CN104574416A - Low-dose energy spectrum CT image denoising method - Google Patents

Low-dose energy spectrum CT image denoising method Download PDF

Info

Publication number
CN104574416A
CN104574416A CN201510040324.2A CN201510040324A CN104574416A CN 104574416 A CN104574416 A CN 104574416A CN 201510040324 A CN201510040324 A CN 201510040324A CN 104574416 A CN104574416 A CN 104574416A
Authority
CN
China
Prior art keywords
energy
low
image
projection data
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510040324.2A
Other languages
Chinese (zh)
Other versions
CN104574416B (en
Inventor
马建华
曾栋
边兆英
黄静
陈武凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern Medical University
Original Assignee
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Medical University filed Critical Southern Medical University
Priority to CN201510040324.2A priority Critical patent/CN104574416B/en
Publication of CN104574416A publication Critical patent/CN104574416A/en
Application granted granted Critical
Publication of CN104574416B publication Critical patent/CN104574416B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种低剂量能谱CT图像去噪方法,包括:(1)获取成像对象在低剂量射线下的低能量CT投影数据和高能量CT投影数据,并分别对低能量CT投影数据和高能量CT投影数据进行CT图像重建,获得低能量CT图像 和高能量CT图像,其中H表示高能,L表示低能;(2)根据步骤(1)中的重建数据所满足的基物质分解模型,构建用于能谱CT图像去噪的数学模型;(3)利用广义全变分作为正则化先验,结合步骤(2)得到的数学模型构建用于图像去噪的目标函数;(4)对步骤(3)中构建的用于能谱CT图像去噪的目标函数采用分裂Bregman算法求解,完成能谱CT图像去噪。本发明利用能谱CT中高低能量图像满足的基物质分解模型,结合能谱CT图像信息和基物质图像信息,实现了能谱CT图像去噪。

A method for denoising a low-dose spectral CT image, comprising: (1) acquiring low-energy CT projection data and high-energy CT projection data of an imaging object under low-dose radiation, and respectively performing low-energy CT projection data and high-energy CT projection data Projection data for CT image reconstruction to obtain low-energy CT images and high-energy CT images , where H represents high energy, and L represents low energy; (2) According to the matrix decomposition model satisfied by the reconstructed data in step (1), construct a mathematical model for spectral CT image denoising; (3) use the generalized total variable As a regularization prior, combine the mathematical model obtained in step (2) to construct an objective function for image denoising; (4) use splitting The Bregman algorithm is solved to complete the denoising of the energy spectrum CT image. The invention realizes the denoising of the energy spectrum CT image by using the base material decomposition model satisfied by the high and low energy images in the energy spectrum CT and combining the energy spectrum CT image information and the base material image information.

Description

一种低剂量能谱 CT 图像去噪方法 A low-dose energy spectrum CT Image Denoising Methods

技术领域 technical field

本发明涉及一种医学影像的图像处理方法,特别涉及一种低剂量能谱CT图像去噪方法。 The invention relates to an image processing method of medical images, in particular to a low-dose energy spectrum CT image denoising method.

背景技术 Background technique

随着CT技术的飞速发展,基于能谱积分探测器的双能CT扫描技术和基于能量分辨探测器的光子计数探测技术使得能谱CT成像得到了实现。能谱CT是未来CT成像技术的发展方向之一,因为能谱CT不仅能够得到物质内部衰减系数的信息,也可以用过重建得到物质组成的信息。能谱CT可以从传统形态学诊断转到功能学诊断上,比如,它可以发现常规CT发现不了的病灶,可以实现肿瘤的超早期探查,并且可以做到肿瘤的定性诊断和定量分析。另外,能谱CT可以解决常规CT成像存在的诸多缺陷,如去除射束硬化与金属伪影等。 With the rapid development of CT technology, dual-energy CT scanning technology based on spectral integration detectors and photon counting detection technology based on energy-resolution detectors have enabled spectral CT imaging to be realized. Spectral CT is one of the development directions of CT imaging technology in the future, because spectral CT can not only obtain the information of the internal attenuation coefficient of the material, but also obtain the information of the material composition through reconstruction. Spectral CT can transfer from traditional morphological diagnosis to functional diagnosis. For example, it can find lesions that cannot be found by conventional CT, realize ultra-early detection of tumors, and perform qualitative diagnosis and quantitative analysis of tumors. In addition, spectral CT can solve many defects in conventional CT imaging, such as removing beam hardening and metal artifacts.

低剂量条件下的能谱CT成像才可能在临床上实现应用,所以需要寻找高效的低剂量成像方法。现有的实现低剂量能谱CT图像成像的方法主要有两类。其中在数据采集过程中尽可能的降低管电流(mA)和管电压(kV)是一种最简单的方法。管电流的降低会导致能谱投影数据中光子噪声强度大幅度增加且电子噪声的影响更为突出;改变管电压可影响X射线对人体组织的穿透性,从而影响各种组织的图像质量。另一个是使用统计重建方法,利用其物理模型准确、对噪声不敏感等优点,能在不规则采样和数据缺失情况下重建出图像,改善最终图像的噪声,提高重建图像的空间分辨率。由于能谱CT投影数据量庞大,这种方法存在计算量太大,重建时间非常长,难以满足临床中实时交互的要求。 Spectral CT imaging can only be applied clinically under low-dose conditions, so it is necessary to find an efficient low-dose imaging method. There are two main types of existing methods for realizing low-dose spectral CT imaging. Among them, it is the simplest method to reduce the tube current (mA) and tube voltage (kV) as much as possible during the data acquisition process. The reduction of tube current will lead to a substantial increase in the intensity of photon noise in the energy spectrum projection data and the influence of electronic noise will be more prominent; changing the tube voltage can affect the penetration of X-rays into human tissues, thereby affecting the image quality of various tissues. The other is to use the statistical reconstruction method. Taking advantage of its physical model accuracy and insensitivity to noise, it can reconstruct images in the case of irregular sampling and data loss, improve the noise of the final image, and improve the spatial resolution of the reconstructed image. Due to the large amount of spectral CT projection data, this method has a large amount of calculation and a very long reconstruction time, which is difficult to meet the requirements of real-time interaction in clinical practice.

因此,针对现有技术不足,提供一种低剂量能谱CT图像去噪方法,能够提高基物质的密度测量准确性,可以实现低剂量扫描协议下能谱CT图像的优质成像。 Therefore, in view of the deficiencies of the existing technologies, a low-dose spectral CT image denoising method is provided, which can improve the density measurement accuracy of the base material and can realize high-quality imaging of the spectral CT image under the low-dose scanning protocol.

发明内容 Contents of the invention

本发明的目的在于避免现有技术的不足之处而提供一种低剂量能谱CT图像去噪方法,可以提高基物质密度图像的图像质量,能够实现低剂量扫描协议下能谱CT图像的优质成像。 The purpose of the present invention is to avoid the deficiencies of the prior art and provide a low-dose energy spectrum CT image denoising method, which can improve the image quality of the matrix material density image, and can realize the high-quality energy spectrum CT image under the low-dose scanning protocol imaging.

本发明的上述目的通过如下技术手段实现。 The above object of the present invention is achieved through the following technical means.

提供一种低剂量能谱CT图像去噪方法,包括如下步骤, A method for denoising a low-dose spectral CT image is provided, comprising the following steps,

(1)获取成像对象在低剂量射线下的低能量CT投影数据和高能量CT投影数据,并分别对低能量CT投影数据和高能量CT投影数据进行CT图像重建,获得低能量CT图像 和高能量CT图像,其中H表示高能,L表示低能; (1) Obtain low-energy CT projection data and high-energy CT projection data of the imaging object under low-dose radiation, and perform CT image reconstruction on the low-energy CT projection data and high-energy CT projection data respectively to obtain low-energy CT images and high-energy CT images , where H represents high energy, L represents low energy;

(2)根据步骤(1)中的重建数据所满足的基物质分解模型,构建用于能谱CT图像去噪的数学模型; (2) Construct a mathematical model for spectral CT image denoising according to the matrix decomposition model satisfied by the reconstructed data in step (1);

(3)利用广义全变分作为正则化先验,结合步骤(2)得到的数学模型构建用于图像去噪的目标函数; (3) Using generalized total variation as a regularization prior, combined with the mathematical model obtained in step (2) to construct an objective function for image denoising;

(4)对步骤(3)中构建的用于能谱CT图像去噪的目标函数采用分裂Bregman算法求解,完成能谱CT图像去噪。 (4) The objective function for spectral CT image denoising constructed in step (3) is solved by using the split Bregman algorithm to complete the energy spectral CT image denoising.

优选的,上述步骤(2)中的基物质分解模型为: Preferably, the matrix decomposition model in the above step (2) is:

物质对X光子的质量吸收函数通过任何两个物质即基物质对的质量吸收函数来表示:,其中分别是两个物质的质量吸收函数,分别是所需要的基物质的密度,且的值与X光子的能量无关; The Mass Absorption Function of Matter to X-Photons Expressed by the mass absorption function of any two species, the base species pair: ,in and are the mass absorption functions of the two substances, are the densities of the required substrates, respectively, and The value of is independent of the energy of the X photon;

根据基物质分解模型,对于步骤(1)能谱CT的高能量CT投影数据和低能量CT投影数据,对应的物质的质量吸收函数的表达式为:According to the matrix material decomposition model, for the high-energy CT projection data and low-energy CT projection data of the spectral CT in step (1), the expression of the mass absorption function of the corresponding material is: ,

定义物质质量吸收函数矩阵,基物质质量吸收函数矩阵,基物质密度矩阵Define the substance mass absorption function matrix , the matrix mass absorption function matrix , the base mass density matrix ;

C通过逆矩阵计算直接得到,公式为,定义基物质质量吸收矩阵A的逆矩阵形式 C is directly obtained by calculating the inverse matrix, the formula is , define the inverse matrix form of the matrix mass absorption matrix A .

优选的,上述步骤(3)中具体采用使用二阶广义全变分作为先验,二阶广义全变分定义式为: Preferably, in the above step (3), the second-order generalized total variation is used as a priori, and the definition of the second-order generalized total variation is:

;

其中为非负加权系数;为广义全变分引入的辅助参数,并取表示对称梯度算子,其中表示梯度算子,表示矩阵转置运算; in is a non-negative weighting coefficient; Auxiliary parameters introduced for generalized total variation, and take Represents a symmetric gradient operator, where Represents the gradient operator, Indicates the matrix transpose operation;

所述步骤(3)中构建的用于图像去噪的目标函数具体为:,其中X表示去噪后得到的能谱CT图像,Y为测量得到的能谱CT图像数据,是正则化参数,用于刻画广义全变分正则化强度。 The objective function for image denoising constructed in the step (3) Specifically: , where X represents the spectral CT image obtained after denoising, Y is the measured spectral CT image data, and is a regularization parameter used to characterize the generalized full variational regularization strength.

优选的,上述步骤(4)中分裂Bregman算法的具体计算过程为: Preferably, the specific calculation process of the split Bregman algorithm in the above step (4) is:

引入公式A、公式B和公式C进行迭代求解, Introduce formula A, formula B and formula C for iterative solution,

,其中是一个引入的向量值,表示残差,n表示迭代步数; ,in is an incoming vector value, Represents the residual, n represents the number of iteration steps;

具体迭代过程按照如下步骤进行: The specific iterative process is carried out according to the following steps:

(4.1)令n=0, (4.1) Let n = 0,

(4.2)按照公式AB 通过原始对偶算法求解(4.2) According to the formulas A and B , solve by the primal dual algorithm ;

(4.3)将步骤(4.1)获得的代入公式C求解(4.3) will step (4.1) obtained Substitute into formula C to solve ;

(4.4)判断是否迭代终止 (4.4) Determine whether the iteration is terminated

判断n是否等于N,如果n等于N,则迭代终止,以当前结果作为去噪后的能谱CT图像; Judging whether n is equal to N, if n is equal to N, the iteration is terminated, and the current result is used as the energy spectrum CT image after denoising;

如果n小于N,则进入步骤(4.5); If n is less than N, go to step (4.5);

(4.5)令n=n+1,返回步骤(4.2)。 (4.5) Let n = n +1, return to step (4.2).

优选的,上述步骤(1)还设置有配准处理步骤,具体是: Preferably, the above step (1) is also provided with a registration processing step, specifically:

判断所得到的低能量CT投影数据和高能量CT投影数据是否存在位置偏移,当存在位置偏移时采用数据配准的方法将低能量CT投影数据和高能量CT投影数据进行配准处理。 It is judged whether the obtained low-energy CT projection data and high-energy CT projection data have a position offset, and if there is a position offset, the low-energy CT projection data and the high-energy CT projection data are registered by a data registration method.

本发明的低剂量能谱CT图像去噪方法,包括如下步骤,(1)获取成像对象在低剂量射线下的低能量CT投影数据和高能量CT投影数据,并分别对低能量CT投影数据和高能量CT投影数据进行CT图像重建,获得低能量CT图像和高能量CT图像,其中H表示高能,L表示低能;(2)根据步骤(1)中的重建数据所满足的基物质分解模型,构建用于能谱CT图像去噪的数学模型;(3)利用广义全变分作为正则化先验,结合步骤(2)得到的数学模型构建用于图像去噪的目标函数;(4)对步骤(3)中构建的用于能谱CT图像去噪的目标函数采用分裂Bregman算法求解,完成能谱CT图像去噪。本发明利用能谱CT中高低能量图像满足的基物质分解模型,结合能谱CT图像信息和基物质图像信息,实现了能谱CT图像去噪。本发明可以使用低剂量发射的同时,仍能保证产生高质量的能谱CT去噪图像,本发明方法具有很好的鲁棒性,在噪声消除和伪影抑制两方面均有良好的效果。 The low-dose spectral CT image denoising method of the present invention includes the following steps: (1) Acquiring low-energy CT projection data and high-energy CT projection data of the imaging object under low-dose radiation, and respectively performing low-energy CT projection data and high-energy CT projection data High-energy CT projection data for CT image reconstruction to obtain low-energy CT images and high-energy CT images , where H represents high energy, and L represents low energy; (2) According to the matrix decomposition model satisfied by the reconstructed data in step (1), construct a mathematical model for spectral CT image denoising; (3) use the generalized total variable As a regularization prior, combine the mathematical model obtained in step (2) to construct an objective function for image denoising; (4) use splitting The Bregman algorithm is solved to complete the denoising of the energy spectrum CT image. The invention realizes the denoising of the energy spectrum CT image by using the base material decomposition model satisfied by the high and low energy images in the energy spectrum CT and combining the energy spectrum CT image information and the base material image information. The present invention can use low-dose emission while still ensuring high-quality energy spectrum CT denoising images, the method of the present invention has good robustness, and has good effects in both noise elimination and artifact suppression.

附图说明 Description of drawings

利用附图对本发明作进一步的说明,但附图中的内容不构成对本发明的任何限制。 The present invention will be further described by using the accompanying drawings, but the content in the accompanying drawings does not constitute any limitation to the present invention.

图1是本发明低剂量能谱CT图像去噪方法的流程示意图。 Fig. 1 is a schematic flowchart of the method for denoising a low-dose spectral CT image of the present invention.

图2是理想体模不含伪影和噪声的图像示意图;其中,图2(a)是理想Clock体模80kVp下不含任何伪影和噪声的图像示意图;图2(b)是理想Clock体模在140kVp下不含任何伪影和噪声的图像示意图。 Fig. 2 is a schematic diagram of an ideal phantom without artifacts and noise; among them, Fig. 2(a) is a schematic diagram of an image without any artifacts and noise under the ideal Clock phantom at 80kVp; Fig. 2(b) is an ideal Clock phantom Schematic diagram of the image without any artifacts and noises under 140kVp.

图3是Clock体模的低剂量数据采用FBP算法直接重建后的图像示意图;其中,图3(a)是Clock体模在80kVp下的低剂量数据采用FBP算法直接重建后的图像示意图;图3(b)分别是Clock体模在140kVp低剂量数据采用FBP算法直接重建后的图像示意图。 Fig. 3 is a schematic diagram of the low-dose data of the Clock phantom directly reconstructed by the FBP algorithm; among them, Fig. 3 (a) is a schematic diagram of the image directly reconstructed by the FBP algorithm of the low-dose data of the Clock phantom at 80kVp; Fig. 3 (b) are schematic diagrams of the images of the Clock phantom directly reconstructed from the 140kVp low-dose data using the FBP algorithm.

图4是理想Clock体模低剂量数据采用本发明去噪方法得到的图像示意图;其中,图4(a)是Clock体模在80kVp下的低剂量数据采用本发明的去噪方法得到的图像,图4(b)是Clock体模在140kVp下的低剂量数据采用本发明的去噪方法得到的图像。 Fig. 4 is the image schematic diagram obtained by adopting the denoising method of the present invention for the ideal Clock phantom low-dose data; Wherein, Fig. 4 (a) is the image obtained by adopting the denoising method of the present invention for the low-dose data of the Clock phantom under 80kVp, Fig. 4(b) is an image obtained by applying the denoising method of the present invention to the low-dose data of the Clock phantom at 140kVp.

图5是理想Clock体模基于图像域分解法分解法得到的水基图和骨基图示意图;其中,图5(a)是水基图示意图,图5(b)是骨基图示意图。 Fig. 5 is a schematic diagram of the water-based map and bone-based map obtained by the decomposition method of the ideal Clock phantom based on the image domain decomposition method; among them, Fig. 5(a) is a schematic diagram of the water-based map, and Fig. 5(b) is a schematic diagram of the bone-based map.

图6是低剂量Clock体模基于图像域分解法分解法得到的水基图和骨基图示意图;其中,图6(a)是水基图示意图,图6(b)是骨基图示意图。 Figure 6 is a schematic diagram of the water-based map and bone-based map obtained by the low-dose Clock phantom based on the image domain decomposition method; wherein, Figure 6(a) is a schematic diagram of the water-based map, and Figure 6(b) is a schematic diagram of the bone-based map.

图7是采用本发明去噪方法得到结果后基于图像域分解法得到的水基图和骨基图示意图;其中,图7(a)是水基图示意图,图7(b)是骨基图示意图。 Figure 7 is a schematic diagram of the water-based map and bone-based map obtained based on the image domain decomposition method after the denoising method of the present invention is used to obtain the results; wherein, Figure 7(a) is a schematic diagram of the water-based map, and Figure 7(b) is a bone-based map schematic diagram.

图8是图像部分水平中线剖面图,其中图8(a)是80kVp图像部分水平中线剖面图,图8(b)是140kVp图像部分水平中线剖面图。 Fig. 8 is a horizontal midline sectional view of the image part, wherein Fig. 8(a) is a horizontal midline sectional view of an 80kVp image part, and Fig. 8(b) is a horizontal midline sectional view of a 140kVp image part.

图9是水基图和骨基图部分水平中线剖面图,其中图9(a)是水基图部分水平中线剖面图,图9(b)是骨基图部分水平中线剖面图。 Figure 9 is a partial horizontal midline cross-sectional view of the water-based map and a bone-based map, wherein Figure 9(a) is a partial horizontal mid-line cross-sectional view of the water-based map, and Figure 9(b) is a partial horizontal mid-line cross-sectional view of the bone-based map.

具体实施方式 Detailed ways

结合以下实施例对本发明作进一步描述。 The present invention is further described in conjunction with the following examples.

实施例Example 11 .

一种低剂量能谱CT图像去噪方法,如图1所示,包括如下步骤, A low-dose spectral CT image denoising method, as shown in Figure 1, comprises the following steps,

(1)获取成像对象在低剂量射线下的低能量CT投影数据和高能量CT投影数据,并分别对低能量CT投影数据和高能量CT投影数据进行CT图像重建,获得低能量CT图像和高能量CT图像,其中H表示高能,L表示低能; (1) Obtain low-energy CT projection data and high-energy CT projection data of the imaging object under low-dose radiation, and perform CT image reconstruction on the low-energy CT projection data and high-energy CT projection data respectively to obtain low-energy CT images and high-energy CT images , where H represents high energy, L represents low energy;

(2)根据步骤(1)中的重建数据所满足的基物质分解模型,构建用于能谱CT图像去噪的数学模型; (2) Construct a mathematical model for spectral CT image denoising according to the matrix decomposition model satisfied by the reconstructed data in step (1);

(3)利用广义全变分作为正则化先验,结合步骤(2)得到的数学模型构建用于图像去噪的目标函数; (3) Using generalized total variation as a regularization prior, combined with the mathematical model obtained in step (2) to construct an objective function for image denoising;

(4)对步骤(3)中构建的用于能谱CT图像去噪的目标函数采用分裂Bregman算法求解,完成能谱CT图像去噪。 (4) The objective function for spectral CT image denoising constructed in step (3) is solved by using the split Bregman algorithm to complete the energy spectral CT image denoising.

优选的,上述步骤(1)还设置有配准处理步骤,具体是:判断所得到的低能量CT投影数据和高能量CT投影数据是否存在位置偏移,当存在位置偏移时采用数据配准的方法将低能量CT投影数据和高能量CT投影数据进行配准处理。 Preferably, the above step (1) is also provided with a registration processing step, specifically: judging whether there is a positional offset between the obtained low-energy CT projection data and high-energy CT projection data, and adopting data registration when there is a positional offset The method of low-energy CT projection data and high-energy CT projection data is registered.

其中,步骤(2)中的基物质分解模型为: Among them, the matrix decomposition model in step (2) is:

物质对X光子的质量吸收函数通过任何两个物质即基物质对的质量吸收函数来表示:,其中分别是两个物质的质量吸收函数,分别是所需要的基物质的密度,且的值与X光子的能量无关; The Mass Absorption Function of Matter to X-Photons Expressed by the mass absorption function of any two species, the base species pair: ,in and are the mass absorption functions of the two substances, are the densities of the required substrates, respectively, and The value of is independent of the energy of the X photon;

根据基物质分解模型,对于步骤(1)能谱CT的高能量CT投影数据和低能量CT投影数据,对应的物质的质量吸收函数的表达式为:According to the matrix material decomposition model, for the high-energy CT projection data and low-energy CT projection data of the spectral CT in step (1), the expression of the mass absorption function of the corresponding material is: ,

定义物质质量吸收函数矩阵,基物质质量吸收函数矩阵,基物质密度矩阵Define the substance mass absorption function matrix , the matrix mass absorption function matrix , the base mass density matrix ;

C通过逆矩阵计算直接得到,公式为,定义基物质质量吸收矩阵A的逆矩阵形式 C is directly obtained by calculating the inverse matrix, the formula is , define the inverse matrix form of the matrix mass absorption matrix A .

其中,步骤(3)中具体采用使用二阶广义全变分作为先验,二阶广义全变分定义式为: Among them, in step (3), the second-order generalized total variation is used as a priori, and the definition of the second-order generalized total variation is:

;

其中为非负加权系数;为广义全变分引入的辅助参数,并取表示对称梯度算子,其中表示梯度算子,表示矩阵转置运算。 in is a non-negative weighting coefficient; Auxiliary parameters introduced for generalized total variation, and take Represents a symmetric gradient operator, where Represents the gradient operator, Represents a matrix transpose operation.

步骤(3)中构建的用于图像去噪的目标函数具体为:,其中X表示去噪后得到的能谱CT图像,Y为测量得到的能谱CT图像数据,是正则化参数,用于刻画广义全变分正则化强度。 The objective function for image denoising constructed in step (3) Specifically: , where X represents the spectral CT image obtained after denoising, Y is the measured spectral CT image data, and is a regularization parameter used to characterize the generalized full variational regularization strength.

步骤(4)中分裂Bregman算法的具体计算过程为: The specific calculation process of the split Bregman algorithm in step (4) is:

引入公式A、公式B和公式C进行迭代求解, Introduce formula A, formula B and formula C for iterative solution,

,其中是一个引入的向量值,表示残差,n表示迭代步数。 ,in is an incoming vector value, Represents the residual, and n represents the number of iteration steps.

具体迭代过程按照如下步骤进行: The specific iterative process is carried out according to the following steps:

(4.1)令n=0, (4.1) Let n = 0,

(4.2)按照公式AB 通过原始对偶算法求解(4.2) According to the formulas A and B , solve by the primal dual algorithm ;

(4.3)将步骤(4.1)获得的代入公式C求解(4.3) will step (4.1) obtained Substitute into formula C to solve ;

(4.4)判断是否迭代终止 (4.4) Determine whether the iteration is terminated

判断n是否等于N,如果n等于N,则迭代终止,以当前结果作为去噪后的能谱CT图像; Judging whether n is equal to N, if n is equal to N, the iteration is terminated, and the current result is used as the energy spectrum CT image after denoising;

如果n小于N,则进入步骤(4.5); If n is less than N, go to step (4.5);

(4.5)令n=n+1,返回步骤(4.2)。 (4.5) Let n = n +1, return to step (4.2).

本发明利用能谱CT中高低能量图像满足的基物质分解模型,结合能谱CT图像信息和基物质图像信息,实现了能谱CT图像去噪。本发明可以使用低剂量发射的同时,仍能保证产生高质量的能谱CT去噪图像,本发明方法具有很好的鲁棒性,在噪声消除和伪影抑制两方面均有良好的效果。 The invention realizes the denoising of the energy spectrum CT image by using the base material decomposition model satisfied by the high and low energy images in the energy spectrum CT and combining the energy spectrum CT image information and the base material image information. The present invention can use low-dose emission while still ensuring high-quality energy spectrum CT denoising images, the method of the present invention has good robustness, and has good effects in both noise elimination and artifact suppression.

实施例Example 22 .

以计算机仿真的数字体模数据为例来描述本发明所述方法的具体实施过程,如图1 所示,本实施例的实施过程如下。 Taking the digital phantom data simulated by computer as an example to describe the specific implementation process of the method of the present invention, as shown in FIG. 1 , the implementation process of this embodiment is as follows.

(1)利用Clock数字体模模拟生成低剂量能谱CT投影数据进行本发明算法的验证评估。本实施例中,模拟CT机X射线源到旋转中心和探测器的距离分别为:570.00mm和1040.00mm,探测元的个数为672,大小为1.407mm,旋转一周的探测角向采样个数为1160。Clock体模图像大小为512×512。通过CT系统仿真分别生成大小为1160×672的80kVp和140kVp投影数据。系统电子噪声的方差为10.0。 (1) Use the Clock digital phantom to simulate and generate low-dose spectral CT projection data for verification and evaluation of the algorithm of the present invention. In this embodiment, the distances from the X-ray source of the simulated CT machine to the rotation center and the detector are: 570.00mm and 1040.00mm respectively, the number of detection elements is 672, the size is 1.407mm, and the number of detection angular samples for one rotation for 1160. The Clock phantom image size is 512×512. The projection data of 80kVp and 140kVp with the size of 1160×672 were respectively generated by CT system simulation. The variance of the electronic noise of the system is 10.0.

(2)数据重建:利用获取的系统参数进行探测数据校正,进行对数变换,并进行滤波反投影重建。 (2) Data reconstruction: Use the obtained system parameters to correct the detection data, perform logarithmic transformation, and perform filtered back-projection reconstruction.

(3)构建图像去噪模型:对步骤(2)得到的重建后的能谱CT图像数据满足的基物质分解模型进行数学建模,完成广义全变分的先验项的设计,构建出用于能谱CT图像去噪的带约束的目标函数,其中X表示去噪后得到的能谱CT图像,Y为测量得到的能谱CT图像数据,是正则化参数,在本发明实施例中,,用于刻画广义全变分正则化强度。 (3) Construct image denoising model: Mathematically model the base material decomposition model satisfied by the reconstructed spectral CT image data obtained in step (2), complete the design of the generalized total variational prior term, and construct the A Constrained Objective Function for Spectral CT Image Denoising , , where X represents the spectral CT image obtained after denoising, Y is the measured spectral CT image data, and is a regularization parameter, in the embodiment of the present invention, , , used to characterize the generalized total variational regularization strength.

基物质分解模型具体形式为: The specific form of the matrix decomposition model is:

物质对X光子的质量吸收函数通过任何两个物质即基物质对的质量吸收函数来表示:,其中分别是两个物质的质量吸收函数,分别是所需要的基物质的密度,且的值与X光子的能量无关; The Mass Absorption Function of Matter to X-Photons Expressed by the mass absorption function of any two species, the base species pair: ,in and are the mass absorption functions of the two substances, are the densities of the required substrates, respectively, and The value of is independent of the energy of the X photon;

根据基物质分解模型,对于步骤(1)能谱CT的高能量CT投影数据和低能量CT投影数据,对应的物质的质量吸收函数的表达式为:According to the matrix material decomposition model, for the high-energy CT projection data and low-energy CT projection data of the spectral CT in step (1), the expression of the mass absorption function of the corresponding material is: ,

定义物质质量吸收函数矩阵,基物质质量吸收函数矩阵,基物质密度矩阵Define the substance mass absorption function matrix , the matrix mass absorption function matrix , the base mass density matrix ;

C通过逆矩阵计算直接得到,公式为,定义基物质质量吸收矩阵A的逆矩阵形式 C is directly obtained by calculating the inverse matrix, the formula is , define the inverse matrix form of the matrix mass absorption matrix A .

上述的广义全变分正则化先验构建的具体过程为:使用二阶广义全变分作为先验,其定义式为:;其中为非负加权系数;广义全变分引入了辅助参数,并取The specific process of constructing the above-mentioned generalized total variation regularization prior is: use the second-order generalized total variation as the prior, and its definition is: ;in , is a non-negative weighting coefficient; the generalized total variation introduces auxiliary parameters , and take .

(3)完成去噪:在步骤(3)构建的相关模型基础上,采用分裂Bregman算法进行图像去噪处理,具体计算过程为: (3) Complete denoising: On the basis of the related model constructed in step (3), the split Bregman algorithm is used for image denoising processing. The specific calculation process is as follows:

引入公式A、公式B和公式C进行迭代求解, Introduce formula A, formula B and formula C for iterative solution,

,其中是一个引入的向量值,表示残差,n表示迭代步数。 ,in is an incoming vector value, Represents the residual, and n represents the number of iteration steps.

具体迭代过程按照如下步骤进行: The specific iterative process is carried out according to the following steps:

(4.1)令n=0, (4.1) Let n = 0,

(4.2)按照公式AB 通过原始对偶算法求解(4.2) According to the formulas A and B , solve by the primal dual algorithm ;

(4.3)将步骤(4.1)获得的代入公式C求解(4.3) will step (4.1) obtained Substitute into formula C to solve ;

(4.4)判断是否迭代终止 (4.4) Determine whether the iteration is terminated

判断n是否等于N,如果n等于N,则迭代终止,以当前结果作为去噪后的能谱CT图像; Judging whether n is equal to N, if n is equal to N, the iteration is terminated, and the current result is used as the energy spectrum CT image after denoising;

如果n小于N,则进入步骤(4.5); If n is less than N, go to step (4.5);

(4.5)令n=n+1,返回步骤(4.2)。 (4.5) Let n = n +1, return to step (4.2).

为了验证本发明重建方法的效果,本实施例的结果展示如图2-图7所示,其中:图2(a)和图2(b)分别是理想Clock体模在80kVp和140kVp下不含任何伪影和噪声的图像。图3(a)和图3(b)分别是Clock体模在80kVp和140kVp低剂量数据采用FBP算法直接重建后得到的图像,可以看到由于剂量的降低导致重建图像出现严重的统计噪声。图4(a)和图4(b)分别是理想Clock体模基于投影域分解法重建得到的水基图和骨基图。图5(a)和图5(b)分别是低剂量Clock体模基于投影域分解法重建得到的水基图和骨基图,同样,原始高低能图像中存在的噪声导致了基物质的密度图像中也存在了严重的噪声。图6(a)和图6(b)分别是采用本发明重建方法得到的水基图和骨基图,由图6的两幅重建图像可以看出,利用本发明方法重建获得的结果在抑制噪声和伪影方面作用明显。 In order to verify the effect of the reconstruction method of the present invention, the results of this example are shown in Figure 2-Figure 7, in which: Figure 2 (a) and Figure 2 (b) are the ideal Clock phantom at 80kVp and 140kVp without Image of any artifacts and noise. Figure 3(a) and Figure 3(b) are the images obtained by directly reconstructing the Clock phantom at 80kVp and 140kVp low-dose data using the FBP algorithm, respectively. It can be seen that the reconstructed image has serious statistical noise due to the reduction of the dose. Figure 4(a) and Figure 4(b) are the water base map and bone base map reconstructed by the ideal Clock phantom based on the projection domain decomposition method, respectively. Figure 5(a) and Figure 5(b) are the water base map and bone base map reconstructed by the low-dose Clock phantom based on the projection domain decomposition method. Similarly, the noise in the original high and low energy images leads to the density of the base material There is also severe noise in the image. Figure 6(a) and Figure 6(b) are the water-based map and bone-based map obtained by the reconstruction method of the present invention respectively. It can be seen from the two reconstructed images in Figure 6 that the results obtained by using the method of the present invention to reconstruct are suppressing The effect of noise and artifacts is obvious.

图7(a)和7(b)中绘出了对应于图4、图5和图6中基物质重建图像水平中线剖面图,鉴于整个剖面图中含有512个像素点,全部显示则难以区分各个方法,故仅显示时仅截取其中一段,对于水基图,其区间为[189,320]。对于骨基图,其区间为[147,189]。由图7可以看出,在水基图和在骨基图中,无论背景区域还是目标区域,本发明方法重建值更接近于理想值。 Figures 7(a) and 7(b) show the horizontal midline profiles corresponding to the matrix material reconstruction images in Figures 4, 5, and 6. Since the entire profile contains 512 pixels, it is difficult to distinguish them all. For each method, only one section is intercepted when it is only displayed. For the water-based map, the interval is [189,320]. For bone-based maps, the interval is [147,189]. It can be seen from Fig. 7 that in the water-based map and bone-based map, the reconstruction value of the method of the present invention is closer to the ideal value regardless of the background area or the target area.

本发明利用能谱CT中高低能量图像满足的基物质分解模型,结合能谱CT图像信息和基物质图像信息,实现了能谱CT图像去噪。本发明可以使用低剂量发射的同时,仍能保证产生高质量的能谱CT去噪图像,本发明方法具有很好的鲁棒性,在噪声消除和伪影抑制两方面均有上佳的表现。 The invention realizes the denoising of the energy spectrum CT image by using the base material decomposition model satisfied by the high and low energy images in the energy spectrum CT and combining the energy spectrum CT image information and the base material image information. The present invention can use low-dose emission while still ensuring the generation of high-quality spectral CT denoising images, the method of the present invention has good robustness, and has excellent performance in both noise elimination and artifact suppression .

最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than limit the protection scope of the present invention. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that Modifications or equivalent replacements are made to the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention.

Claims (5)

1.一种低剂量能谱CT图像去噪方法,其特征在于:包括如下步骤, 1. a low-dose energy spectrum CT image denoising method, is characterized in that: comprise the steps, (1)获取成像对象在低剂量射线下的低能量CT投影数据和高能量CT投影数据,并分别对低能量CT投影数据和高能量CT投影数据进行CT图像重建,获得低能量CT图像 和高能量CT图像,其中H表示高能,L表示低能; (1) Obtain low-energy CT projection data and high-energy CT projection data of the imaging object under low-dose radiation, and perform CT image reconstruction on the low-energy CT projection data and high-energy CT projection data respectively to obtain low-energy CT images and high-energy CT images , where H represents high energy, L represents low energy; (2)根据步骤(1)中的重建数据所满足的基物质分解模型,构建用于能谱CT图像去噪的数学模型; (2) Construct a mathematical model for spectral CT image denoising according to the matrix decomposition model satisfied by the reconstructed data in step (1); (3)利用广义全变分作为正则化先验,结合步骤(2)得到的数学模型构建用于图像去噪的目标函数; (3) Using generalized total variation as a regularization prior, combined with the mathematical model obtained in step (2) to construct an objective function for image denoising; (4)对步骤(3)中构建的用于能谱CT图像去噪的目标函数采用分裂Bregman算法求解,完成能谱CT图像去噪。 (4) The objective function for spectral CT image denoising constructed in step (3) is solved by using the split Bregman algorithm to complete the energy spectral CT image denoising. 2.根据权利要求1所述的低剂量能谱CT图像去噪方法,其特征在于: 2. The low-dose energy spectrum CT image denoising method according to claim 1, characterized in that: 所述步骤(2)中的基物质分解模型为: The matrix decomposition model in the step (2) is: 物质对X光子的质量吸收函数通过任何两个物质即基物质对的质量吸收函数来表示:,其中分别是两个物质的质量吸收函数,分别是所需要的基物质的密度,且的值与X光子的能量无关; The Mass Absorption Function of Matter to X-Photons Expressed by the mass absorption function of any two species, the base species pair: ,in and are the mass absorption functions of the two substances, are the densities of the required substrates, respectively, and The value of is independent of the energy of the X photon; 根据基物质分解模型,对于步骤(1)能谱CT的高能量CT投影数据和低能量CT投影数据,对应的物质的质量吸收函数的表达式为:According to the matrix material decomposition model, for the high-energy CT projection data and low-energy CT projection data of the spectral CT in step (1), the expression of the mass absorption function of the corresponding material is: , 定义物质质量吸收函数矩阵,基物质质量吸收函数矩阵,基物质密度矩阵Define the substance mass absorption function matrix , the matrix mass absorption function matrix , the base mass density matrix ; C通过逆矩阵计算直接得到,公式为,定义基物质质量吸收矩阵A的逆矩阵形式 C is directly obtained by calculating the inverse matrix, the formula is , define the inverse matrix form of the matrix mass absorption matrix A . 3.根据权利要求2所述的低剂量能谱CT图像去噪方法,其特征在于: 3. The low-dose energy spectrum CT image denoising method according to claim 2, characterized in that: 所述步骤(3)中具体采用使用二阶广义全变分作为先验,二阶广义全变分定义式为: In the step (3), the second-order generalized total variation is used as a priori, and the definition of the second-order generalized total variation is: ; 其中为非负加权系数;为广义全变分引入的辅助参数,并取表示对称梯度算子,其中表示梯度算子,表示矩阵转置运算; in is a non-negative weighting coefficient; Auxiliary parameters introduced for generalized total variation, and take Represents a symmetric gradient operator, where Represents the gradient operator, Indicates the matrix transpose operation; 所述步骤(3)中构建的用于图像去噪的目标函数具体为:,其中X表示去噪后得到的能谱CT图像,Y为测量得到的能谱CT图像数据,是正则化参数,用于刻画广义全变分正则化强度。 The objective function for image denoising constructed in the step (3) Specifically: , where X represents the spectral CT image obtained after denoising, Y is the measured spectral CT image data, and is a regularization parameter used to characterize the generalized full variational regularization strength. 4.根据根据权利要求3所述的低剂量能谱CT图像去噪方法,其特征在于: 4. according to the low-dose energy spectrum CT image denoising method according to claim 3, it is characterized in that: 所述步骤(4)中分裂Bregman算法的具体计算过程为: The specific calculation process of the split Bregman algorithm in the step (4) is: 引入公式A、公式B和公式C进行迭代求解, Introduce formula A, formula B and formula C for iterative solution, ,其中是一个引入的向量值,表示残差,n表示迭代步数; ,in is an incoming vector value, Represents the residual, n represents the number of iteration steps; 具体迭代过程按照如下步骤进行: The specific iterative process is carried out according to the following steps: (4.1)令n=0, (4.1) Let n = 0, (4.2)按照公式AB 通过原始对偶算法求解(4.2) According to the formulas A and B , solve by the primal dual algorithm ; (4.3)将步骤(4.1)获得的代入公式C求解(4.3) will step (4.1) obtained Substitute into formula C to solve ; (4.4)判断是否迭代终止 (4.4) Determine whether the iteration is terminated 判断n是否等于N,如果n等于N,则迭代终止,以当前结果作为去噪后的能谱CT图像; Judging whether n is equal to N, if n is equal to N, the iteration is terminated, and the current result is used as the energy spectrum CT image after denoising; 如果n小于N,则进入步骤(4.5); If n is less than N, go to step (4.5); (4.5)令n=n+1,返回步骤(4.2)。 (4.5) Let n = n +1, return to step (4.2). 5.根据权利要求1所述的低剂量能谱CT图像去噪方法,其特征在于: 5. The low-dose energy spectrum CT image denoising method according to claim 1, characterized in that: 所述步骤(1)还设置有配准处理步骤,具体是: The step (1) is also provided with a registration processing step, specifically: 判断所得到的低能量CT投影数据和高能量CT投影数据是否存在位置偏移,当存在位置偏移时采用数据配准的方法将低能量CT投影数据和高能量CT投影数据进行配准处理。 It is judged whether the obtained low-energy CT projection data and high-energy CT projection data have a position offset, and if there is a position offset, the low-energy CT projection data and the high-energy CT projection data are registered by a data registration method.
CN201510040324.2A 2015-01-27 2015-01-27 A kind of low dosage power spectrum CT image de-noising methods Active CN104574416B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510040324.2A CN104574416B (en) 2015-01-27 2015-01-27 A kind of low dosage power spectrum CT image de-noising methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510040324.2A CN104574416B (en) 2015-01-27 2015-01-27 A kind of low dosage power spectrum CT image de-noising methods

Publications (2)

Publication Number Publication Date
CN104574416A true CN104574416A (en) 2015-04-29
CN104574416B CN104574416B (en) 2017-10-13

Family

ID=53090388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510040324.2A Active CN104574416B (en) 2015-01-27 2015-01-27 A kind of low dosage power spectrum CT image de-noising methods

Country Status (1)

Country Link
CN (1) CN104574416B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529552A (en) * 2016-11-03 2017-03-22 中国海洋大学 Scallop shell growing pattern segmentation and recognition method
CN106815813A (en) * 2015-11-27 2017-06-09 西门子医疗有限公司 Method and image-data processing apparatus for processing multi-energy computed tomography images data set
CN107356615A (en) * 2016-05-10 2017-11-17 清华大学 A kind of method and system for dual-energy x-ray CT
CN108475419A (en) * 2015-12-15 2018-08-31 皇家飞利浦有限公司 The method of data processing for computer tomography
CN108596861A (en) * 2018-05-14 2018-09-28 南方医科大学 A kind of CT image metal artifact minimizing technologies based on the study of depth residual error
CN109035169A (en) * 2018-07-19 2018-12-18 西安交通大学 A kind of unsupervised/semi-supervised CT image reconstruction depth network training method
CN109448071A (en) * 2018-11-06 2019-03-08 深圳安科高技术股份有限公司 A kind of power spectrum image rebuilding method and system
CN109741411A (en) * 2018-12-13 2019-05-10 深圳先进技术研究院 Low-dose PET image reconstruction method, device, equipment and medium based on gradient domain
CN109949215A (en) * 2019-03-29 2019-06-28 浙江明峰智能医疗科技有限公司 A kind of low-dose CT image simulation method
CN110246199A (en) * 2019-05-26 2019-09-17 天津大学 A kind of projection domain data noise minimizing technology towards power spectrum CT
CN111899312A (en) * 2020-07-08 2020-11-06 西北工业大学 Iterative compensation finite angle CT projection reconstruction method
CN114299005A (en) * 2021-12-25 2022-04-08 宁波凯德科技服务有限公司 Image processing method based on Gaussian noise total variation data augmentation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208100A (en) * 2011-05-31 2011-10-05 重庆大学 Total-variation (TV) regularized image blind restoration method based on Split Bregman iteration
CN103810734A (en) * 2014-02-28 2014-05-21 南方医科大学 Low-dose X-ray CT projection data restoring method
US8886283B1 (en) * 2011-06-21 2014-11-11 Stc.Unm 3D and 4D magnetic susceptibility tomography based on complex MR images

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208100A (en) * 2011-05-31 2011-10-05 重庆大学 Total-variation (TV) regularized image blind restoration method based on Split Bregman iteration
US8886283B1 (en) * 2011-06-21 2014-11-11 Stc.Unm 3D and 4D magnetic susceptibility tomography based on complex MR images
CN103810734A (en) * 2014-02-28 2014-05-21 南方医科大学 Low-dose X-ray CT projection data restoring method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHANZHOU NIU 等: "Sparse-view x-ray CT reconstruction via total generalized variation regularization", 《PHYSICS IN MEDICINE AND BIOLOGY》 *
李孟飞 等: "修正ROF模型的分裂Bregman算法", 《计算机工程与设计》 *
赵云松 等: "双能谱CT的迭代重建模型及重建方法", 《电子学报》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106815813A (en) * 2015-11-27 2017-06-09 西门子医疗有限公司 Method and image-data processing apparatus for processing multi-energy computed tomography images data set
CN106815813B (en) * 2015-11-27 2020-09-15 西门子医疗有限公司 Method for processing a multi-energy computed tomography image data set and image data processing device
CN108475419A (en) * 2015-12-15 2018-08-31 皇家飞利浦有限公司 The method of data processing for computer tomography
CN108475419B (en) * 2015-12-15 2022-04-26 皇家飞利浦有限公司 Method for data processing for computed tomography
CN107356615A (en) * 2016-05-10 2017-11-17 清华大学 A kind of method and system for dual-energy x-ray CT
CN107356615B (en) * 2016-05-10 2020-01-21 清华大学 Method and system for dual-energy X-ray CT
CN106529552B (en) * 2016-11-03 2019-11-08 中国海洋大学 A Segmentation and Recognition Method of Scallop Shell Growth Pattern
CN106529552A (en) * 2016-11-03 2017-03-22 中国海洋大学 Scallop shell growing pattern segmentation and recognition method
CN108596861A (en) * 2018-05-14 2018-09-28 南方医科大学 A kind of CT image metal artifact minimizing technologies based on the study of depth residual error
CN109035169A (en) * 2018-07-19 2018-12-18 西安交通大学 A kind of unsupervised/semi-supervised CT image reconstruction depth network training method
CN109035169B (en) * 2018-07-19 2020-06-12 西安交通大学 A deep network training method for unsupervised/semi-supervised CT image reconstruction
CN109448071A (en) * 2018-11-06 2019-03-08 深圳安科高技术股份有限公司 A kind of power spectrum image rebuilding method and system
CN109741411A (en) * 2018-12-13 2019-05-10 深圳先进技术研究院 Low-dose PET image reconstruction method, device, equipment and medium based on gradient domain
CN109741411B (en) * 2018-12-13 2023-04-28 深圳先进技术研究院 Low-dose PET image reconstruction method, device, equipment and medium based on gradient domain
CN109949215A (en) * 2019-03-29 2019-06-28 浙江明峰智能医疗科技有限公司 A kind of low-dose CT image simulation method
CN109949215B (en) * 2019-03-29 2023-03-31 浙江明峰智能医疗科技有限公司 Low-dose CT image simulation method
CN110246199A (en) * 2019-05-26 2019-09-17 天津大学 A kind of projection domain data noise minimizing technology towards power spectrum CT
CN110246199B (en) * 2019-05-26 2023-05-09 天津大学 A Noise Removal Method for Projection Domain Data Oriented to Spectral CT
CN111899312A (en) * 2020-07-08 2020-11-06 西北工业大学 Iterative compensation finite angle CT projection reconstruction method
CN111899312B (en) * 2020-07-08 2023-03-14 西北工业大学 Iterative compensation finite angle CT projection reconstruction method
CN114299005A (en) * 2021-12-25 2022-04-08 宁波凯德科技服务有限公司 Image processing method based on Gaussian noise total variation data augmentation

Also Published As

Publication number Publication date
CN104574416B (en) 2017-10-13

Similar Documents

Publication Publication Date Title
CN104574416B (en) A kind of low dosage power spectrum CT image de-noising methods
CN104408758A (en) Low-dose processing method of energy spectrum CT image
Niu et al. Shading correction for on‐board cone‐beam CT in radiation therapy using planning MDCT images
CN104751429B (en) A kind of low dosage power spectrum CT image processing methods based on dictionary learning
CN112348936B (en) Low-dose cone-beam CT image reconstruction method based on deep learning
CN104346820B (en) X-ray dual-energy CT reconstruction method
Zhao et al. Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging
CN102063728B (en) Method for reconstructing low-dose CT images based on redundant information of standard dose images
CN110189389B (en) Method and device for decomposing base material in dual-energy spectral CT projection domain based on deep learning
CN103106676B (en) A kind of X ray CT image rebuilding method based on the filtering of low dosage data for projection
CN103134823B (en) Convolution-based X-ray CT system beam hardening correction method
CN110175957B (en) Substance decomposition method for multi-energy CT-based materials
CN111899188B (en) Neural network learning cone beam CT noise estimation and suppression method
CN103413280A (en) Low-dose X-ray CT image reconstruction method
CN109920020A (en) An Artifact Suppression Method for Cone Beam CT Pathological Projection Reconstruction
Johnston et al. Temporal and spectral imaging with micro‐CT
CN108596995B (en) PET-MRI maximum posterior joint reconstruction method
US11337671B2 (en) Methods and systems for improved spectral fidelity for material decomposition
Qi et al. Iterative image reconstruction using modified non-local means filtering for limited-angle computed tomography
CN105528771B (en) The bearing calibration of cupping artifact in a kind of Cone-Beam CT using energy function method
CN105844678A (en) Low dose X-ray CT image reconstruction method based on completely generalized variational regularization
CN110458908A (en) A Method of Iteratively Reconstructing Transcendental CT Images Based on Limited Angles
CN109816747A (en) A metal artifact correction method for head CT images
CN111145281B (en) A Direct Iterative Matrix Material Decomposition Image Reconstruction Method for Dual Energy CT
Lee et al. Noise properties of reconstructed images in a kilo-voltage on-board imaging system with iterative reconstruction techniques: A phantom study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant