CN104597230B - A kind of functional polymer film, preparation method and applications - Google Patents
A kind of functional polymer film, preparation method and applications Download PDFInfo
- Publication number
- CN104597230B CN104597230B CN201510045459.8A CN201510045459A CN104597230B CN 104597230 B CN104597230 B CN 104597230B CN 201510045459 A CN201510045459 A CN 201510045459A CN 104597230 B CN104597230 B CN 104597230B
- Authority
- CN
- China
- Prior art keywords
- biochip
- polymer
- solution
- polymer film
- photocrosslinking agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920001002 functional polymer Polymers 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 62
- 229920000642 polymer Polymers 0.000 claims abstract description 40
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 238000004528 spin coating Methods 0.000 claims abstract description 14
- 238000003380 quartz crystal microbalance Methods 0.000 claims abstract description 3
- 238000000018 DNA microarray Methods 0.000 claims description 95
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 46
- 239000008367 deionised water Substances 0.000 claims description 25
- 229910021641 deionized water Inorganic materials 0.000 claims description 25
- 229910052757 nitrogen Inorganic materials 0.000 claims description 24
- 229920001223 polyethylene glycol Polymers 0.000 claims description 15
- 239000002202 Polyethylene glycol Substances 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 12
- 239000013545 self-assembled monolayer Substances 0.000 claims description 12
- 238000005886 esterification reaction Methods 0.000 claims description 10
- 229920002521 macromolecule Polymers 0.000 claims description 10
- 239000002094 self assembled monolayer Substances 0.000 claims description 10
- 229920002125 Sokalan® Polymers 0.000 claims description 9
- 230000032050 esterification Effects 0.000 claims description 9
- 229940079593 drug Drugs 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 239000004584 polyacrylic acid Substances 0.000 claims description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000004593 Epoxy Substances 0.000 claims description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims description 4
- -1 Methylsiloxane Chemical class 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 4
- 150000004662 dithiols Chemical class 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 150000007523 nucleic acids Chemical class 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 239000000020 Nitrocellulose Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229920001220 nitrocellulos Polymers 0.000 claims description 3
- 229920001184 polypeptide Polymers 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000000304 alkynyl group Chemical group 0.000 claims description 2
- 150000004056 anthraquinones Chemical class 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 2
- 238000002875 fluorescence polarization Methods 0.000 claims description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 claims description 2
- 239000007850 fluorescent dye Substances 0.000 claims description 2
- 239000002052 molecular layer Substances 0.000 claims description 2
- 229930014626 natural product Natural products 0.000 claims description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 2
- 239000004626 polylactic acid Substances 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 238000010791 quenching Methods 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 235000000346 sugar Nutrition 0.000 claims description 2
- 238000007306 functionalization reaction Methods 0.000 claims 4
- ZHKJHQBOAJQXQR-UHFFFAOYSA-N 1H-azirine Chemical compound N1C=C1 ZHKJHQBOAJQXQR-UHFFFAOYSA-N 0.000 claims 2
- 230000004907 flux Effects 0.000 claims 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- 229920001503 Glucan Polymers 0.000 claims 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims 1
- 239000012965 benzophenone Substances 0.000 claims 1
- 239000012954 diazonium Substances 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 claims 1
- 238000001215 fluorescent labelling Methods 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims 1
- 239000004926 polymethyl methacrylate Substances 0.000 claims 1
- 238000001338 self-assembly Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- 229920006254 polymer film Polymers 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 238000001847 surface plasmon resonance imaging Methods 0.000 abstract description 4
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 63
- 239000000243 solution Substances 0.000 description 61
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 37
- 229910001873 dinitrogen Inorganic materials 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 15
- 229920002307 Dextran Polymers 0.000 description 14
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 101100310856 Drosophila melanogaster spri gene Proteins 0.000 description 10
- 238000004132 cross linking Methods 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 150000003573 thiols Chemical class 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- 150000003384 small molecules Chemical class 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 102000004856 Lectins Human genes 0.000 description 6
- 108090001090 Lectins Proteins 0.000 description 6
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 108010090804 Streptavidin Proteins 0.000 description 6
- 239000002523 lectin Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 6
- 235000020183 skimmed milk Nutrition 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 4
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229940014800 succinic anhydride Drugs 0.000 description 4
- 238000002207 thermal evaporation Methods 0.000 description 4
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 102100027913 Peptidyl-prolyl cis-trans isomerase FKBP1A Human genes 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 108010006877 Tacrolimus Binding Protein 1A Proteins 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 239000012456 homogeneous solution Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000008055 phosphate buffer solution Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 3
- 229960002930 sirolimus Drugs 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 2
- 102100026735 Coagulation factor VIII Human genes 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 2
- 208000001921 latent autoimmune diabetes in adults Diseases 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 1
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- ZSTBZBURMWJKSQ-UHFFFAOYSA-N 2-diazonio-1-phenylethenolate Chemical compound N#[N+]C=C([O-])C1=CC=CC=C1 ZSTBZBURMWJKSQ-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Divinylene sulfide Natural products C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical group [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000000835 electrochemical detection Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003373 small molecule array Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明提供了一种功能高分子薄膜、制备方法及其应用。所述方法包括如下步骤:1)将光交联剂修饰在基底表面;2)将聚合物溶液旋涂在步骤1)形成表面;3)用紫外光照射反应,使聚合物共价接枝到基底上形成聚合物薄膜;4)对聚合物进一步功能化或直接进行生物传感应用。该方法制备三维高分子表面简单、快速、高效,通过调控光交联剂密度、聚合物分子量、旋涂参数等可以精确控制表面高分子的密度和厚度,而且,所述方法可操作性强、重复性好,适合规模化生产。得到的聚合物薄膜表面对生物分子的固定量高,同时具有良好的抗非特异性吸附能力,可提高生物传感器(如表面等离激元共振成像、荧光、石英晶体微天平和电化学传感器等)的检测性能。The invention provides a functional polymer film, a preparation method and an application thereof. The method comprises the following steps: 1) modifying the photocrosslinking agent on the surface of the substrate; 2) spin-coating the polymer solution on the surface formed in step 1); 3) irradiating the reaction with ultraviolet light, so that the polymer is covalently grafted onto Form a polymer film on the substrate; 4) further functionalize the polymer or directly perform biosensing applications. The method for preparing a three-dimensional polymer surface is simple, fast and efficient, and the density and thickness of the surface polymer can be precisely controlled by adjusting the density of the photocrosslinking agent, polymer molecular weight, spin coating parameters, etc., and the method has strong operability, Good repeatability, suitable for large-scale production. The surface of the obtained polymer film has a high immobilization amount of biomolecules, and at the same time has good anti-nonspecific adsorption ability, which can improve biosensors (such as surface plasmon resonance imaging, fluorescence, quartz crystal microbalance and electrochemical sensors, etc.) detection performance.
Description
技术领域technical field
本发明涉及一种简单、快速、通用的高分子薄膜、制备方法及其在生物传感中的应用,特别是在表面等离激元共振成像中的应用。The invention relates to a simple, rapid and universal polymer film, a preparation method and its application in biosensing, especially in surface plasmon resonance imaging.
背景技术Background technique
生物芯片主要通过对基底的表面化学修饰,将蛋白质、多肽、核酸等生物分子及细胞、组织等生物样品固定在芯片表面,进而实现对目标生物组分的准确、快速、大信息量检测,具有高度平行性、多样性、微型化以及自动化等特点。合理的表面化学修饰可以使生物样品固定的更为高效、稳定。为了提高生物芯片对生物样品的固定能力,减少非特异性吸附,提高检测的信号强度,进而提高仪器检测灵敏度,人们对表面化学方面进行了大量的研究。Biochips mainly immobilize biological molecules such as proteins, peptides, and nucleic acids, as well as biological samples such as cells and tissues, on the surface of the chip by chemically modifying the surface of the substrate, thereby achieving accurate, rapid, and large-information detection of target biological components. Features such as high parallelism, diversity, miniaturization and automation. Reasonable surface chemical modification can make the immobilization of biological samples more efficient and stable. In order to improve the immobilization ability of biochips on biological samples, reduce non-specific adsorption, increase the signal intensity of detection, and then improve the detection sensitivity of instruments, a lot of research has been done on surface chemistry.
目前,自组装单分子层在生物传感和芯片技术领域应用较为广泛,其优点在于可以在表面形成稳定、均一、致密的分子层,不但可以在检测过程中保护基底,减小非特异性吸附,也可以拥有多样化的末端功能基团,做进一步修饰;另外,自组装单分子层修饰操作极为简单,修饰重复性好。但是,自组装单分子层作为二维表面因其生物分子固定量小,检测生物分子相互作用时信号弱,使其应用受到了很大限制。为了进一步增强生物芯片对生物分子的固定量,从而提高生物传感器检测灵敏度,很多研究采用了三维结构的芯片表面修饰方法。在生物芯片基底上构建一层具有三维结构的富含各种活性基团的高分子薄膜,这类修饰方式所制备的表面通常被称作三维表面,因其三维空间表面具有大量生物分子的结合位点,大大提高了生物分子的固定量,可以达到普通芯片的数十甚至数百倍。At present, self-assembled monolayers are widely used in the field of biosensing and chip technology. Its advantage is that it can form a stable, uniform and dense molecular layer on the surface, which can not only protect the substrate during the detection process, but also reduce non-specific adsorption. It can also have a variety of terminal functional groups for further modification; in addition, the self-assembled monolayer modification operation is extremely simple and the modification repeatability is good. However, the application of self-assembled monolayers as a two-dimensional surface is greatly limited due to the small amount of immobilized biomolecules and the weak signal when detecting biomolecular interactions. In order to further enhance the amount of immobilization of biomolecules on biochips, thereby improving the detection sensitivity of biosensors, many studies have used chip surface modification methods with three-dimensional structures. A polymer film with a three-dimensional structure and rich in various active groups is constructed on the biochip substrate. The surface prepared by this kind of modification is usually called a three-dimensional surface, because the three-dimensional space surface has a large number of biomolecules. site, greatly improving the amount of biomolecules immobilized, which can reach tens or even hundreds of times that of ordinary chips.
现有的关于三维结构表面修饰的研究包括各种聚合物膜的三维表面,如葡聚糖、聚丙烯酸、硝酸纤维素、尼龙、琼脂糖、聚丙烯酰胺、赖氨酸修饰的聚乙二醇水凝胶、微/纳米级粗糙表面结构以及一些超分子自组装三维结构等,其中葡聚糖三维表面应用最广(Johnsson B.,et al.,Comparison of methods for immobilization to carboxymethyldextran sensor surfaces by analysis of the specific activity of monoclonalantibodies.Journal of Molecular Recognition,1995.8(1-2):p.125-131.)。另外,基于原子转移自由基聚合(ATRP)方法制备的高分子刷状聚合物的研究也因为其反应条件温和、易操作,抗非特异性吸附能力强等优点,受到广泛关注(Wang,J.-S.and K.Matyjaszewski,Controlled/"living"radical polymerization.Atom transfer radicalpolymerization in the presence of transition-metal complexes.Journal of theAmerican Chemical Society,1995.117(20):p.5614-5615.)。而且,该材料生物相容性好,末端功能集团丰富,具有抗非特异性吸附等优良特性,被广泛应用到生物传感器表面中。Existing studies on surface modification of three-dimensional structures include three-dimensional surfaces of various polymer membranes, such as dextran, polyacrylic acid, nitrocellulose, nylon, agarose, polyacrylamide, lysine-modified polyethylene glycol Hydrogels, micro/nano-scale rough surface structures, and some supramolecular self-assembled three-dimensional structures, among which dextran three-dimensional surfaces are the most widely used (Johnsson B., et al., Comparison of methods for immobilization to carboxymethyldextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. Journal of Molecular Recognition, 1995.8(1-2): p.125-131.). In addition, the research on polymer brush polymers prepared by atom transfer radical polymerization (ATRP) has also received widespread attention because of its mild reaction conditions, easy operation, and strong non-specific adsorption capacity (Wang, J.- S. and K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 1995.117(20):p.5614-5615.). Moreover, the material has good biocompatibility, rich terminal functional groups, and excellent properties such as anti-nonspecific adsorption, and is widely used in the surface of biosensors.
在聚合物生长中,分子链与表面或界面的连接一般有两种方法:一种是“接枝到”(graft-to)的方法,另外一种是“从表面接枝”的方法(graft-from)。“从表面接枝”方法中,聚合物直接在基底表面上生长,通常先将聚合物的引发剂固定于表面上,再通过表面上的引发剂引发下一步聚合,该方法可以通过调整单体和反应时间控制聚合物厚度,并通过调整引发剂的表面覆盖度来控制聚合物的接枝密度。然而,此方法实验步骤较为复杂,在调控表面聚合物密度时重复性相对较差,生产成本较高,使用催化剂通常有生物毒性,且易残留在表面,不利于生物分子活性保持。而“接枝到”方法由于制备简单、快捷,使用材料容易进行产前质控,受到人们青睐。但聚合物反应官能团通过化学键连接,对于不同官能团要采用不同反应体系,相对考虑因素较多,而且对于液-固界面反应,反应速率通常不高,时间较长,高分子在溶液中移动较难以及自身空间位阻大,造成局部反应受限,缺点越发突出。In polymer growth, there are generally two ways to connect molecular chains to the surface or interface: one is the "graft-to" method, and the other is the "graft from the surface" method (graft-to). -from). In the "grafting from the surface" method, the polymer grows directly on the surface of the substrate. Usually, the initiator of the polymer is fixed on the surface first, and then the next step of polymerization is initiated by the initiator on the surface. This method can be adjusted by adjusting the monomer The thickness of the polymer is controlled by the reaction time and the graft density of the polymer is controlled by adjusting the surface coverage of the initiator. However, the experimental steps of this method are relatively complicated, the repeatability is relatively poor when adjusting the surface polymer density, the production cost is high, and the catalyst used is usually biologically toxic and tends to remain on the surface, which is not conducive to maintaining the activity of biomolecules. The "grafting to" method is favored by people because of its simple and fast preparation and the ease of prenatal quality control of the materials used. However, the reactive functional groups of polymers are connected by chemical bonds. Different reaction systems should be used for different functional groups, and there are relatively many considerations. Moreover, for liquid-solid interface reactions, the reaction rate is usually not high, the time is long, and it is difficult for the polymer to move in the solution. Its own steric hindrance is large, resulting in limited local reactions and more prominent shortcomings.
发明内容Contents of the invention
针对已有技术的问题,本发明的目的之一在于提供一种功能高分子薄膜的制备方法,该方法利用紫外光交联的方式随机地将聚合物共价固定在基底表面,得到高分子薄膜,然后对其进一步功能化或直接进行生物分子和药物分子等的捕获和检测。In view of the problems in the prior art, one of the objectives of the present invention is to provide a method for preparing a functional polymer film, which uses ultraviolet light cross-linking to randomly covalently fix the polymer on the surface of the substrate to obtain a polymer film , and then further functionalize it or directly capture and detect biomolecules and drug molecules.
为了实现上述目的,本发明采用了如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种功能高分子薄膜的制备方法,所述方法包括以下步骤:A method for preparing a functional polymer film, said method comprising the steps of:
(1)在生物芯片基底表面形成末端功能化的自组装单分子层;(1) Forming a terminal functionalized self-assembled monolayer on the surface of the biochip substrate;
(2)将光交联剂通过化学键合,接枝到自组装单分子层末端;(2) The photocrosslinking agent is grafted to the end of the self-assembled monolayer through chemical bonding;
(3)将高分子溶液在避光条件下旋涂到步骤(2)形成的表面,然后干燥;(3) spin coating the polymer solution onto the surface formed in step (2) under light-shielding conditions, and then dry;
(4)将表面旋涂有高分子的生物芯片在惰性气体保护下进行紫外光照,在紫外光条件下进行化学键合,使高分子接枝到表面,形成高分子薄膜;(4) Under the protection of an inert gas, the biochip with the polymer spin-coated on the surface is subjected to ultraviolet light, and chemically bonded under the ultraviolet light condition, so that the polymer is grafted to the surface to form a polymer film;
任选地,进行步骤(5):Optionally, proceed to step (5):
(5)将高分子进行末端功能化,形成功能高分子薄膜,其用以捕捉生物分子及药物分子等,并进行高通量检测。(5) Functionalize the end of the polymer to form a functional polymer film, which is used to capture biomolecules and drug molecules, etc., and perform high-throughput detection.
本发明结合旋涂技术和光交联技术,建立了一种简单、快速和通用的生物芯片表面化学修饰方法,制备得到了(功能)高分子薄膜。本发明主要利用光交联的方法在生物芯片表面进行化学修饰,用以形成高密度接枝的三维表面,然后对其进行进一步功能化并利用末端的功能化基团在SPRi仪器上实现生物分子(如蛋白、多肽、多糖,核酸)或药物等小分子的固定和检测或直接进行生物分子或药物分子的固定和检测。The invention combines the spin-coating technology and the photo-crosslinking technology to establish a simple, fast and general biochip surface chemical modification method, and prepares (functional) polymer films. The present invention mainly utilizes the method of photocrosslinking to chemically modify the surface of the biochip to form a high-density grafted three-dimensional surface, and then further functionalize it and use the terminal functional groups to realize biomolecules on the SPRi instrument. Immobilization and detection of small molecules (such as proteins, polypeptides, polysaccharides, nucleic acids) or drugs, or direct biomolecules or drug molecules.
优选地,步骤(1)前对生物芯片基底进行如下预处理:将生物芯片基底清洗干净。Preferably, the biochip substrate is pretreated as follows before step (1): the biochip substrate is cleaned.
优选地,所述生物芯片基底,包括一切可以用于制备生物芯片支持物的物质,例如玻璃、硅片和石英;聚二甲基硅氧烷、聚苯乙烯、聚碳酸酯和聚甲基丙烯酸甲酯等高分子类薄膜;金膜、银膜和三氧化二铝膜等金属和金属氧化物薄膜等。Preferably, the biochip substrate includes all materials that can be used to prepare biochip supports, such as glass, silicon wafer and quartz; polydimethylsiloxane, polystyrene, polycarbonate and polymethacrylic acid Polymer films such as methyl ester; metal and metal oxide films such as gold film, silver film and aluminum oxide film, etc.
优选地,所述生物芯片基底的清洗方式包括但不限于用有机溶剂(如乙醇、甲醇和N,N-二甲基甲酰胺等)或去离子水进行冲洗、摇洗或超声清洗,还包括利用等离子清洗仪进行表面清洗,或者将其中的任意两者或者三种方式组合使用。Preferably, the cleaning method of the biochip substrate includes, but is not limited to, rinsing, shaking or ultrasonic cleaning with organic solvents (such as ethanol, methanol, and N,N-dimethylformamide, etc.) or deionized water, and also includes Use a plasma cleaner for surface cleaning, or use any combination of two or three of these methods.
优选地,步骤(1)中自组装单分子层的试剂包括但不限于单硫醇、双硫醇和硅烷化试剂等中的任意一种或者至少两种的混合试剂。Preferably, the reagents for the self-assembled monolayer in step (1) include, but are not limited to, any one of monothiol, dithiol, and silylating reagent, or a mixture of at least two of them.
优选地,步骤(1)中末端功能化的基团包括但不限于烷氧基、羟基、羧基、氨基、环氧基或氰基等。Preferably, the terminal functionalized groups in step (1) include but are not limited to alkoxy, hydroxyl, carboxyl, amino, epoxy or cyano and the like.
优选地,步骤(2)中所述光交联剂指含有光敏感基团,在特定波长(能量)光照下可以进行化学反应的试剂,如吖丙因、重氮、乙酰苯、二苯甲酮或蒽醌类等中的任意一种或者至少两种的组合。Preferably, the photocrosslinking agent described in step (2) refers to a reagent that contains a photosensitive group and can undergo a chemical reaction under light of a specific wavelength (energy), such as aziridine, diazo, acetophenone, diphenyl Any one or a combination of at least two of ketones or anthraquinones.
优选地,所述使光交联剂通过化学键合,接枝到自组装单分子层末端的方法根据生物芯片基底表面功能化基团以及光交联剂末端官能团的不同而采用不同的键合方法,如酰胺化、酯化、开环或亲核取代反应等。Preferably, the method of grafting the photocrosslinking agent to the end of the self-assembled monolayer through chemical bonding adopts different bonding methods according to the difference of the functional group on the surface of the biochip substrate and the functional group at the end of the photocrosslinking agent , such as amidation, esterification, ring opening or nucleophilic substitution reactions, etc.
例如本发明可采用的光交联剂结构式如图2所示,对于(a)结构,采用酯化反应接枝到自组装单分子层末端;对于(b)结构,采用酰胺化反应接枝到自组装单分子层末端。以酯化方法将羧基末端光交联剂接枝到羟基硫醇表面为例,由于上述光交联剂中含有F和N元素,而酯化接枝光交联剂之前的表面并无两种元素存在,所以可以根据F和N两种元素峰的出现在判断光交联剂是否接枝成功。如图3所示,酯化后的表面XPS数据显示同时出现F和N两个明显的峰,而对照中并无两元素,证明光交联剂已被成功接枝到表面。For example, the structural formula of the photocrosslinking agent that can be used in the present invention is shown in Figure 2. For the (a) structure, the esterification reaction is used to graft to the end of the self-assembled monolayer; for the (b) structure, the amidation reaction is used to graft to the Self-assembled monolayer ends. Taking the esterification method to graft the carboxyl-terminal photocrosslinking agent to the surface of hydroxythiol as an example, since the above photocrosslinking agent contains F and N elements, there are no two kinds of surface before esterification and grafting of the photocrosslinking agent. Elements exist, so it can be judged whether the grafting of the photocrosslinking agent is successful or not based on the appearance of the two element peaks of F and N. As shown in Figure 3, the XPS data of the surface after esterification showed two obvious peaks of F and N at the same time, while there were no two elements in the control, which proved that the photocrosslinker had been successfully grafted to the surface.
优选地,所述高分子主要指具有生物相容性且具有活性端基的功能高分子,包括但不限于具有良好抗非特异性结合性能的高分子,如聚乙二醇及其衍生物、含氟聚合物、聚丙烯酸、聚苯乙烯和聚乳酸等;两性甜菜碱类聚合物等;具有良好生物相容性的高分子,如硝化纤维、壳聚糖、葡聚糖及其衍生物等。Preferably, the macromolecules mainly refer to functional macromolecules with biocompatibility and active end groups, including but not limited to macromolecules with good resistance to non-specific binding, such as polyethylene glycol and its derivatives, containing Fluoropolymers, polyacrylic acid, polystyrene and polylactic acid, etc.; amphoteric betaine polymers, etc.; polymers with good biocompatibility, such as nitrocellulose, chitosan, dextran and their derivatives, etc.
优选地,步骤(4)所述惰性气体包括但不限于氮气或/和氩气等惰性气体。Preferably, the inert gas in step (4) includes but not limited to nitrogen or/and argon and other inert gases.
优选地,步骤(4)所述紫外光波长为365nm。Preferably, the wavelength of the ultraviolet light in step (4) is 365nm.
如图4所示,将高分子通过365nm紫外光交联到表面后,用FT-IR(掠角附件)对芯片表面进行了表征。对于接枝聚(甲基丙烯酸聚乙二醇酯)的表面来说,3500cm-1出现O-H伸缩振动峰,3000-3200cm-1处出现CH2的振动双峰,1740cm-1左右出现明显的C=O伸缩振动峰,而低波数区域,如1100cm-1左右出现明显的C-O和C-C振动的峰。同样地,对于接枝葡聚糖的表面来说,3500cm-1出现-OH特征峰,3000-3200cm-1处出现CH2的振动双峰,1100cm-1左右出现明显的C-O-C伸缩振动的峰。以上证据均证明高分子被成功光交联到生物芯片表面,也证明该技术方案的可行性。As shown in Figure 4, the surface of the chip was characterized by FT-IR (grazing angle attachment) after the polymer was cross-linked to the surface by 365nm ultraviolet light. For the surface of grafted poly(polyethylene glycol methacrylate), the OH stretching vibration peak appears at 3500cm- 1 , the CH 2 vibration doublet appears at 3000-3200cm -1 , and the obvious C2 appears around 1740cm- 1 =O stretching vibration peak, while the low wave number region, such as around 1100cm -1 , has obvious peaks of CO and CC vibration. Similarly, for the surface of grafted dextran, the characteristic peak of -OH appeared at 3500cm -1 , the double vibration peak of CH 2 appeared at 3000-3200cm -1 , and the obvious peak of COC stretching vibration appeared around 1100cm -1 . The above evidences all prove that the polymer has been successfully photo-crosslinked to the surface of the biochip, which also proves the feasibility of this technical solution.
优选地,步骤(5)中末端功能化的基团包括但不限于羟基、羧基、醛基、氨基、环氧基、氰基、炔基、叠氮基或吖丙因等。Preferably, the terminal functionalized groups in step (5) include but are not limited to hydroxyl, carboxyl, aldehyde, amino, epoxy, cyano, alkynyl, azido or aziridine.
优选地,通过调控光交联剂密度(1mM~100mM)、高分子数均分子量(10万~200万)、旋涂参数(1000rpm~8000rpm)等可以精确控制表面高分子薄膜的密度和厚度。该方法制备三维高分子表面简单、快速和高效。Preferably, the density and thickness of the surface polymer film can be precisely controlled by adjusting the density of the photocrosslinker (1mM-100mM), the number-average molecular weight of the polymer (100,000-2 million), and the spin-coating parameters (1000rpm-8000rpm). This method is simple, fast and efficient for preparing three-dimensional polymer surfaces.
本发明的目的之二在于提供一种由如上所述方法得到的功能高分子薄膜。The second object of the present invention is to provide a functional polymer film obtained by the above method.
本发明的目的之三在于提供一种如上所述的功能高分子薄膜的用途,其用于生物分子及药物分子的固定和高通量检测。The third object of the present invention is to provide a use of the functional polymer film as described above, which is used for immobilization and high-throughput detection of biomolecules and drug molecules.
优选地,本发明中所述生物分子包括但不限于蛋白、多肽、核酸(DNA、RNA、cDNA和肽核酸等)以及糖等分子。药物分子主要为化学合成的药物活性化合物以及天然产物分离提纯得到的活性成分等。Preferably, the biomolecules in the present invention include but are not limited to molecules such as proteins, polypeptides, nucleic acids (DNA, RNA, cDNA and peptide nucleic acids, etc.) and sugars. Drug molecules are mainly chemically synthesized pharmaceutical active compounds and active ingredients isolated and purified from natural products.
本发明中所述的高通量检测方法,主要包括表面等离激元共振成像技术、荧光标记检测技术、荧光强度、荧光偏振、荧光共振能量转移、荧光淬灭、石英晶体微天平技术以及各种高通量的电化学检测技术和热检测技术等方法。The high-throughput detection method described in the present invention mainly includes surface plasmon resonance imaging technology, fluorescent label detection technology, fluorescence intensity, fluorescence polarization, fluorescence resonance energy transfer, fluorescence quenching, quartz crystal microbalance technology and various A high-throughput electrochemical detection technology and thermal detection technology and other methods.
与已有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供了一种新的“接枝到”方法,利用旋涂技术和光交联技术得到了普适性的固定高分子的方法,可以利用紫外光一步将高分子非选择性地共价固定在表面,直接用于制备具有光交联结构的三维表面生物芯片。The present invention provides a new "grafting to" method, using spin-coating technology and photo-crosslinking technology to obtain a universal method for immobilizing polymers, which can non-selectively covalently immobilize polymers in one step using ultraviolet light On the surface, it is directly used to prepare a three-dimensional surface biochip with a photocrosslinked structure.
此外,本发明所述方法采用光交联剂在紫外光照射下产生高反应活性的卡宾,其反应活性强,反应时间短,可随机与高分子进行插入反应,适用于所有高分子,具有普适性。In addition, the method of the present invention uses a photocrosslinking agent to produce highly reactive carbene under ultraviolet light irradiation, which has strong reactivity and short reaction time, and can randomly perform insertion reactions with macromolecules. It is applicable to all macromolecules and has general fitness.
另外,该方法基于成熟可靠的旋涂技术,所需的仪器设备具有普及性和通用性。利用本方法制备的生物芯片对各种生物检测物的固定和检测信号均有明显的提高,实用性强,适合大规模推广和商业化应用,具有非常广阔的应用前景。In addition, the method is based on the mature and reliable spin-coating technology, and the required instruments and equipment are popular and versatile. The biochip prepared by the method can significantly improve the immobilization and detection signals of various biological detection substances, has strong practicability, is suitable for large-scale popularization and commercial application, and has very broad application prospects.
此外,本发明优选采用相对较长的紫外光(365nm),副反应少,对表面其他修饰分子(如硫醇等)没有伤害。In addition, the present invention preferably adopts relatively long ultraviolet light (365nm), with few side reactions and no damage to other modified molecules (such as thiol, etc.) on the surface.
附图说明Description of drawings
图1是基于光交联方法的功能高分子三维表面修饰流程图;Figure 1 is a flowchart of three-dimensional surface modification of functional polymers based on photocrosslinking method;
图2是本发明中的光交联剂分子结构式,其中,(a)羧基末端光交联剂;(b)氨基末端光交联剂;Fig. 2 is the molecular structural formula of photocrosslinking agent in the present invention, wherein, (a) carboxyl terminal photocrosslinking agent; (b) amino terminal photocrosslinking agent;
图3是X射线光电子能谱(XPS)对接枝光交联剂前后的表面元素分析结果,其中,图(a)和(b)分别为N1s元素接枝前后的XPS图,图(c)和图(d)分别为F1s元素接枝前后的XPS图;Figure 3 is the X-ray Photoelectron Spectroscopy (XPS) analysis results of surface elements before and after grafting photocrosslinking agent, wherein Figures (a) and (b) are XPS figures before and after N1s element grafting, and Figure (c) and (d) are the XPS diagrams of F1s elements before and after grafting;
图4是傅里叶变换红外光谱(FT-IR)对光交联接枝高分子的表面进行表征,(a)聚(甲基丙烯酸聚乙二醇酯);(b)葡聚糖);Figure 4 is Fourier Transform Infrared Spectroscopy (FT-IR) characterization of the surface of photocrosslinked grafted polymers, (a) poly(polyethylene glycol methacrylate); (b) dextran);
图5是基于光交联方法制备的葡聚糖三维表面生物传感芯片,以流通的方式固定链霉亲和素(SA),并检测4nM生物素(Biotin);Figure 5 is a dextran three-dimensional surface biosensing chip prepared based on a photocrosslinking method, immobilizing streptavidin (SA) in a flow-through manner, and detecting 4nM biotin (Biotin);
图6是在聚(甲基丙烯酸聚乙二醇酯)表面上固定雷帕霉素,利用SPRi检测与100nM的FKBP12(PBS,pH7.4,0.5%T20)蛋白的相互作用,其中,雷帕霉素-1、雷帕霉素-2和雷帕霉素-3分别表示三次重复实验采用的样品;Fig. 6 immobilizes rapamycin on the surface of poly(polyethylene glycol methacrylate), and uses SPRi to detect the interaction with 100 nM FKBP12 (PBS, pH7.4, 0.5% T20) protein, wherein, rapamycin Rapamycin-1, rapamycin-2 and rapamycin-3 represent the samples used in three repeated experiments respectively;
图7是凝集素微阵列表面等离子共振成像图;Figure 7 is a surface plasmon resonance imaging image of a lectin microarray;
图8是凝集素阵列对血清筛选结果。Fig. 8 is the result of serum screening by lectin array.
具体实施方式detailed description
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and through specific implementation methods.
实施例1.葡聚糖表面(小分子检测:流通固定SA,检测Biotin)Example 1. Dextran surface (small molecule detection: flow-through immobilized SA, detection of Biotin)
(1)在玻璃基底上用热蒸镀的方法制备一层3nm厚度的铬层和一层47nm厚度的金层,作为生物芯片的基底。(1) Prepare a layer of chromium layer with a thickness of 3nm and a layer of gold with a thickness of 47nm on the glass substrate by thermal evaporation method, as the substrate of the biochip.
(2)准备羟基末端硫醇的乙醇溶液HS-(CH2)11-EG6-OH,浓度为1mM。(2) Prepare an ethanol solution of hydroxyl-terminated thiol HS-(CH 2 ) 11 -EG6-OH at a concentration of 1 mM.
(3)将生物芯片基底用乙醇或去离子水清洗干净,然后将生物芯片放入等离子体清洗仪中清洗3分钟。(3) The substrate of the biochip is cleaned with ethanol or deionized water, and then the biochip is placed in a plasma cleaner for cleaning for 3 minutes.
(4)将生物芯片浸泡在准备好的硫醇溶液中,在4℃下孵育12小时,达到预定时间后,将生物芯片取出,乙醇和去离子水交替清洗,氮气吹干。(4) Soak the biochip in the prepared thiol solution and incubate at 4°C for 12 hours. After the predetermined time, the biochip is taken out, washed with ethanol and deionized water alternately, and dried with nitrogen.
(5)配制酯化连接光交联剂所需溶液20mL,羧基末端光交联剂10mM,1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)10mM,4-二甲氨基吡啶(DMAP)1mM,溶剂为N,N-二甲基甲酰胺(DMF)。(5) Prepare 20 mL of the solution required for esterification and linking photocrosslinking agent, 10 mM carboxy-terminal photocrosslinking agent, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) 10 mM, 4 - Dimethylaminopyridine (DMAP) 1 mM, solvent N,N-dimethylformamide (DMF).
(6)将生物芯片浸入配制好的酯化溶液中,室温避光反应4小时,达到预定时间后,将生物芯片依次用DMF、乙醇和去离子水进行清洗,氮气吹干备用。(6) Immerse the biochip in the prepared esterification solution, and react in the dark at room temperature for 4 hours. After the predetermined time is reached, the biochip is washed with DMF, ethanol and deionized water in sequence, and dried with nitrogen gas for later use.
(7)将分子量为2000KDa的葡聚糖配制成质量浓度40%的水溶液,搅拌均匀,除去气泡至无色透明的均一溶液。(7) Dextran with a molecular weight of 2000KDa was prepared into an aqueous solution with a mass concentration of 40%, stirred evenly, and air bubbles were removed to obtain a colorless and transparent homogeneous solution.
(8)将配制好的葡聚糖溶液铺满于生物芯片表面,以8000rpm的转速,旋涂1分钟,旋涂后,将生物芯片在室温下避光静置1小时晾干。(8) Spread the prepared dextran solution on the surface of the biochip, spin-coat at a speed of 8000 rpm for 1 minute, and after spin-coating, place the biochip at room temperature in the dark for 1 hour to dry.
(9)将生物芯片放入紫外光交联仪中,氮气环境下,用365nm紫外光照射15分钟(2.4J/cm2)。(9) Put the biochip into an ultraviolet light cross-linking apparatus, and irradiate with 365nm ultraviolet light (2.4J/cm 2 ) for 15 minutes under a nitrogen atmosphere.
(10)达到预定时间后,将生物芯片用50℃的热水反复摇洗1小时,去除表面未共价固定的葡聚糖分子,期间换水3-5次,生物芯片清洗后氮气吹干备用。(10) After the predetermined time is reached, shake the biochip repeatedly with hot water at 50°C for 1 hour to remove uncovalently fixed dextran molecules on the surface, change the water 3-5 times during this period, and blow dry the biochip with nitrogen after cleaning spare.
(11)将生物芯片浸入丁二酸酐(10mg/mL)和4-二甲氨基吡啶(15mg/mL)的DMF溶液中,室温(25℃)反应16小时,达到预定反应时间后,将生物芯片取出,依次用DMF、乙醇、去离子水清洗,氮气吹干。(11) Immerse the biochip in the DMF solution of succinic anhydride (10 mg/mL) and 4-dimethylaminopyridine (15 mg/mL), and react at room temperature (25°C) for 16 hours. After the predetermined reaction time is reached, the biochip Take it out, wash it successively with DMF, ethanol, and deionized water, and dry it with nitrogen gas.
(12)配制50ug/mL链霉亲和素(SA)的乙酸钠缓冲液(pH=4.5)备用。(12) Prepare 50 ug/mL streptavidin (SA) sodium acetate buffer solution (pH=4.5) for later use.
(13)调整SPRi光学位置,将SA溶液以3uL/s的速度流通到生物芯片表面,持续结合100s。(13) Adjust the optical position of the SPRi, flow the SA solution to the surface of the biochip at a speed of 3uL/s, and continue to bind for 100s.
(14)重复步骤12,直到表面固定量达到饱和。(14) Repeat step 12 until the amount of immobilization on the surface reaches saturation.
(15)将系统溶液换成PBS缓冲液(含1%DMSO),调整光学位置,通入含4nM的生物素的PBS溶液(1%DMSO),结合300s,解离300s,1:100磷酸水溶液重生,10mM NaOH水溶液重生。(15) Replace the system solution with PBS buffer (containing 1% DMSO), adjust the optical position, pass through PBS solution (1% DMSO) containing 4nM biotin, combine for 300s, dissociate for 300s, 1:100 phosphoric acid aqueous solution Regenerated, 10 mM NaOH aqueous solution regenerated.
实验结果证明,用该方法制备的生物芯片有很高的蛋白固定量,足以检测到与蛋白结合的小分子(如图5)。Experimental results prove that the biochip prepared by this method has a high amount of protein immobilization, which is enough to detect small molecules bound to the protein (as shown in Figure 5).
实施例2.聚(甲基丙烯酸聚乙二醇酯)表面(小分子阵列)Example 2. Poly(polyethylene glycol methacrylate) surfaces (small molecule arrays)
(1)在玻璃基底上用热蒸镀的方法制备一层3nm厚度的铬层和一层47nm厚度的金层,作为生物芯片的基底。(1) Prepare a layer of chromium layer with a thickness of 3nm and a layer of gold with a thickness of 47nm on the glass substrate by thermal evaporation method, as the substrate of the biochip.
(2)制备羟基末端和羧基末端的硫醇的乙醇溶液(HS-(CH2)11-EG6-OH和HS-(CH2)11-EG6-COOH),浓度均为1mM,将以上两种硫醇溶液按照999:1(v/v)混合,备用。(2) Prepare ethanol solutions of hydroxyl-terminated and carboxyl-terminated thiols (HS-(CH 2 ) 11 -EG6-OH and HS-(CH 2 ) 11 -EG6-COOH), both at a concentration of 1 mM, and the above two The mercaptan solution was mixed according to 999:1 (v/v) and set aside.
(3)将生物芯片用乙醇或去离子水清洗干净,然后将生物芯片放入等离子体清洗仪中清洗3分钟。(3) Clean the biochip with ethanol or deionized water, and then put the biochip into a plasma cleaner for cleaning for 3 minutes.
(4)将生物芯片浸泡在混合好的硫醇溶液中,在4℃下孵育12小时,达到预定时间后,将生物芯片取出,乙醇和去离子水交替清洗,氮气吹干。(4) Soak the biochip in the mixed thiol solution and incubate at 4°C for 12 hours. After the predetermined time, the biochip is taken out, washed with ethanol and deionized water alternately, and dried with nitrogen.
(5)将生物芯片表面羧基进行活化,再浸入1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)的水溶液中(0.4M和0.1M),室温孵育30分钟,达到预定时间,用水清洗,氮气吹干备用。(5) Activate the carboxyl groups on the surface of the biochip, and then immerse in an aqueous solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) (0.4M and 0.1M), incubate at room temperature for 30 minutes until the predetermined time is reached, wash with water, and dry with nitrogen gas for later use.
(6)将生物芯片浸入10mM氨基末端光交联剂的N,N-二甲基甲酰胺(DMF)溶液中,室温避光反应4小时,达到预定时间后,将生物芯片依次用DMF、乙醇和去离子水进行清洗,氮气吹干备用。(6) Immerse the biochip in N,N-dimethylformamide (DMF) solution of 10mM amino-terminal photocrosslinking agent, and react in the dark at room temperature for 4 hours. Wash with deionized water and blow dry with nitrogen gas.
(7)利用原子自由基转移聚合(ATRP)方法合成聚(甲基丙烯酸聚乙二醇酯)高分子聚合物的甲醇/水溶液。将氯化铜(CuCl2)溶液与其配体二联吡啶(Bpy)混合,搅拌15min。首先将单体OEGMA和单体HEMA以1:1(摩尔比)加入甲醇和水(1:1,体积比)的混合溶液,超声15min,持续通入氮气30min。再加入0.04M新配置的抗坏血酸水溶液,搅拌10min混均,然后加入1mM的双硫醇引发剂的乙醇溶液,其中引发剂与单体的摩尔比为1:25000,持续通入氮气,反应16小时。(7) A methanol/water solution of poly(polyethylene glycol methacrylate) high molecular polymer was synthesized by atom radical transfer polymerization (ATRP). Mix the copper chloride (CuCl 2 ) solution with its ligand bipyridine (Bpy) and stir for 15 min. First, monomer OEGMA and monomer HEMA were added into a mixed solution of methanol and water (1:1, volume ratio) at a ratio of 1:1 (molar ratio), ultrasonicated for 15 minutes, and nitrogen gas was continuously introduced for 30 minutes. Then add 0.04M newly configured ascorbic acid aqueous solution, stir for 10min and mix well, then add 1mM ethanol solution of dithiol initiator, wherein the molar ratio of initiator to monomer is 1:25000, continue to feed nitrogen, and react for 16 hours .
(8)将步骤7得到的ATRP高分子原液旋蒸(35℃),除去甲醇,剩余液体用二氯甲烷溶剂萃取,离心。取出下层二氯甲烷溶液部分,旋干。(8) The ATRP polymer stock solution obtained in step 7 was rotary-evaporated (35° C.) to remove methanol, and the remaining liquid was extracted with dichloromethane solvent and centrifuged. The lower dichloromethane solution part was taken out and spin-dried.
(9)用乙醇溶解步骤(8)中纯化的高分子,得到2μM的聚(甲基丙烯酸聚乙二醇酯)高分子聚合物的乙醇溶液,备用。(9) Dissolving the polymer purified in step (8) with ethanol to obtain a 2 μM ethanol solution of poly(polyethylene glycol methacrylate) polymer, which is set aside.
(10)将配置好的高分子溶液铺满于生物芯片表面,以8000rpm的转速,旋涂1分钟,旋涂后,将生物芯片在室温下避光静置1小时晾干,达到预定时间后,乙醇和水交替清洗,氮气吹干。(10) Spread the configured polymer solution on the surface of the biochip, and spin-coat it at a speed of 8000rpm for 1 minute. After spin-coating, place the biochip at room temperature in the dark for 1 hour to dry. After reaching the predetermined time , washed with ethanol and water alternately, and blown dry with nitrogen.
(11)将生物芯片放入紫外光交联仪中,氮气环境下,用365nm紫外光照射15分钟(2.4J/cm2)。(11) Put the biochip into an ultraviolet light cross-linking apparatus, and irradiate with 365nm ultraviolet light (2.4J/cm 2 ) for 15 minutes under nitrogen atmosphere.
(12)达到预定时间后,将生物芯片用乙醇和水超声清洗,氮气吹干备用芯。(12) After the predetermined time is reached, the biochip is ultrasonically cleaned with ethanol and water, and the spare core is blown dry with nitrogen gas.
(13)将生物芯片浸入丁二酸酐(10mg/mL)和4-二甲氨基吡啶(15mg/mL)的DMF溶液中,室温反应12小时,达到预定反应时间后,将生物芯片取出,依次用DMF、乙醇和去离子水清洗,氮气吹干。(13) Immerse the biochip in the DMF solution of succinic anhydride (10mg/mL) and 4-dimethylaminopyridine (15mg/mL), react at room temperature for 12 hours, after reaching the predetermined reaction time, take out the biochip, and use Wash with DMF, ethanol and deionized water, and blow dry with nitrogen.
(14)用1mM的EG3的乙醇溶液铺在生物芯片表面,封闭30min,然后乙醇和水交替清洗,氮气吹干。至此,光交联方法制备的聚(甲基丙烯酸聚乙二醇酯)表面芯片已经完成,再次利用光交联方法固定小分子并利用SPRi对其相关蛋白进行检测,如下:(14) Cover the surface of the biochip with 1 mM ethanol solution of EG3, seal for 30 min, then wash with ethanol and water alternately, and blow dry with nitrogen. So far, the poly(polyethylene glycol methacrylate) surface chip prepared by the photocrosslinking method has been completed, and the small molecules are immobilized by the photocrosslinking method and the related proteins are detected by SPRi, as follows:
(15)将生物芯片表面进行再次活化,浸入1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)的水溶液中(0.4M和0.1M),室温孵育30分钟,达到预定时间,用水清洗,氮气吹干备用。(15) The surface of the biochip is reactivated and immersed in an aqueous solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) ( 0.4M and 0.1M), incubate at room temperature for 30 minutes until the predetermined time is reached, wash with water, and dry with nitrogen gas for later use.
(16)将生物芯片再次浸入10mM光交联剂的N,N-二甲基甲酰胺(DMF)溶液中,室温避光反应4小时,达到预定时间后,将生物芯片依次用DMF、乙醇和去离子水进行清洗,氮气吹干备用。(16) Immerse the biochip again in the N,N-dimethylformamide (DMF) solution of 10mM photocrosslinking agent, and react in the dark at room temperature for 4 hours. Wash with deionized water and dry with nitrogen gas.
(17)配制100nM雷帕霉素(Rapamycin)小分子溶液以及100ug/mLFKBP12蛋白的PBST缓冲液(其中吐温0.05%),备用。(17) Prepare 100 nM rapamycin small molecule solution and 100 ug/mL FKBP12 protein PBST buffer solution (Tween 0.05%) for later use.
(18)将小分子溶液通过点样仪点样于步骤(16)中制备好的表面,真空干燥。(18) Spot the small molecule solution on the surface prepared in step (16) through a spotting instrument, and dry it in vacuum.
(19)将芯片再次放入紫外光交联仪中,氮气环境下,用365nm紫外光照射15分钟(2.4J/cm2),进行光交联。(19) Put the chip into the ultraviolet light cross-linking apparatus again, and irradiate with 365nm ultraviolet light (2.4J/cm 2 ) for 15 minutes under nitrogen environment to carry out photo-crosslinking.
(20)调整SPRi光学位置,将FKBP12蛋白溶液以3uL/s的速度流通到芯片表面,持续结合300s,解离300s,甘氨酸-盐酸重生。(20) Adjust the optical position of SPRi, flow the FKBP12 protein solution to the chip surface at a speed of 3uL/s, continue to bind for 300s, dissociate for 300s, and regenerate with glycine-hydrochloric acid.
实验结果证明,用该方法制备的生物芯片有很高的小分子固定量,足以检测到小分子与其相关蛋白结合的相互作用(如图6所示)。Experimental results prove that the biochip prepared by this method has a high amount of immobilized small molecules, which is sufficient to detect the interaction between small molecules and their associated proteins (as shown in Figure 6).
实施例3.葡聚糖表面(抗原抗体荧光检测)Embodiment 3. Dextran surface (antigen antibody fluorescent detection)
(1)玻璃基底用乙醇或去离子水清洗干净,将生物芯片放入等离子体清洗仪中清洗3分钟,作为生物芯片的基底。(1) The glass substrate is cleaned with ethanol or deionized water, and the biochip is cleaned in a plasma cleaner for 3 minutes to be used as the substrate of the biochip.
(2)准备1:50丙酮稀释的3-氨丙基三乙氧基硅烷(APES)中,20-30s后取出,再用纯丙酮溶液去除未结的APES,使APES与玻璃结合,在玻璃表面形成一层单分子层。(2) Prepare 3-aminopropyltriethoxysilane (APES) diluted with acetone at 1:50, take it out after 20-30s, and then use pure acetone solution to remove unbound APES, so that APES can be combined with glass, A monolayer is formed on the surface.
(3)在25%的戊二醛中浸泡30分钟,用丙酮清洗,浸入1mM的一端为氨基一端为羟基的PEG的水溶液中,室温下孵育1h,达到预定时间后,将生物芯片取出,用去离子水清洗,氮气吹干。(3) Soak in 25% glutaraldehyde for 30 minutes, wash with acetone, immerse in 1 mM aqueous solution of PEG with one end being an amino group and one end being a hydroxyl group, and incubate at room temperature for 1 h. After the predetermined time is reached, the biochip is taken out and used Rinse with deionized water and dry with nitrogen gas.
(4)配制酯化连接光交联剂所需溶液20mL,羧基末端光交联剂10mM,1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)10mM,4-二甲氨基吡啶(DMAP)1mM,溶剂为N,N-二甲基甲酰胺(DMF)。(4) Prepare 20 mL of the solution required for esterification and linking photocrosslinking agent, 10 mM carboxy-terminal photocrosslinking agent, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) 10 mM, 4 - Dimethylaminopyridine (DMAP) 1 mM, solvent N,N-dimethylformamide (DMF).
(5)将生物芯片浸入配制好的酯化溶液中,室温避光反应4小时,达到预定时间后,将生物芯片依次用DMF、乙醇和去离子水进行清洗,氮气吹干备用。(5) The biochip was immersed in the prepared esterification solution, and reacted at room temperature in the dark for 4 hours. After the predetermined time was reached, the biochip was washed with DMF, ethanol and deionized water in sequence, and dried with nitrogen gas for later use.
(6)将分子量为2000KDa的葡聚糖配制成质量浓度40%的水溶液,搅拌均匀,除去气泡至无色透明的均一溶液。(6) Dextran with a molecular weight of 2000KDa was formulated into an aqueous solution with a mass concentration of 40%, stirred evenly, and air bubbles were removed to obtain a colorless and transparent homogeneous solution.
(7)将配制好的葡聚糖溶液铺满于生物芯片表面,以8000rpm的转速,旋涂1分钟,旋涂后,将芯片在室温下避光静置1小时晾干。(7) Spread the prepared dextran solution on the surface of the biochip, spin-coat at a speed of 8000 rpm for 1 minute, and after spin-coating, place the chip at room temperature in the dark for 1 hour to dry.
(8)将生物芯片放入紫外光交联仪中,氮气环境下,用365nm紫外光照射15分钟(2.4J/cm2)。(8) Put the biochip into an ultraviolet light cross-linking apparatus, and irradiate with 365nm ultraviolet light (2.4J/cm 2 ) for 15 minutes under a nitrogen environment.
(9)达到预定时间后,将生物芯片用50℃的热水反复摇洗1小时,去除表面未共价固定的葡聚糖分子,期间换水3-5次,生物芯片清洗后氮气吹干备用。(9) After the predetermined time is reached, shake the biochip repeatedly with hot water at 50°C for 1 hour to remove uncovalently immobilized dextran molecules on the surface, change the water 3-5 times during this period, and blow dry the biochip with nitrogen after cleaning spare.
(10)将生物芯片浸入丁二酸酐(10mg/mL)和4-二甲氨基吡啶(15mg/mL)的DMF溶液中,室温(25℃)反应16小时,达到预定反应时间后,将生物芯片取出,依次用DMF、乙醇、去离子水清洗,氮气吹干,备用。(10) Immerse the biochip in the DMF solution of succinic anhydride (10mg/mL) and 4-dimethylaminopyridine (15mg/mL), and react at room temperature (25°C) for 16 hours. After the predetermined reaction time is reached, the biochip Take it out, wash it successively with DMF, ethanol, and deionized water, blow dry with nitrogen, and set aside.
(11)用移液枪取3μl的1mg/ml的人IgG(溶剂为pH值4.5的乙酸钠溶液)滴在步骤(10)中得到的表上,并辅以1mg/ml的BSA为阴性对照,室温孵育1小时,用含有0.0005g/ml的Tween-20的磷酸缓冲液清洗表面两次(每次5分钟),并用去离子水清洗后,氮气吹干。(11) Use a pipette gun to take 3 μl of 1 mg/ml human IgG (the solvent is a sodium acetate solution with a pH value of 4.5) and drop it on the table obtained in step (10), supplemented with 1 mg/ml of BSA as a negative control , incubated at room temperature for 1 hour, washed the surface twice (5 minutes each time) with phosphate buffer solution containing 0.0005 g/ml Tween-20, washed with deionized water, and dried with nitrogen gas.
(12)用0.05g/ml的脱脂牛奶溶液(Skim milk)(称取5g脱脂奶粉溶于100ml的0.1M的磷酸缓冲液制备而成)对表面进行室温封闭1小时后,用含有0.0005g/ml的Tween-20的磷酸缓冲液清洗表面两次(每次5分钟),去离子水清洗,氮气吹干。(12) Use 0.05g/ml skim milk solution (Skim milk) (prepared by weighing 5g skim milk powder and dissolving 100ml of 0.1M phosphate buffer) to seal the surface at room temperature for 1 hour, then use 0.0005g/ml Wash the surface twice (5 minutes each time) with phosphate buffer solution of Tween-20 in ml, wash with deionized water, and blow dry with nitrogen gas.
(13)将异硫氰酸荧光素(Fluorescein isothiocyanate,FITC)标记的山羊抗人IgG以1:50的稀释倍数稀释在0.005mg/ml的脱脂牛奶水溶液中,并将经过步骤12处理后的芯片浸泡在该脱脂牛奶中,室温放置1小时,进行抗原抗体反应,用0.0005g/ml的Tween-20的磷酸缓冲液清洗表面两次(每次5分钟),并用去离子水清洗后,氮气吹干。(13) Dilute goat anti-human IgG labeled with fluorescein isothiocyanate (FITC) in 0.005 mg/ml skim milk aqueous solution at a dilution factor of 1:50, and place the chip after processing in step 12 Immerse in this skimmed milk, place at room temperature for 1 hour, carry out antigen-antibody reaction, wash the surface twice (5 minutes each time) with the phosphate buffer solution of 0.0005g/ml Tween-20, and after cleaning with deionized water, blow with nitrogen Dry.
(14)将经过步骤13处理后的芯片,通过使用Leica M-6000荧光显微镜在480nm卤素光灯下以300ms曝光时间,光强为5的条件下以20倍物镜进行荧光成像。(14) Perform fluorescence imaging on the chips processed in step 13 with a Leica M-6000 fluorescence microscope under a 480 nm halogen light lamp with an exposure time of 300 ms and a light intensity of 5 with a 20-fold objective lens.
实施例4.聚(甲基丙烯酸聚乙二醇酯)表面(SPRi糖蛋白阵列检测血清)Example 4. Poly(polyethylene glycol methacrylate) surface (serum detected by SPRi glycoprotein array)
(1)在玻璃基底上用热蒸镀的方法制备一层3nm厚度的铬层和一层47nm厚度的金层,作为生物芯片的基底。(1) Prepare a layer of chromium layer with a thickness of 3nm and a layer of gold with a thickness of 47nm on the glass substrate by thermal evaporation method, as the substrate of the biochip.
(2)制备羟基末端和羧基末端的硫醇的乙醇溶液(HS-(CH2)11-EG6-OH和HS-(CH2)11-EG6-COOH),浓度均为1mM,将以上两种硫醇溶液按照999:1(v/v)混合,备用。(2) Prepare ethanol solutions of hydroxyl-terminated and carboxyl-terminated thiols (HS-(CH 2 ) 11 -EG6-OH and HS-(CH 2 ) 11 -EG6-COOH), both at a concentration of 1 mM, and the above two The mercaptan solution was mixed according to 999:1 (v/v) and set aside.
(3)将生物芯片用乙醇或去离子水清洗干净,然后将生物芯片放入等离子体清洗仪中清洗3分钟。(3) Clean the biochip with ethanol or deionized water, and then put the biochip into a plasma cleaner for cleaning for 3 minutes.
(4)将生物芯片浸泡在混合好的硫醇溶液中,在4℃下孵育12小时,达到预定时间后,将生物芯片取出,乙醇和去离子水交替清洗,氮气吹干。(4) Soak the biochip in the mixed thiol solution and incubate at 4°C for 12 hours. After the predetermined time, the biochip is taken out, washed with ethanol and deionized water alternately, and dried with nitrogen.
(5)将生物芯片表面羧基进行活化,将芯片浸入1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)的水溶液中(0.4M和0.1M),室温孵育30分钟,达到预定时间,用水清洗,氮气吹干备用。(5) Activate the carboxyl groups on the surface of the biochip, and immerse the chip in an aqueous solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) Medium (0.4M and 0.1M), incubate at room temperature for 30 minutes until the predetermined time is reached, wash with water, and dry with nitrogen gas for later use.
(6)将生物芯片浸入10mM光交联剂的N,N-二甲基甲酰胺(DMF)溶液中,室温避光反应4小时,达到预定时间后,将生物芯片依次用DMF、乙醇和去离子水进行清洗,氮气吹干备用。(6) Immerse the biochip in N, N-dimethylformamide (DMF) solution of 10 mM photocrosslinking agent, and react in the dark at room temperature for 4 hours. Deionized water was used for cleaning, and nitrogen gas was blown dry for later use.
(7)利用原子自由基转移聚合(ATRP)方法合成聚(甲基丙烯酸聚乙二醇酯)高分子聚合物的甲醇/水溶液。将氯化铜(CuCl2)溶液与其配体二联吡啶混合,搅拌15min。首先将单体OEGMA和单体HEMA以1:1(摩尔比)加入甲醇和水(1:1,体积比)的混合溶液,超声15min,持续通入氮气30min。再加入0.04M新配置的抗坏血酸水溶液,搅拌10min混均。然后加入1mM的双硫醇引发剂的乙醇溶液,其中引发剂与单体的摩尔比为1:25000,持续通入氮气,反应16小时。(7) A methanol/water solution of poly(polyethylene glycol methacrylate) high molecular polymer was synthesized by atom radical transfer polymerization (ATRP). Mix copper chloride (CuCl 2 ) solution with its ligand bipyridine, and stir for 15 min. First, monomer OEGMA and monomer HEMA were added into a mixed solution of methanol and water (1:1, volume ratio) at a ratio of 1:1 (molar ratio), ultrasonicated for 15 minutes, and nitrogen gas was continuously introduced for 30 minutes. Then add 0.04M freshly prepared aqueous solution of ascorbic acid, and stir for 10 minutes to mix well. Then add 1 mM ethanol solution of dithiol initiator, wherein the molar ratio of initiator to monomer is 1:25000, continuously feed nitrogen, and react for 16 hours.
(8)将步骤(7)得到的ATRP高分子原液旋蒸(35度),除去甲醇,剩余液体用二氯甲烷溶剂萃取,离心,取出下层二氯甲烷溶液部分,旋干。(8) The ATRP polymer stock solution obtained in step (7) was rotary evaporated (35 degrees), methanol was removed, and the remaining liquid was extracted with dichloromethane solvent, centrifuged, and the lower layer of dichloromethane solution was taken out, and spin-dried.
(9)用乙醇溶解步骤(8)中纯化的高分子,得到纯化的聚(甲基丙烯酸聚乙二醇酯)高分子聚合物的乙醇溶液,备用。(9) Dissolving the purified macromolecule in step (8) with ethanol to obtain an ethanol solution of the purified poly(polyethylene glycol methacrylate) macromolecular polymer, which is set aside.
(10)将配置好的高分子溶液铺满于生物芯片表面,以8000rpm的转速,旋涂1分钟,旋涂后,将生物芯片在室温下避光静置1小时晾干。(10) Spread the prepared polymer solution on the surface of the biochip, spin-coat at a speed of 8000 rpm for 1 minute, and after spin-coating, place the biochip at room temperature in the dark for 1 hour to dry.
(11)将生物芯片放入紫外光交联仪中,氮气环境中,用365nm紫外光照射15分钟(2.4J/cm2)。(11) Put the biochip into an ultraviolet light cross-linking apparatus, and irradiate with 365nm ultraviolet light (2.4J/cm 2 ) for 15 minutes in a nitrogen environment.
(12)达到预定时间后,将生物芯片用乙醇和水超声清洗,氮气吹干备用。(12) After the predetermined time is reached, the biochip is ultrasonically cleaned with ethanol and water, and dried with nitrogen gas for later use.
(13)将生物芯片浸入丁二酸酐(10mg/mL)和4-二甲氨基吡啶(15mg/mL)的DMF溶液中,室温反应16小时,达到预定反应时间后,将生物芯片取出,依次用DMF、乙醇、去离子水清洗,氮气吹干。至此,光交联方法制备的聚(甲基丙烯酸聚乙二醇酯)表面芯片已经完成,利用点样仪进行凝集素(lectin)的固定以及利用SPRi对1型糖尿病(T1)、2型糖尿病(T2)以及1.5型糖尿病(LADA)人血清的相关检测,并用正常人血清作为对照(C)。(13) Immerse the biochip in the DMF solution of succinic anhydride (10mg/mL) and 4-dimethylaminopyridine (15mg/mL), react at room temperature for 16 hours, after reaching the predetermined reaction time, take out the biochip, and use Wash with DMF, ethanol, and deionized water, and blow dry with nitrogen. So far, the poly(polyethylene glycol methacrylate) surface chip prepared by the photocrosslinking method has been completed, and the immobilization of lectin (lectin) by the spotting instrument and the detection of type 1 diabetes (T1) and type 2 diabetes by SPRi have been completed. (T2) and related detection of type 1.5 diabetes mellitus (LADA) human serum, and normal human serum was used as control (C).
(14)将生物芯片表面进行活化,浸入1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)的水溶液中(0.4M和0.1M),室温孵育30分钟,达到预定时间,用水清洗,氮气吹干备用。(14) The surface of the biochip is activated and immersed in an aqueous solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) (0.4 M and 0.1M), incubate at room temperature for 30 minutes until the predetermined time, wash with water, and dry with nitrogen gas for later use.
(15)利用点样仪将49种不同lectin点样于制备好的芯片表面,真空干燥,待用。(15) Spotting 49 different lectins on the surface of the prepared chip with a spotting instrument, dried in vacuum, and set aside.
(16)将步骤(15)中的芯片用2%的脱脂牛奶(PBS溶液)进行封闭,4度条件下过夜,依次用10*PBST,1*PBST,0.1*PBST以及水清洗10min,氮气吹干,待用。(16) Block the chip in step (15) with 2% skimmed milk (PBS solution), overnight at 4°C, wash with 10*PBST, 1*PBST, 0.1*PBST and water for 10 minutes, blow with nitrogen Dry and set aside.
(17)用HEPES缓冲液将4种不同血清样品以1:4000进行稀释,备用。(17) Dilute 4 different serum samples at 1:4000 with HEPES buffer, and set aside.
(18)调整SPRi光学位置,先以4ul/s的流速通入HEPES缓冲液10min,再用1:200盐酸(加入0.05%吐温)重生表面3次,并将血清样品溶液以3uL/s的速度随机顺序流通到芯片表面,持续结合300s,解离300s,1:200盐酸(加入0.05%吐温)重生。(18) Adjust the optical position of the SPRi, first pass through the HEPES buffer at a flow rate of 4ul/s for 10min, then use 1:200 hydrochloric acid (adding 0.05% Tween) to regenerate the surface 3 times, and the serum sample solution was injected at a flow rate of 3uL/s Flow to the surface of the chip in random order, continue to bind for 300s, dissociate for 300s, and regenerate with 1:200 hydrochloric acid (adding 0.05% Tween).
实验结果证明,用该方法制备的芯片有很高的lectin固定量,并可以很好的检测到不同种类糖尿病血清(如图7和图8)。Experimental results prove that the chip prepared by this method has a high amount of lectin immobilization, and can detect different types of diabetic serum well (as shown in Fig. 7 and Fig. 8).
实施例5.聚丙烯酸表面(PAA)制备蛋白质微阵列Embodiment 5. Polyacrylic acid surface (PAA) prepares protein microarray
(1)在玻璃基底上用热蒸镀的方法制备一层3nm厚度的铬层和一层47nm厚度的金层,作为生物芯片的基底。(1) Prepare a layer of chromium layer with a thickness of 3nm and a layer of gold with a thickness of 47nm on the glass substrate by thermal evaporation method, as the substrate of the biochip.
(2)制备羟基末端和羧基末端的硫醇的乙醇溶液(HS-(CH2)11-EG6-OH和HS-(CH2)11-EG6-COOH),浓度均为1mM。将两种硫醇溶液(EG6-OH:EG6-COOH)按照999:1混合,备用。(2) Ethanol solutions (HS-(CH 2 ) 11 -EG6-OH and HS-(CH 2 ) 11 -EG6-COOH) of hydroxyl-terminated and carboxyl-terminated thiols were prepared, both at a concentration of 1 mM. Mix the two mercaptan solutions (EG6-OH:EG6-COOH) according to 999:1 and set aside.
(3)将生物芯片用乙醇或去离子水清洗干净,然后将生物芯片放入等离子体清洗仪中清洗3分钟。(3) Clean the biochip with ethanol or deionized water, and then put the biochip into a plasma cleaner for cleaning for 3 minutes.
(4)将生物芯片浸泡在混合好的硫醇溶液中,在4℃下孵育12小时,达到预定时间后,将生物芯片取出,乙醇和去离子水交替清洗,氮气吹干。(4) Soak the biochip in the mixed thiol solution and incubate at 4°C for 12 hours. After the predetermined time, the biochip is taken out, washed with ethanol and deionized water alternately, and dried with nitrogen.
(5)将生物芯片表面羧基进行活化,将生物芯片浸入1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)的水溶液中(0.4M和0.1M),室温孵育30分钟,达到预定时间,用水清洗,氮气吹干备用。(5) The carboxyl group on the surface of the biochip is activated, and the biochip is immersed in 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) In an aqueous solution (0.4M and 0.1M), incubate at room temperature for 30 minutes until the predetermined time is reached, wash with water, and dry with nitrogen gas for later use.
(6)将生物芯片浸入10mM羧基末端光交联剂的N,N-二甲基甲酰胺(DMF)溶液中,室温避光反应4小时,达到预定时间后,将生物芯片依次用DMF、乙醇和去离子水进行清洗,氮气吹干备用。(6) Immerse the biochip in the N, N-dimethylformamide (DMF) solution of 10mM carboxyl-terminal photocrosslinking agent, and react in the dark at room temperature for 4 hours. Wash with deionized water and blow dry with nitrogen gas.
(7)将分子量为140000的聚丙烯酸高分子(PAA)配制成体积浓度1%的水溶液,搅拌均匀,除去气泡至无色透明的均一溶液。(7) Polyacrylic acid polymer (PAA) with a molecular weight of 140,000 was formulated into an aqueous solution with a volume concentration of 1%, stirred evenly, and air bubbles were removed to obtain a colorless and transparent homogeneous solution.
(8)将配置好的PAA溶液铺满于生物芯片表面,以8000rpm的转速,旋涂1分钟,旋涂后,将生物芯片在室温下避光静置1小时晾干。(8) The prepared PAA solution was spread on the surface of the biochip, and spin-coated at a speed of 8000 rpm for 1 minute. After spin-coating, the biochip was left at room temperature in the dark for 1 hour to dry.
(9)将生物芯片放入紫外光交联仪中,氮气环境下,用365nm紫外光照射15分钟(2.4J/cm2)。(9) Put the biochip into an ultraviolet light cross-linking apparatus, and irradiate with 365nm ultraviolet light (2.4J/cm 2 ) for 15 minutes under a nitrogen environment.
(10)达到预定时间后,将生物芯片用水清洗,氮气吹干备用。(10) After the predetermined time is reached, the biochip is washed with water and dried with nitrogen gas for later use.
(11)将生物芯片表面进行活化,浸入1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)的水溶液中(0.4M和0.1M),室温孵育30分钟。达到预定时间,用水清洗,氮气吹干备用。至此,光交联方法制备的聚丙烯酸表面芯片已经完成,利用SPRi进行抗原的固定以及抗体的检测。(11) The surface of the biochip is activated and immersed in an aqueous solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) (0.4 M and 0.1M), incubate at room temperature for 30 minutes. When the predetermined time is reached, wash it with water and dry it with nitrogen gas for later use. So far, the polyacrylic acid surface chip prepared by the photocrosslinking method has been completed, and SPRi is used for antigen immobilization and antibody detection.
(12)配置1mg/ml的H-IgG的PBS溶液以及100ug/ml的Goat-anti-H-IgG的PBS溶液,备用。(12) Prepare 1mg/ml H-IgG PBS solution and 100ug/ml Goat-anti-H-IgG PBS solution for later use.
(13)将配好的H-IgG溶液点洋于步骤(11)中制备好的芯片表面,干燥,待用。(13) Spot the prepared H-IgG solution on the surface of the chip prepared in step (11), dry it, and set it aside.
(14)将生物芯片用1mg/ml的BSA溶液室温下封闭10min,PBS溶液和水清洗,氮气吹干,备用。(14) The biochip was blocked with 1 mg/ml BSA solution at room temperature for 10 min, washed with PBS solution and water, dried with nitrogen gas, and set aside.
(15)调整SPRi光学位置,将Goat-anti-H-IgG的PBS溶液以3uL/s的速度流通到芯片表面,持续结合300s,解离300s,NaOH溶液重生。(15) Adjust the optical position of SPRi, flow the PBS solution of Goat-anti-H-IgG to the surface of the chip at a speed of 3uL/s, continue to bind for 300s, dissociate for 300s, and regenerate with NaOH solution.
实验结果证明,用该方法制备的生物芯片有很高的抗原固定量,可以很好的检测到抗原与其抗体的相互作用。Experimental results prove that the biochip prepared by this method has a high immobilized amount of antigen, and can detect the interaction between antigen and its antibody well.
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the detailed methods of the present invention through the above-mentioned examples, but the present invention is not limited to the above-mentioned detailed methods, that is, it does not mean that the present invention must rely on the above-mentioned detailed methods to be implemented. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510045459.8A CN104597230B (en) | 2015-01-29 | 2015-01-29 | A kind of functional polymer film, preparation method and applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510045459.8A CN104597230B (en) | 2015-01-29 | 2015-01-29 | A kind of functional polymer film, preparation method and applications |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104597230A CN104597230A (en) | 2015-05-06 |
CN104597230B true CN104597230B (en) | 2017-04-05 |
Family
ID=53123149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510045459.8A Expired - Fee Related CN104597230B (en) | 2015-01-29 | 2015-01-29 | A kind of functional polymer film, preparation method and applications |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104597230B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104897617A (en) * | 2015-05-19 | 2015-09-09 | 国家纳米科学中心 | Micro-array biochip, and preparation method and application of micro-array biochip |
US10962534B2 (en) | 2016-02-22 | 2021-03-30 | Boehringer Ingelheim Vetmedica Gmbh | Method for the immobilization of biomolecules |
CN106383224A (en) * | 2016-08-31 | 2017-02-08 | 中国科学院长春应用化学研究所 | Biological detection element and preparation method thereof |
CN106990079B (en) * | 2017-03-20 | 2019-06-25 | 中国科学院化学研究所 | A kind of surface multifunctional coating and the preparation method and application thereof |
CN106896087B (en) * | 2017-03-31 | 2019-04-23 | 丁利 | The preparation method of surface plasma resonance instrument chip based on hyperbranched amphoteric ion polymethyl base cysteine modified |
CN109900814B (en) * | 2017-12-08 | 2021-06-08 | 中国科学院大连化学物理研究所 | Analysis method and application of fragmentable chemical cross-linking agent based on glycosidic bond mass spectrometry |
CN110282997A (en) * | 2019-07-10 | 2019-09-27 | 浙江理工大学 | A kind of polystyrene laminated film and its preparation method and application |
CN111497366B (en) * | 2020-04-07 | 2021-06-15 | 上海交通大学 | Interface-controllable non-layered multi-level graphene conformal folds and preparation method thereof |
CN112982012B (en) * | 2021-02-09 | 2022-05-10 | 杭州梓晶生物有限公司 | Polyacrylamide derivative modified filter paper and application thereof in nucleic acid separation and enrichment |
CN115677922B (en) * | 2022-09-28 | 2024-01-26 | 深圳市曙芯生物科技有限公司 | Dual-functional polymer and modification method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2760234B2 (en) * | 1992-09-30 | 1998-05-28 | 松下電器産業株式会社 | Substrate concentration measurement method |
CN101078730A (en) * | 2006-05-22 | 2007-11-28 | 杜宏武 | Enzyme labeled chip method capable of in situ detecting multiple ordinary small molecule drugs |
JP5679253B2 (en) * | 2009-05-26 | 2015-03-04 | 国立大学法人東京工業大学 | Self-supporting polymer thin film |
CN102242053B (en) * | 2011-04-01 | 2014-06-04 | 沈越 | Biochip with polymer three-dimensional nanostructure |
JP5920734B2 (en) * | 2011-06-13 | 2016-05-18 | 国立大学法人 新潟大学 | Transmitted light control device |
CN102901809B (en) * | 2012-09-27 | 2014-07-23 | 中国科学院半导体研究所 | Production method for microporous polymer film biochip |
CN103409809A (en) * | 2013-07-17 | 2013-11-27 | 国家纳米科学中心 | Small molecule drug screening chip, construction method and application thereof |
CN103792345B (en) * | 2014-02-18 | 2015-08-19 | 国家纳米科学中心 | A kind of small-molecular micro-array and preparation method thereof |
-
2015
- 2015-01-29 CN CN201510045459.8A patent/CN104597230B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104597230A (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104597230B (en) | A kind of functional polymer film, preparation method and applications | |
US8198390B2 (en) | Self assembled grafted polymeric layer for use in biosensor technology | |
Gedig | Surface chemistry in SPR technology | |
CN102539777B (en) | Supramolecular self-assembly biological chip, and preparation method and application thereof | |
JP4818056B2 (en) | Structure having a binding functional group on a substrate for binding a capture molecule for capturing a target substance | |
JP2008522164A (en) | Polymer coated substrate for binding biomolecules and methods for making and using the same | |
JP2010530955A5 (en) | ||
Ivanov et al. | Interferometric detection of chloramphenicol via its immunochemical recognition at polymer-coated nano-corrugated surfaces | |
JP5361221B2 (en) | Method for producing mixed SAM | |
Lin et al. | An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity | |
JP2005513503A (en) | Immobilization of binding substances | |
CN108704676B (en) | Non-specific adsorption resistant three-dimensional chip and application thereof | |
Shrestha et al. | Application of printable antibody ink for solid-phase immobilization of ABO antibody using photoactive hydrogel for surface plasmon resonance imaging | |
CN104931687B (en) | A kind of three dimensional biological surface and preparation method thereof and a kind of three-dimensional biochip and application thereof | |
JP4231888B2 (en) | Biosensor manufacturing method | |
JP5344438B2 (en) | Substrate for fixing substance, substrate for fixing substance, and analysis method | |
JP2006030155A (en) | Plate assay using spectroscopy | |
TWI716717B (en) | Composition for substrate surface modification and method using the same | |
CN112526120B (en) | Method for detecting salbutamol based on SPR technology | |
KR101195253B1 (en) | Preparation method of antigen-immobilized immuno- fluorescence slide and the immuno-fluoroscence slide made by the method | |
JP2007279028A (en) | Biological material structure having pores and method for producing the same, biological material carrier using the same, purification method of target substance, affinity chromatography container, separation chip, target substance analysis method, target substance analysis Separation device and sensor chip | |
JP2007057458A (en) | Biosensor | |
JP2004198260A (en) | Solid support and its use | |
JP2007101520A (en) | Biological substance complex, biological substance complex carrier, target substance purification method, affinity chromatography container, separation chip, target substance analysis method, target substance analysis separation apparatus and sensor chip | |
JP2006234472A (en) | Biosensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170405 |