CN104600251A - Lithium-sulfur battery positive electrode and preparation method thereof - Google Patents
Lithium-sulfur battery positive electrode and preparation method thereof Download PDFInfo
- Publication number
- CN104600251A CN104600251A CN201410826024.2A CN201410826024A CN104600251A CN 104600251 A CN104600251 A CN 104600251A CN 201410826024 A CN201410826024 A CN 201410826024A CN 104600251 A CN104600251 A CN 104600251A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- lithium
- preparation
- sulfur
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000011241 protective layer Substances 0.000 claims abstract description 27
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 24
- 239000011593 sulfur Substances 0.000 claims abstract description 24
- 239000010410 layer Substances 0.000 claims abstract description 22
- 239000011149 active material Substances 0.000 claims abstract description 18
- 239000006258 conductive agent Substances 0.000 claims abstract description 17
- 239000011230 binding agent Substances 0.000 claims abstract description 13
- 239000002270 dispersing agent Substances 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 239000002131 composite material Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 20
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 11
- 239000002002 slurry Substances 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 239000002033 PVDF binder Substances 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 6
- 239000002041 carbon nanotube Substances 0.000 claims description 6
- 239000007774 positive electrode material Substances 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 5
- GJEAMHAFPYZYDE-UHFFFAOYSA-N [C].[S] Chemical compound [C].[S] GJEAMHAFPYZYDE-UHFFFAOYSA-N 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229920002125 Sokalan® Polymers 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000004584 polyacrylic acid Substances 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims description 3
- 229920000767 polyaniline Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002028 Biomass Substances 0.000 claims description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical group [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 claims description 2
- 239000002174 Styrene-butadiene Substances 0.000 claims description 2
- 239000006230 acetylene black Substances 0.000 claims description 2
- 238000000498 ball milling Methods 0.000 claims description 2
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 claims description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 238000007648 laser printing Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229920001690 polydopamine Polymers 0.000 claims description 2
- 229920000128 polypyrrole Polymers 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920000123 polythiophene Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 2
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 claims description 2
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005864 Sulphur Substances 0.000 claims 3
- 150000003464 sulfur compounds Chemical class 0.000 claims 3
- 150000002898 organic sulfur compounds Chemical group 0.000 claims 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims 1
- 229920002449 FKM Polymers 0.000 claims 1
- 239000002202 Polyethylene glycol Substances 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 239000005030 aluminium foil Substances 0.000 claims 1
- 239000011805 ball Substances 0.000 claims 1
- 239000001768 carboxy methyl cellulose Substances 0.000 claims 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims 1
- 239000003610 charcoal Substances 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- WFKAJVHLWXSISD-UHFFFAOYSA-N isobutyramide Chemical compound CC(C)C(N)=O WFKAJVHLWXSISD-UHFFFAOYSA-N 0.000 claims 1
- 229920001223 polyethylene glycol Polymers 0.000 claims 1
- 238000007639 printing Methods 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- 238000010345 tape casting Methods 0.000 claims 1
- 229920002397 thermoplastic olefin Polymers 0.000 claims 1
- 230000005611 electricity Effects 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 abstract description 2
- 230000000087 stabilizing effect Effects 0.000 abstract description 2
- 239000011888 foil Substances 0.000 description 8
- 238000010907 mechanical stirring Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 238000011056 performance test Methods 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000005077 polysulfide Substances 0.000 description 4
- 229920001021 polysulfide Polymers 0.000 description 4
- 150000008117 polysulfides Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 241000658379 Manihot esculenta subsp. esculenta Species 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011529 conductive interlayer Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052945 inorganic sulfide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂硫电池正极及其制备方法,该制备方法是将正极活性物质、导电剂、粘结剂混合均匀作为活性物质层涂覆在集流体上,干燥后得到正极基体;将由导电剂、粘结剂和分散剂均匀混合制成的导电浆料作为保护层涂覆在正极基体的外表面,干燥后得到锂硫电池正极。该制备方法操作简单易行、易于控制、适合工业化生产;其制得的锂硫电池正极中由于保护层能起到导电、截硫和稳定电极结构的作用,从而能够有效提高锂硫电池的容量、倍率及循环稳定性,同时保护层的厚度容易控制,可以尽可能减小对正极硫含量的影响。
The invention discloses a positive electrode of a lithium-sulfur battery and a preparation method thereof. The preparation method is to uniformly mix the active material of the positive electrode, a conductive agent, and a binder as an active material layer and coat it on a current collector, and obtain a positive electrode matrix after drying; Conductive agent, binder and dispersant uniformly mixed conductive paste prepared as a protective layer coated on the outer surface of the positive electrode base, after drying to obtain a lithium-sulfur battery positive electrode. The preparation method is simple and easy to operate, easy to control, and suitable for industrial production; in the positive electrode of the lithium-sulfur battery prepared by it, the protective layer can play the role of conducting electricity, intercepting sulfur and stabilizing the electrode structure, thereby effectively improving the capacity of the lithium-sulfur battery , rate and cycle stability, and the thickness of the protective layer is easy to control, which can minimize the impact on the sulfur content of the positive electrode.
Description
技术领域 technical field
本发明涉及锂硫电池技术领域,具体涉及一种锂硫电池正极及其制备方法。 The invention relates to the technical field of lithium-sulfur batteries, in particular to a lithium-sulfur battery positive electrode and a preparation method thereof.
背景技术 Background technique
随着人口、经济的增长以及人们生活水平的提高,能源需求量逐年增加,因化石能源使用造成的环境污染也愈加严重。为了减少对化石能源的依赖,基于可再生能源的新能源技术快速发展和应用。锂硫电池作为一种廉价并具有高能量密度的可充电电池(锂硫电池的理论能量密度高达2600W h kg-1),被认为是未来最具吸引力的电池系统之一。然而,锂硫电池技术也面临着很多来自材料和系统的问题:首先,活性物质硫的电阻率较高(5×10-30 S cm-1,25℃);其次,硫在循环充放电过程中会发生体积膨胀,导致硫电极结构的破坏;再次,在循环过程中形成的多硫化物易于溶解于电解液中,电极活性物质逐渐减少,比容量降低。这些问题直接导致了活性材料的利用率降低、循环寿命降低以及容量下降。 With the growth of population and economy and the improvement of people's living standards, the demand for energy is increasing year by year, and the environmental pollution caused by the use of fossil energy is also becoming more and more serious. In order to reduce dependence on fossil energy, new energy technologies based on renewable energy are rapidly developed and applied. As a cheap and rechargeable battery with high energy density (the theoretical energy density of lithium-sulfur battery is as high as 2600W h kg -1 ), lithium-sulfur battery is considered to be one of the most attractive battery systems in the future. However, lithium-sulfur battery technology also faces many problems from materials and systems: first, the active material sulfur has a high resistivity (5×10 -30 S cm -1 , 25°C); Volume expansion will occur in the process, leading to the destruction of the structure of the sulfur electrode; again, the polysulfides formed during the cycle are easy to dissolve in the electrolyte, the electrode active material gradually decreases, and the specific capacity decreases. These problems directly lead to lower utilization of active materials, lower cycle life, and lower capacity.
为解决上述问题,近年来很多科技工作者进行了很多研究,并相继公开了许多关于锂硫电池的专利。其中有些方法专注于开发具有纳米结构及性能良好的硫复合材料,用来提高放电容量、循环使用寿命以及电流效率,但复合材料中的硫含量大多会显著降低。另一些方法则通过设计新的电池配置来提高活性物质的利用率,例如,Arumugam Manthiram等[Su Y S, Manthiram A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. [J] Nature Communications, 2012, 3: 1166.]在极片与隔膜之间添加一个多孔导电夹层,来阻止多硫化合物的穿梭,达到提高锂硫电池电化学性能的目的,然而夹层的加入将增加正极的质量,造成较低的能量密度,且夹层的制造过程复杂,不利于产业化生产;土木春等提出的中国专利申请“一种具有吸附层的锂硫电池”(申请号为:201110092817.2)则直接在隔膜上涂覆一层吸附层,达到吸附多硫化物提高锂硫电池电化学性能的目的,然而在隔膜上涂覆吸附层的方法难度大,且可能造成电池短路。另外,张凯等提出的中国专利申请“一种用于锂硫二次电池的多层次结构复合正极及制备方法”(申请号为:201210538945.X)在传统锂硫电池正极表面溅射一层导电薄膜,目的是起到导电和截硫的作用,然而此方法复杂,成本较高。 In order to solve the above problems, many scientific and technological workers have conducted a lot of research in recent years, and have successively published many patents on lithium-sulfur batteries. Some of these methods focus on the development of sulfur composite materials with nanostructure and good performance to improve discharge capacity, cycle life and current efficiency, but most of the sulfur content in the composite materials will be significantly reduced. Other methods improve the utilization of active materials by designing new battery configurations, for example, Arumugam Manthiram et al [Su Y S, Manthiram A. Lithium–sulfur batteries with a microporous carbon paper as a bifunctional interlayer. [J] Nature Communications , 2012, 3: 1166.] A porous conductive interlayer is added between the pole piece and the diaphragm to prevent the shuttle of polysulfide compounds and achieve the purpose of improving the electrochemical performance of lithium-sulfur batteries. However, the addition of the interlayer will increase the quality of the positive electrode. resulting in low energy density, and the manufacturing process of the interlayer is complicated, which is not conducive to industrial production; the Chinese patent application "a lithium-sulfur battery with an adsorption layer" (application number: 201110092817.2) proposed by Tu Muchun et al. A layer of adsorption layer is coated on the separator to achieve the purpose of adsorbing polysulfides and improving the electrochemical performance of the lithium-sulfur battery. However, the method of coating the adsorption layer on the separator is difficult and may cause a short circuit of the battery. In addition, the Chinese patent application "a multi-layer structure composite positive electrode for lithium-sulfur secondary battery and its preparation method" (application number: 201210538945.X) proposed by Zhang Kai et al. sputters a layer of The purpose of the conductive film is to conduct electricity and intercept sulfur, but this method is complicated and the cost is high.
发明内容 Contents of the invention
本发明要解决的技术问题是克服现有技术存在的不足,提供一种锂硫电池正极及其制备方法,该锂硫电池正极能够有效提高锂硫电池的容量、倍率及循环稳定性,其制备方法操作简单易行、易于控制、适合工业化生产。 The technical problem to be solved in the present invention is to overcome the deficiencies in the prior art, and provide a lithium-sulfur battery positive electrode and a preparation method thereof. The lithium-sulfur battery positive electrode can effectively improve the capacity, rate and cycle stability of the lithium-sulfur battery. The method is simple and easy to operate, easy to control and suitable for industrial production.
为解决上述技术问题,本发明采用以下技术方案: In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
一种锂硫电池正极的制备方法,将正极活性物质、导电剂、粘结剂在分散剂中混合均匀作为活性物质层涂覆在集流体上,干燥后得到正极基体;将由导电剂、粘结剂和分散剂均匀混合制成的导电浆料作为保护层涂覆在正极基体的外表面,干燥后得到锂硫电池正极。活性物质层优选采用刮涂或喷涂的方法涂覆到集流体上。 A method for preparing a positive electrode of a lithium-sulfur battery, comprising uniformly mixing a positive electrode active material, a conductive agent, and a binder in a dispersant as an active material layer, coating it on a current collector, and obtaining a positive electrode matrix after drying; The conductive paste prepared by uniformly mixing the additive and the dispersant is used as a protective layer and coated on the outer surface of the positive electrode substrate, and the positive electrode of the lithium-sulfur battery is obtained after drying. The active material layer is preferably coated on the current collector by scraping or spraying.
上述制备方法,优选的,所述保护层的厚度为150nm~150μm。 In the above preparation method, preferably, the protective layer has a thickness of 150 nm to 150 μm.
上述制备方法,优选的,所述导电浆料中导电剂的质量为导电剂和粘结剂总质量的10~90%,分散剂的质量为导电浆料总质量的45~95%。 In the above preparation method, preferably, the mass of the conductive agent in the conductive paste is 10-90% of the total mass of the conductive agent and the binder, and the mass of the dispersant is 45-95% of the total mass of the conductive paste.
上述制备方法,优选的,所述导电剂为导电碳黑、乙炔黑、石墨粉、多孔炭球、碳纳米管、碳纤维、石墨烯、生物质碳中的一种或几种;所述粘结剂为聚乙烯醇、聚四氟乙烯、聚丙烯酸、羧甲基纤维、聚烯烃类、聚偏二氟乙烯、聚胺酯、SBR橡胶、氟化橡胶、聚偏氟乙烯中的一种或几种;所述分散剂为水、甲醇、乙醇、异丙醇、四氢呋喃、乙腈、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮中的一种或几种。 In the above preparation method, preferably, the conductive agent is one or more of conductive carbon black, acetylene black, graphite powder, porous carbon spheres, carbon nanotubes, carbon fibers, graphene, and biomass carbon; The agent is one or more of polyvinyl alcohol, polytetrafluoroethylene, polyacrylic acid, carboxymethyl fiber, polyolefin, polyvinylidene fluoride, polyurethane, SBR rubber, fluorinated rubber, and polyvinylidene fluoride; The dispersant is one or more of water, methanol, ethanol, isopropanol, tetrahydrofuran, acetonitrile, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
上述制备方法,优选的,所述导电剂、粘结剂和分散剂通过物理研磨、机械球磨、机械搅拌中的一种或几种方式均匀混合制成导电浆料。 In the above preparation method, preferably, the conductive agent, binder and dispersant are uniformly mixed by one or more methods of physical grinding, mechanical ball milling and mechanical stirring to prepare conductive paste.
上述制备方法,优选的,所述导电浆料涂覆在正极基体的外表面的方法为刮涂法、刷涂法、喷涂法、丝网印刷法、辊涂法、凹版印刷和激光打印法中的一种。 The above-mentioned preparation method, preferably, the method for coating the outer surface of the positive electrode substrate with the conductive paste is scraping, brushing, spraying, screen printing, roll coating, gravure printing and laser printing. kind of.
上述制备方法,优选的,所述集流体为铝箔、碳膜、铝网和镍网中的一种。上述铝箔优选为腐蚀铝箔或者覆碳铝箔。 In the above preparation method, preferably, the current collector is one of aluminum foil, carbon film, aluminum mesh and nickel mesh. The aforementioned aluminum foil is preferably corroded aluminum foil or carbon-coated aluminum foil.
上述制备方法,优选的,按重量百分比计所述活性物质层包含50~90%的正极活性物质、5~30%的导电剂和5~20%的粘结剂;所述正极活性物质为单质硫、硫化物、含硫复合物中的一种或几种。 In the above preparation method, preferably, the active material layer comprises 50-90% of the positive active material, 5-30% of the conductive agent and 5-20% of the binder by weight percentage; the positive active material is a simple One or more of sulfur, sulfide, and sulfur-containing compounds.
上述制备方法,优选的,所述硫化物为无机硫化物、有机硫化物、含硫配合物中的一种或几种;所述含硫复合物为硫碳复合材料、硫聚合物复合材料、有机硫化物、金属硫化物及其复合材料中的一种或几种,且含硫复合物中硫的质量百分含量为5%~100%,其中,硫碳复合材料中的碳为多孔碳、碳纳米管、石墨烯或碳纤维,硫聚合物复合材料中的聚合物为聚苯胺、聚吡咯、聚噻吩、聚多巴胺、聚氧化乙烯中的一种或几种,金属硫化物为硫化铁、硫化镍、硫化钴、硫化锡、硫化铜、硫化钛中的一种或几种。上述硫复合物中硫的质量百分含量优选为5%~95%;硫碳复合材料优选为多孔碳-硫复合物、碳纳米管-硫复合物、石墨烯-硫复合物或碳纤维-硫复合物;硫聚合物复合材料优选为聚苯胺-硫复合物、聚吡咯-硫复合物、聚噻吩-硫复合物。 In the above preparation method, preferably, the sulfide is one or more of inorganic sulfides, organic sulfides, and sulfur-containing complexes; the sulfur-containing compound is a sulfur-carbon composite material, a sulfur polymer composite material, One or more of organic sulfides, metal sulfides and their composite materials, and the mass percentage of sulfur in the sulfur-containing composite is 5% to 100%, wherein the carbon in the sulfur-carbon composite material is porous carbon , carbon nanotubes, graphene or carbon fiber, the polymer in the sulfur-polymer composite material is one or more of polyaniline, polypyrrole, polythiophene, polydopamine, polyethylene oxide, and the metal sulfide is iron sulfide, One or more of nickel sulfide, cobalt sulfide, tin sulfide, copper sulfide, titanium sulfide. The mass percent content of sulfur in the above-mentioned sulfur composite is preferably 5% to 95%; the sulfur-carbon composite material is preferably a porous carbon-sulfur composite, a carbon nanotube-sulfur composite, a graphene-sulfur composite or a carbon fiber-sulfur composite Composite; Sulfur polymer composites are preferably polyaniline-sulfur composites, polypyrrole-sulfur composites, polythiophene-sulfur composites.
本发明还提供一种上述的制备方法制得的锂硫电池正极。 The present invention also provides a lithium-sulfur battery cathode prepared by the above-mentioned preparation method.
与现有技术相比,本发明的优点在于:本发明在传统锂硫电池正极极片上涂覆一层含导电剂、粘结剂和分散剂的导电浆料,导电浆料干燥后形成保护层,含导电剂的保护层起导电、截硫作用,不仅进一步增加了电极的导电性,而且在循环过程中可以阻止多硫化合物溶解于电解液中,能显著地抑制“穿梭效应”;同时,保护层中粘接剂的粘结性还能够起到稳定电极结构的作用;此外,导电浆料干燥后形成的保护层是一种多孔结构,有利于电解液的浸润。保护层采用涂覆方式形成,其方案简单易行、易于操作,具有涂覆厚度可控,用料少等特点,且基本不改变极片的质量,从而可尽可能地提高总含硫量。利用本发明的锂硫电池正极组装的电池具有的容量高、倍率及循环稳定性好等优点。 Compared with the prior art, the present invention has the advantages that: the present invention coats a layer of conductive paste containing conductive agent, binder and dispersant on the positive electrode sheet of the traditional lithium-sulfur battery, and forms a protective layer after the conductive paste is dried. , the protective layer containing the conductive agent plays the role of conducting electricity and intercepting sulfur, which not only further increases the conductivity of the electrode, but also prevents polysulfide compounds from dissolving in the electrolyte during the cycle, which can significantly inhibit the "shuttle effect"; at the same time, The cohesiveness of the adhesive in the protective layer can also play a role in stabilizing the electrode structure; in addition, the protective layer formed after the conductive paste is dried has a porous structure, which is conducive to the infiltration of the electrolyte. The protective layer is formed by coating, which is simple, easy to operate, has the characteristics of controllable coating thickness, less material, and basically does not change the quality of the pole piece, so that the total sulfur content can be increased as much as possible. The battery assembled by using the positive electrode of the lithium-sulfur battery of the invention has the advantages of high capacity, good rate and cycle stability, and the like.
综上所述,本发明是一种操作简单、方案易行、易于控制的制备电化学性能佳的锂硫电池正极的方法。该方法制备的锂硫电池正极能明显改善锂硫电池的放电比容量、倍率性能及循环稳定性。 In summary, the present invention is a method for preparing a positive electrode of a lithium-sulfur battery with good electrochemical performance, which is simple in operation, easy to implement, and easy to control. The lithium-sulfur battery cathode prepared by the method can significantly improve the discharge specific capacity, rate performance and cycle stability of the lithium-sulfur battery.
附图说明 Description of drawings
图1为本发明锂硫电池正极的结构示意图。 FIG. 1 is a schematic diagram of the structure of the positive electrode of the lithium-sulfur battery of the present invention.
图2为实施例1及对比例得到的锂硫电池正极的循环性能曲线图。 FIG. 2 is a graph showing cycle performance curves of lithium-sulfur battery cathodes obtained in Example 1 and Comparative Example.
图例说明: illustration:
1、集流体;2、活性物质层;3、保护层。 1. Current collector; 2. Active material layer; 3. Protective layer.
具体实施方式 Detailed ways
以下结合附图和具体实施例对本发明作进一步详细说明。 The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
对比例: Comparative example:
将单质硫、导电炭黑与聚偏氟乙烯按质量比为7:2:1的量分散在N-甲基吡咯烷酮(NMP)中,进行充分的机械搅拌后,刮涂在铝箔集流体上,在60℃的温度下真空干燥24h,直接压制成直径为10mm的电极片。 Disperse elemental sulfur, conductive carbon black and polyvinylidene fluoride in N-methylpyrrolidone (NMP) at a mass ratio of 7:2:1, and then scrape-coat it on the aluminum foil current collector after sufficient mechanical stirring. Vacuum-dried at 60°C for 24h, and directly pressed into an electrode sheet with a diameter of 10mm.
以上述制备的电极片作为正极,锂片作为负极,在充满氩气的手套箱中组装成CR2025扣式电池,在温度为25℃,限制电压为1.7~3.0V,充放电电流密度为0.5C的条件下进行电化学性能测试。测试结果如图2中位于下方的曲线所示,可以看出电池首次放电比容量为790mAh/g,100次循环后比容量为424mAh/g。 Using the above-prepared electrode sheet as the positive electrode and the lithium sheet as the negative electrode, assemble it into a CR2025 button cell in an argon-filled glove box. Electrochemical performance tests were carried out under the conditions. The test results are shown in the lower curve in Figure 2. It can be seen that the specific capacity of the battery at the first discharge is 790mAh/g, and the specific capacity after 100 cycles is 424mAh/g.
实施例1: Example 1:
将单质硫、导电炭黑和聚偏氟乙烯按质量比为7:2:1的量分散在N-甲基吡咯烷酮(NMP)中,进行充分的机械搅拌后,刮涂在铝箔集流体1上,在60℃的温度下真空干燥24h,制备得到具有活性物质层2的正极基体。 Disperse elemental sulfur, conductive carbon black and polyvinylidene fluoride in N-methylpyrrolidone (NMP) at a mass ratio of 7:2:1, and after sufficient mechanical stirring, scrape-coat it on the aluminum foil current collector 1 , and vacuum-dried at a temperature of 60° C. for 24 hours to prepare a positive electrode substrate with an active material layer 2 .
将导电碳黑与聚偏氟乙烯按质量比8:2的量分散在N-甲基吡咯烷酮(NMP)中,利用机械搅拌混合均匀得到导电浆料,用毛刷将导电浆料轻轻刷在具有活性物质层2的正极基体上形成保护层3,在60℃的温度下真空干燥后,得到锂硫电池正极,其结构如图1所示,其中保护层3的厚度为35μm。然后再压制成直径为10mm的电极片。 Disperse conductive carbon black and polyvinylidene fluoride in N-methylpyrrolidone (NMP) at a mass ratio of 8:2, use mechanical stirring to mix evenly to obtain a conductive paste, and gently brush the conductive paste on the surface with a brush. A protective layer 3 is formed on the positive electrode substrate with an active material layer 2, and after vacuum drying at a temperature of 60° C., a lithium-sulfur battery positive electrode is obtained. The structure is shown in FIG. 1 , and the thickness of the protective layer 3 is 35 μm. Then press it into an electrode sheet with a diameter of 10mm.
以上述制备的电极片作为正极,以锂片作为负极,在充满氩气的手套箱中组装成CR2025扣式电池,在温度为25℃,限制电压为1.7~3.0V,充放电电流密度为0.5C的条件下进行电化学性能测试。测试结果如图2中位于上方的曲线所示,可以看出电池首次放电比容量为1255mAh/g,100次循环后比容量为811mAh/g,相比于对比例,采用本实施例的锂硫电池正极后明显改善了锂硫电池的放电比容量、倍率性能及循环稳定性。 Using the electrode sheet prepared above as the positive electrode and the lithium sheet as the negative electrode, assemble it into a CR2025 button cell in an argon-filled glove box. The electrochemical performance test was carried out under the condition of C. The test results are shown in the upper curve in Figure 2. It can be seen that the specific capacity of the battery for the first discharge is 1255mAh/g, and the specific capacity after 100 cycles is 811mAh/g. Compared with the comparative example, the lithium-sulfur After the positive electrode of the battery, the discharge specific capacity, rate performance and cycle stability of the lithium-sulfur battery are significantly improved.
实施例2: Example 2:
将单质硫、导电炭黑和聚乙烯醇按质量比为6:3:1的量混合均匀,进行充分的机械搅拌后,刮涂在铝箔集流体1上,在70℃的温度下真空干燥24h,制备得到具有活性物质层2的正极基体。 Mix elemental sulfur, conductive carbon black, and polyvinyl alcohol evenly in a mass ratio of 6:3:1, and after sufficient mechanical stirring, scrape-coat it on the aluminum foil current collector 1, and dry it in vacuum at 70°C for 24 hours , to prepare a positive electrode substrate with an active material layer 2 .
将导电碳黑与聚偏氟乙烯按质量比7:3的量分散在N-甲基吡咯烷酮(NMP)中,手工研磨至均匀混合,得到保护层浆料,将保护层浆料轻轻刮涂在具有活性物质层2的正极基体上形成保护层3,在80℃的温度下真空干燥后,得到锂硫电池正极,其中保护层3的厚度为20μm,然后再压制成直径为10mm的电极片。 Disperse conductive carbon black and polyvinylidene fluoride in N-methylpyrrolidone (NMP) at a mass ratio of 7:3, grind them by hand until uniformly mixed to obtain a protective layer slurry, and gently scrape the protective layer slurry A protective layer 3 is formed on the positive electrode substrate with an active material layer 2, and after vacuum drying at a temperature of 80°C, a lithium-sulfur battery positive electrode is obtained, wherein the thickness of the protective layer 3 is 20 μm, and then pressed into an electrode sheet with a diameter of 10 mm .
以上述制备的电极片作为正极,以锂片作为负极,采用实施例1中的方法进行电化学性能测试,测得电池首次放电比容量为1231mAh/g,100次循环后比容量为783mAh/g。 With the electrode sheet prepared above as the positive electrode and the lithium sheet as the negative electrode, the electrochemical performance test was carried out by the method in Example 1. The first discharge specific capacity of the battery was measured to be 1231mAh/g, and the specific capacity after 100 cycles was 783mAh/g .
实施例3: Example 3:
将碳纳米管-硫复合材料、导电炭黑和聚丙烯酸按质量比为8:1:1的量分散在水里,手工研磨至混合均匀,刮涂在铝箔集流体1上,在100℃的温度下真空干燥24h,制备得到具有活性物质层2的正极基体。 Disperse the carbon nanotube-sulfur composite material, conductive carbon black and polyacrylic acid in water at a mass ratio of 8:1:1, grind them by hand until they are evenly mixed, and scrape-coat them on the aluminum foil current collector 1. vacuum drying at high temperature for 24 hours to prepare a positive electrode substrate with an active material layer 2 .
将碳纳米管与聚偏氟乙烯按质量比为6:4的量分散在N-甲基吡咯烷酮(NMP)中,手工研磨至均匀混合,得到保护层浆料,用喷液器将保护层浆料轻轻喷涂在具有活性物质层2的正极基体上形成保护层3,在50℃的温度下真空干燥后,得到锂硫电池正极,其中保护层3的厚度为15μm,然后再压制成直径为10mm的电极片。 Disperse carbon nanotubes and polyvinylidene fluoride in N-methylpyrrolidone (NMP) at a mass ratio of 6:4, grind them manually until uniformly mixed to obtain a protective layer slurry, and spray the protective layer slurry Gently spray the material on the positive electrode substrate with the active material layer 2 to form a protective layer 3, and after vacuum drying at a temperature of 50°C, a lithium-sulfur battery positive electrode is obtained, wherein the thickness of the protective layer 3 is 15 μm, and then pressed into a diameter of 10mm electrode pads.
以上述制备的电极片作为正极,以锂片作为负极,采用实施例1中的方法进行电化学性能测试,测得电池首次放电比容量为1121mAh/g,100次循环后比容量为763mAh/g。 With the electrode sheet prepared above as the positive electrode and the lithium sheet as the negative electrode, the electrochemical performance test was carried out by the method in Example 1. The first discharge specific capacity of the battery was measured to be 1121mAh/g, and the specific capacity after 100 cycles was 763mAh/g .
实施例4: Example 4:
将硫-聚苯胺复合材料、木薯碳和聚偏氟乙烯按质量比为5:3:2的量分散在N-甲基吡咯烷酮(NMP)中,进行充分的机械搅拌后,刮涂在碳膜集流体1上,在70℃的温度下真空干燥24h,制备得到具有活性物质层2的正极基体。 Disperse the sulfur-polyaniline composite material, cassava carbon and polyvinylidene fluoride in N-methylpyrrolidone (NMP) at a mass ratio of 5:3:2, and after sufficient mechanical stirring, scrape-coat on the carbon film The current collector 1 was vacuum dried at a temperature of 70° C. for 24 hours to prepare a positive electrode substrate with an active material layer 2 .
将碳纳米管与聚丙烯酸按质量比8:2量分散在N-甲基吡咯烷酮(NMP)中,手工研磨至均匀混合,得到保护层浆料,将保护层浆料轻轻刮涂在具有活性物质层2的正极基体上形成保护层3,在60℃的温度下真空干燥后,得到锂硫电池正极,其中保护层3的厚度为80μm,然后再压制成直径为10mm的电极片。 Disperse carbon nanotubes and polyacrylic acid in N-methylpyrrolidone (NMP) at a mass ratio of 8:2, grind them manually until they are evenly mixed to obtain a protective layer slurry, and gently scrape the protective layer slurry on an active A protective layer 3 is formed on the positive electrode substrate of the material layer 2, and after vacuum drying at a temperature of 60° C., the positive electrode of a lithium-sulfur battery is obtained, wherein the thickness of the protective layer 3 is 80 μm, and then pressed into an electrode sheet with a diameter of 10 mm.
以上述制备的电极片作为正极,以锂片作为负极,采用实施例1中的方法进行电化学性能测试,电池首次放电比容量为1220mAh/g,100次循环后比容量为781mAh/g。 The electrode sheet prepared above was used as the positive electrode, and the lithium sheet was used as the negative electrode. The electrochemical performance test was carried out by the method in Example 1. The specific capacity of the battery was 1220mAh/g for the first discharge, and the specific capacity after 100 cycles was 781mAh/g.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410826024.2A CN104600251A (en) | 2014-12-26 | 2014-12-26 | Lithium-sulfur battery positive electrode and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410826024.2A CN104600251A (en) | 2014-12-26 | 2014-12-26 | Lithium-sulfur battery positive electrode and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104600251A true CN104600251A (en) | 2015-05-06 |
Family
ID=53125887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410826024.2A Pending CN104600251A (en) | 2014-12-26 | 2014-12-26 | Lithium-sulfur battery positive electrode and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104600251A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105374982A (en) * | 2015-12-11 | 2016-03-02 | 中国电子科技集团公司第十八研究所 | Electrode structure of lithium sulfur battery and processing technology therefor |
CN105720248A (en) * | 2016-02-19 | 2016-06-29 | 钟玲珑 | Preparation method for phosphorus-doped three-dimensional structured positive electrode material for lithium-sulfur battery |
CN105789557A (en) * | 2016-05-26 | 2016-07-20 | 厦门大学 | Lithium-sulfur pole piece with function protection layer and preparation method and application thereof |
CN106058150A (en) * | 2016-08-15 | 2016-10-26 | 柔电(武汉)科技有限公司 | Electrode of lithium sulfur battery and preparation method thereof |
CN106207088A (en) * | 2016-09-30 | 2016-12-07 | 上海空间电源研究所 | A kind of lithium-sulphur cell positive electrode and preparation method thereof |
WO2017053142A1 (en) * | 2015-09-25 | 2017-03-30 | Board Of Regents, The University Of Texas System | Multi-layer carbon-sulfur cathodes |
CN107359315A (en) * | 2017-03-08 | 2017-11-17 | 常州大学 | A kind of sulphur/new the lithium-sulfur battery composite anode material of amorphous curing nickel |
CN107507958A (en) * | 2017-07-17 | 2017-12-22 | 河南师范大学 | A kind of powder in situ cladding for lithium-sulfur cell prepares integral method with pole plate |
CN107848807A (en) * | 2015-07-07 | 2018-03-27 | 罗伯特·博世有限公司 | The silicon substrate compound with tri-bonded network for lithium ion battery |
CN107845774A (en) * | 2016-09-21 | 2018-03-27 | 中国科学院大连化学物理研究所 | Self-supporting porous electrode preparation method and its electrode and application |
CN107887605A (en) * | 2017-10-25 | 2018-04-06 | 天津赫维科技有限公司 | One kind is based on active MnO2The preparation method of the lithium-sulphur cell positive electrode of catalysis |
CN108666533A (en) * | 2018-05-16 | 2018-10-16 | 清华大学深圳研究生院 | A kind of preparation method and application of lithium-sulfur cell sulfur electrode |
CN109004173A (en) * | 2018-09-06 | 2018-12-14 | 西安建筑科技大学 | A kind of lithium-sulphur cell positive electrode and its manufacturing method |
CN109103491A (en) * | 2018-09-03 | 2018-12-28 | 江西克莱威纳米碳材料有限公司 | A kind of lithium-sulfur cell interlayer and preparation method thereof and a kind of lithium-sulfur cell |
CN109786119A (en) * | 2019-01-23 | 2019-05-21 | 三峡大学 | A kind of porous electrode and method for conducting conductive treatment thereof |
CN111029525A (en) * | 2019-12-31 | 2020-04-17 | 四川绿鑫电源科技有限公司 | Preparation method of positive pole piece of lithium-sulfur battery and product thereof |
CN111477843A (en) * | 2020-04-14 | 2020-07-31 | 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 | A 3D printing positive electrode material, its preparation method and application |
CN111628166A (en) * | 2020-06-04 | 2020-09-04 | 合肥工业大学 | Three-dimensional lithium sulfide electrode for lithium-sulfur battery and preparation method thereof |
CN111628150A (en) * | 2020-06-04 | 2020-09-04 | 合肥工业大学 | Carbon-coated lithium sulfide composite electrode for lithium-sulfur battery and preparation method thereof |
CN112011026A (en) * | 2020-08-21 | 2020-12-01 | 华南农业大学 | Tung oil-based positive electrode binder for lithium-sulfur battery, positive electrode for lithium-sulfur battery and preparation method of positive electrode |
CN112072067A (en) * | 2020-09-18 | 2020-12-11 | 北京理工大学 | Carbon-sulfur composite positive electrode for lithium-sulfur battery and preparation method thereof |
CN112159523A (en) * | 2020-10-13 | 2021-01-01 | 福州大学 | Polyaniline/nickel disulfide/graphene nanofiber composite material and preparation method thereof |
CN112382760A (en) * | 2020-10-29 | 2021-02-19 | 厦门大学 | Preparation method of aqueous conductive binder for positive electrode of lithium-sulfur battery |
CN112701246A (en) * | 2020-12-29 | 2021-04-23 | 珠海冠宇电池股份有限公司 | Electrode sheet and battery |
CN112928243A (en) * | 2019-12-06 | 2021-06-08 | 中国科学院大连化学物理研究所 | Self-supporting nickel sulfide electrode and preparation and application thereof |
CN113764624A (en) * | 2021-09-17 | 2021-12-07 | 西安理工大学 | Preparation method of high-performance lithium-sulfur battery positive plate with gradient structure |
CN114023919A (en) * | 2021-10-20 | 2022-02-08 | 中国科学院上海硅酸盐研究所 | High-capacity sulfur positive electrode and lithium-sulfur battery containing same |
CN114079038A (en) * | 2020-08-12 | 2022-02-22 | 清华大学 | A high-sulfur-loaded lithium-sulfur battery positive electrode and preparation method thereof |
CN114497550A (en) * | 2020-10-23 | 2022-05-13 | 中国石油化工股份有限公司 | Lithium-sulfur battery positive electrode material, preparation method thereof and lithium-sulfur battery |
CN114744140A (en) * | 2022-03-23 | 2022-07-12 | 广西大学 | Method for preparing fibrous electrode by active printing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100758383B1 (en) * | 2006-07-20 | 2007-09-14 | 경상대학교산학협력단 | Carbon Coated Sulfur Electrode for Lithium / Sulfur Secondary Battery |
CN102185158A (en) * | 2011-04-14 | 2011-09-14 | 武汉理工大学 | Lithium sulfur battery provided with adsorption layer |
CN103050667A (en) * | 2012-12-13 | 2013-04-17 | 中南大学 | Composite anode of multi-layer structure for lithium-sulfur rechargeable battery and preparation method |
CN103515646A (en) * | 2013-09-09 | 2014-01-15 | 中南大学 | Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film |
CN103647104A (en) * | 2013-12-18 | 2014-03-19 | 中国科学院上海硅酸盐研究所 | Lithium-sulfur battery |
-
2014
- 2014-12-26 CN CN201410826024.2A patent/CN104600251A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100758383B1 (en) * | 2006-07-20 | 2007-09-14 | 경상대학교산학협력단 | Carbon Coated Sulfur Electrode for Lithium / Sulfur Secondary Battery |
CN102185158A (en) * | 2011-04-14 | 2011-09-14 | 武汉理工大学 | Lithium sulfur battery provided with adsorption layer |
CN103050667A (en) * | 2012-12-13 | 2013-04-17 | 中南大学 | Composite anode of multi-layer structure for lithium-sulfur rechargeable battery and preparation method |
CN103515646A (en) * | 2013-09-09 | 2014-01-15 | 中南大学 | Lithium-sulfur battery with conductive adsorption layer, and application of conductive polymer film |
CN103647104A (en) * | 2013-12-18 | 2014-03-19 | 中国科学院上海硅酸盐研究所 | Lithium-sulfur battery |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107848807A (en) * | 2015-07-07 | 2018-03-27 | 罗伯特·博世有限公司 | The silicon substrate compound with tri-bonded network for lithium ion battery |
WO2017053142A1 (en) * | 2015-09-25 | 2017-03-30 | Board Of Regents, The University Of Texas System | Multi-layer carbon-sulfur cathodes |
CN105374982A (en) * | 2015-12-11 | 2016-03-02 | 中国电子科技集团公司第十八研究所 | Electrode structure of lithium sulfur battery and processing technology therefor |
CN105720248A (en) * | 2016-02-19 | 2016-06-29 | 钟玲珑 | Preparation method for phosphorus-doped three-dimensional structured positive electrode material for lithium-sulfur battery |
CN105720248B (en) * | 2016-02-19 | 2018-08-10 | 深圳市佩成科技有限责任公司 | A kind of preparation method of phosphorus doping three-dimensional structure lithium sulfur battery anode material |
CN105789557A (en) * | 2016-05-26 | 2016-07-20 | 厦门大学 | Lithium-sulfur pole piece with function protection layer and preparation method and application thereof |
CN106058150A (en) * | 2016-08-15 | 2016-10-26 | 柔电(武汉)科技有限公司 | Electrode of lithium sulfur battery and preparation method thereof |
CN107845774A (en) * | 2016-09-21 | 2018-03-27 | 中国科学院大连化学物理研究所 | Self-supporting porous electrode preparation method and its electrode and application |
CN106207088B (en) * | 2016-09-30 | 2019-05-03 | 上海空间电源研究所 | A kind of lithium-sulfur battery positive electrode and preparation method thereof |
CN106207088A (en) * | 2016-09-30 | 2016-12-07 | 上海空间电源研究所 | A kind of lithium-sulphur cell positive electrode and preparation method thereof |
CN107359315A (en) * | 2017-03-08 | 2017-11-17 | 常州大学 | A kind of sulphur/new the lithium-sulfur battery composite anode material of amorphous curing nickel |
CN107507958A (en) * | 2017-07-17 | 2017-12-22 | 河南师范大学 | A kind of powder in situ cladding for lithium-sulfur cell prepares integral method with pole plate |
CN107507958B (en) * | 2017-07-17 | 2021-09-10 | 河南师范大学 | In-situ powder coating and polar plate preparation integrated method for lithium-sulfur battery |
CN107887605B (en) * | 2017-10-25 | 2021-09-28 | 天津赫维科技有限公司 | Based on active MnO2Preparation method of catalytic lithium-sulfur battery positive electrode |
CN107887605A (en) * | 2017-10-25 | 2018-04-06 | 天津赫维科技有限公司 | One kind is based on active MnO2The preparation method of the lithium-sulphur cell positive electrode of catalysis |
CN108666533A (en) * | 2018-05-16 | 2018-10-16 | 清华大学深圳研究生院 | A kind of preparation method and application of lithium-sulfur cell sulfur electrode |
CN109103491A (en) * | 2018-09-03 | 2018-12-28 | 江西克莱威纳米碳材料有限公司 | A kind of lithium-sulfur cell interlayer and preparation method thereof and a kind of lithium-sulfur cell |
CN109004173A (en) * | 2018-09-06 | 2018-12-14 | 西安建筑科技大学 | A kind of lithium-sulphur cell positive electrode and its manufacturing method |
CN109004173B (en) * | 2018-09-06 | 2020-12-25 | 西安建筑科技大学 | Lithium-sulfur battery positive electrode and manufacturing method thereof |
CN109786119A (en) * | 2019-01-23 | 2019-05-21 | 三峡大学 | A kind of porous electrode and method for conducting conductive treatment thereof |
CN112928243A (en) * | 2019-12-06 | 2021-06-08 | 中国科学院大连化学物理研究所 | Self-supporting nickel sulfide electrode and preparation and application thereof |
CN111029525A (en) * | 2019-12-31 | 2020-04-17 | 四川绿鑫电源科技有限公司 | Preparation method of positive pole piece of lithium-sulfur battery and product thereof |
CN111477843B (en) * | 2020-04-14 | 2022-09-20 | 江西省纳米技术研究院 | 3D printing positive electrode material, and preparation method and application thereof |
CN111477843A (en) * | 2020-04-14 | 2020-07-31 | 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 | A 3D printing positive electrode material, its preparation method and application |
CN111628150A (en) * | 2020-06-04 | 2020-09-04 | 合肥工业大学 | Carbon-coated lithium sulfide composite electrode for lithium-sulfur battery and preparation method thereof |
CN111628150B (en) * | 2020-06-04 | 2021-10-08 | 合肥工业大学 | A carbon-coated lithium sulfide composite electrode for lithium-sulfur batteries and preparation method thereof |
CN111628166A (en) * | 2020-06-04 | 2020-09-04 | 合肥工业大学 | Three-dimensional lithium sulfide electrode for lithium-sulfur battery and preparation method thereof |
CN114079038A (en) * | 2020-08-12 | 2022-02-22 | 清华大学 | A high-sulfur-loaded lithium-sulfur battery positive electrode and preparation method thereof |
CN114079038B (en) * | 2020-08-12 | 2023-09-26 | 清华大学 | High-sulfur-load lithium-sulfur battery positive electrode and preparation method thereof |
CN112011026A (en) * | 2020-08-21 | 2020-12-01 | 华南农业大学 | Tung oil-based positive electrode binder for lithium-sulfur battery, positive electrode for lithium-sulfur battery and preparation method of positive electrode |
CN112011026B (en) * | 2020-08-21 | 2021-05-07 | 华南农业大学 | A tung oil-based lithium-sulfur battery positive electrode binder, a lithium-sulfur battery positive electrode and a preparation method thereof |
CN112072067A (en) * | 2020-09-18 | 2020-12-11 | 北京理工大学 | Carbon-sulfur composite positive electrode for lithium-sulfur battery and preparation method thereof |
CN112159523A (en) * | 2020-10-13 | 2021-01-01 | 福州大学 | Polyaniline/nickel disulfide/graphene nanofiber composite material and preparation method thereof |
CN112159523B (en) * | 2020-10-13 | 2021-10-29 | 福州大学 | A kind of polyaniline/nickel disulfide/graphene nanofiber composite material and preparation method thereof |
CN114497550A (en) * | 2020-10-23 | 2022-05-13 | 中国石油化工股份有限公司 | Lithium-sulfur battery positive electrode material, preparation method thereof and lithium-sulfur battery |
CN112382760A (en) * | 2020-10-29 | 2021-02-19 | 厦门大学 | Preparation method of aqueous conductive binder for positive electrode of lithium-sulfur battery |
CN112701246A (en) * | 2020-12-29 | 2021-04-23 | 珠海冠宇电池股份有限公司 | Electrode sheet and battery |
CN113764624A (en) * | 2021-09-17 | 2021-12-07 | 西安理工大学 | Preparation method of high-performance lithium-sulfur battery positive plate with gradient structure |
CN114023919A (en) * | 2021-10-20 | 2022-02-08 | 中国科学院上海硅酸盐研究所 | High-capacity sulfur positive electrode and lithium-sulfur battery containing same |
CN114023919B (en) * | 2021-10-20 | 2023-08-08 | 中国科学院上海硅酸盐研究所 | High-load sulfur positive electrode and lithium sulfur battery containing high-load sulfur positive electrode |
CN114744140B (en) * | 2022-03-23 | 2023-06-23 | 广西大学 | A method for preparing fibrous electrodes by active printing |
CN114744140A (en) * | 2022-03-23 | 2022-07-12 | 广西大学 | Method for preparing fibrous electrode by active printing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104600251A (en) | Lithium-sulfur battery positive electrode and preparation method thereof | |
CN103346293B (en) | Lithium ion battery cathode material and its preparation method, lithium ion battery | |
CN101894940B (en) | Preparation method of porous silicon-based cathode for lithium battery | |
CN105489901B (en) | A kind of preparation method and applications of lithium-sulfur cell three-dimensional carbon collector | |
CN103811731B (en) | A kind of graphene-sulfur combination electrode material and its preparation method and application | |
CN103078092B (en) | A kind of method preparing silicon-carbon composite cathode material of lithium ion battery | |
CN109103399B (en) | Functional separator for lithium-sulfur battery, preparation method thereof, and application in lithium-sulfur battery | |
CN108155383B (en) | Binder for lithium-sulfur battery and preparation method thereof, and positive electrode of lithium-sulfur battery | |
CN104143624B (en) | A kind of positive material for lithium-sulfur battery and lithium-sulphur cell positive electrode | |
CN106684389A (en) | Sulfur-nitrogen dual-doped graphene nano material and preparation method and application thereof | |
CN106159197A (en) | A kind of integrated flexible membrane electrode and preparation method thereof | |
CN104347881A (en) | Preparation method and applications of battery graphene-base current collector | |
CN105280949A (en) | Lithium sulfur battery using manganese dioxide/graphene as cathode barrier layer | |
CN107256969B (en) | Preparation method of sodium ion battery negative electrode slurry | |
CN111834660B (en) | Improved positive electrode design and related preparation methods for solid-state lithium-sulfur batteries | |
CN102522542A (en) | Elemental sulfur composite material containing graphene and preparation method thereof | |
CN112117444A (en) | Carbon-coated cobalt sulfide positive electrode material, preparation method, positive electrode and aluminum ion battery | |
CN103050729A (en) | Lithium sulfur battery | |
CN104362294A (en) | Porous sulfur anode used for lithium-sulfur battery and preparation method thereof as well as lithium-sulfur battery | |
CN105552302A (en) | Foldable sulfur cathode composite electrode structure | |
CN113193196A (en) | Multifunctional aqueous binder for sodium ion battery and application thereof | |
CN105244474A (en) | High-specific capacity lithium-sulfur secondary battery composite cathode and preparation method thereof | |
CN114751393A (en) | Nitrogen-sulfur co-doped porous carbon/sulfur composite material and preparation method and application thereof | |
CN108172406A (en) | A kind of sodium ion capacitor using FeS2-xSex material as negative electrode material | |
CN104716301A (en) | Positive electrode of lithium-sulfur battery and manufacturing method of positive electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150506 |
|
RJ01 | Rejection of invention patent application after publication |