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries | |
Zhou et al. | MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance | |
Sun et al. | Recent progress in solar cells based on one-dimensional nanomaterials | |
Wang et al. | Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT: PSS nanocomposites as flexible transparent electrodes for OLEDs | |
Weng et al. | A gum‐like lithium‐ion battery based on a novel arched structure | |
Li et al. | Advances and challenges for flexible energy storage and conversion devices and systems | |
Liu et al. | Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells | |
Jin et al. | Scalable, all‐printed photocapacitor fibers and modules based on metal‐embedded flexible transparent conductive electrodes for self‐charging wearable applications | |
Sami et al. | The Pine‐Needle‐Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High‐Performance Flexible Supercapacitors | |
Liu et al. | Single-layer graphene sheets as counter electrodes for fiber-shaped polymer solar cells | |
Rao et al. | A high performance wire-shaped flexible lithium-ion battery based on silicon nanoparticles within polypyrrole/twisted carbon fibers | |
CN103400889B (zh) | 全固态纤维状同轴聚合物太阳电池和超级电容器集成器件及其制备方法 | |
CN104377369A (zh) | 一种纤维状电化学发光电池及其制备方法 | |
Na et al. | Efficient ITO-free polymer solar cells with pitch-converted carbon nanosheets as novel solution-processable transparent electrodes | |
Bhadra et al. | Electrical and electronic application of polymer–carbon composites | |
Chi et al. | High‐Performance Flexible Asymmetric Supercapacitors Facilitated by N‐doped Porous Vertical Graphene Nanomesh Arrays | |
Ahn et al. | Electrophoretically deposited carbon nanotube anchor layer to improve areal capacity of Si-OC composite anode for lithium secondary batteries | |
CN104600334A (zh) | 纤维状电化学发光电池及其制备方法 | |
Cao et al. | Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150506 |