CN104573863A - 预测水相中有机化合物与羟基自由基反应速率常数的方法 - Google Patents

预测水相中有机化合物与羟基自由基反应速率常数的方法 Download PDF

Info

Publication number
CN104573863A
CN104573863A CN201510006729.4A CN201510006729A CN104573863A CN 104573863 A CN104573863 A CN 104573863A CN 201510006729 A CN201510006729 A CN 201510006729A CN 104573863 A CN104573863 A CN 104573863A
Authority
CN
China
Prior art keywords
compounds
model
compound
organic
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510006729.4A
Other languages
English (en)
Other versions
CN104573863B (zh
Inventor
乔显亮
罗翔
陈景文
李雪花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510006729.4A priority Critical patent/CN104573863B/zh
Publication of CN104573863A publication Critical patent/CN104573863A/zh
Application granted granted Critical
Publication of CN104573863B publication Critical patent/CN104573863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种基于定量结构-活性关系预测水相中有机化合物与羟基自由基反应的速率常数的方法。在获得化合物分子结构的基础上,通过计算分子结构描述符,采用多元线性回归方法,构建了定量结构-活性关系模型,可快速、高效地预测有机化合物的水相kOH值。本发明依据经济合作与发展组织关于QSAR模型的构建和使用导则进行建模,模型应用域明确,包括526种不同种类的有机化合物,特别是涵盖了大部分前人模型中未包含的含氮、磷、硫等原子的化合物。模型具有良好的拟合能力、稳健性和预测能力,能够有效地预测应用域内有机化合物的水相kOH,为有机化学品的环境持久性评价和生态风险评价提供重要数据支持。

Description

预测水相中有机化合物与羟基自由基反应速率常数的方法
技术领域
本发明涉及一种通过建立定量构效关系模型(QSAR)预测水相中有机化合物与羟基自由基反应速率常数的方法,属于生态风险评价测试策略领域。
背景技术
羟基自由基(·OH)是水环境中一类常见的活性物种,能够通过水中溶解性物质(如溶解性有机质)的光化学转化过程或人为的高级氧化过程(如Fenton体系)产生。·OH的标准氧化还原电势为1.9V,是一种重要的强氧化剂,能够与有机污染物发生氧化降解反应。该反应的二级反应速率常数(kOH)是表征有机污染物与·OH反应强度与能力的参数,也是评估有机污染物在环境中的持久性和进行生态风险评价的一个重要指标。
化合物的水相kOH可通过实验方法获得。但是实验的方法存在耗时、昂贵、依赖于设备的缺点。截止到2014年11月,美国化学文摘社(Chemical AbstractsService,CAS)登记的化学品已超过9千万种(http://www.cas.org/),其中投入商业化使用的有机化学品超过14万种。如此数量庞大的有机化学品,无法通过实验方法对其kOH值进行一一测定,从而限制了对其环境持久性的评估。目前仅有1000余种化合物具有可获取的水相kOH值,因此,迫切需要发展非实验技术以便高效快捷地获取kOH数值,以满足有机化学品生态风险评价和管理的需求。
定量结构-活性关系(QSAR)是基于分子结构性质来预测化合物的理化性质、环境行为或毒理学参数(统称为活性)的方法。它具有弥补测试数据的缺失、降低测试费用的优点,在有机化学品的生态风险评价领域得到了越来越广泛的重视和应用。通过构建QSAR模型,可以实现高效、快捷地获取有机化学品的kOH数据,为化学品的环境持久性和生态风险评估提供支撑。2004年OECD提出了QSAR模型构建和使用的准则,指出符合以下5个要求的QSAR模型可以应用于化学品的风险评价与管理:(1)具有明确定义的环境指标;(2)具有明确的算法;(3)定义了模型的应用域;(4)模型具有适当的拟合度、稳定性和预测能力;(5)最好能够进行机理解释。
目前,国内外用于预测kOH的QSAR方法多集中在气相方面,水相kOH的研究较少。kOH的气相和水相模型虽有一些相似和关联之处,但也有所区别,如水相中氢键的作用、水分子的极性以及溶剂化效应等因素会显著影响有机物与·OH的反应机制、反应自由能变等,从而改变其反应速率,同一化合物在水相和气相中的kOH差别非常显著。因此,对气相kOH具有较好预测效果的QSAR模型并不适用于水相kOH的预测,非常有必要建立针对水相kOH的预测模型。关于水相kOH的模型构建,前人开展了少许研究。目前已构建的水相kOH预测模型虽然有其自身的特点,也存在一些不足之处。这些不足主要体现在以下几方面:第一,大部分模型涵盖化合物种类和数量较少,应用域较窄,如文献“QSAR andCombinatorial Science.2009,28(11-12):1309-1316”中基于多元线性回归(MLR)方法建立的包括酚类、烷烃和醇类的水相QSAR预测模型,涵盖化合物仅55种;文献“Atmospheric Environment.2008,42(33):7611-7622”中基于SAR方法建立的用于烷烃、醇、有机酸等脂肪族小分子的水相预测模型,仅包含72种化合物。在大部分模型中,很多化合物未被涵盖,如含氮、磷、硫等原子的化合物,这些化合物多为生产和生活中重要的化学品(如农药、抗生素等),因此非常有必要在模型应用域中涵盖这些类别的化合物。第二,有些模型采用实验测定的参数作为描述符,限制了模型的推广应用,如文献“Physical Chemistry ChemicalPhysics.2004,6(16):4118-4126”,“International Journal of Chemical Kinetics.2008,40(4),174-188.”中利用实验测定的键离解能(BDE)来预测化合物的水相kOH,其推广应用很大程度上受到BDE实验值缺乏的限制。第三,模型不够透明,如文献“Atmospheric Environment.2003,37(2):269-276”中基于分子结构碎片和人工神经网络(ANN)建立的水相kOH预测模型,但由于神经网络模型属于“黑箱模型”,其无法将kOH与模型参数的关系用明确的数学表达式呈现出来,也难以对模型进行机理解释,因此不宜被接受和推广使用。第四,一些模型,如文献“AtmosphericEnvironment.2005,39(40):7667-7688”构建的模型虽然具有较好的拟合性能,但模型验证和表征并不全面,如欠缺内部和外部验证、模型应用域表征等,不符合OECD对QSAR模型构建和使用准则的要求。此外,还有的模型根据化合物结构和类别进行分类预测,如文献“Environmental Science & Technology.2009,43(16):6220-6227”中应用基团贡献法基于反应官能团的特征对水相kOH进行分类预测,文献“环境化学.1999,18(3):232-237”“哈尔滨工业大学学报2002,34(4):521-528”等中根据化合物结构和官能团将其划分为烷烃、醇、酚、有机酸等类分别进行预测。分类模型中一般部分化合物的预测模型较优,但也存在预测效果不理想(如拟合R值较低)的类别,且模型形式复杂,不便于应用。基于上述研究现状,迫切需要发展应用域涵盖化合物数量较多且结构种类丰富、描述符易获得、具有明确算法且透明度高、易于机理解释和便于应用推广的QSAR综合模型。另外,根据OECD对QSAR模型构建和使用导则的要求,对模型进行全面的模型性能评估、应用域的表征及机理解释,为有机化学品环境持久性评估及生态风险评价提供基础数据。
发明内容
本发明提供了一种简便、快捷、高效预测有机化学品水相羟基反应速率常数的方法,该方法可以根据化合物分子结构预测其kOH数值,进而可以评估其环境持久性,为化学品风险评价和管理提供必要的基础数据。在建模过程中参照OECD对QSAR模型构建和使用导则,不仅进行了内、外部验证考察模型的预测能力和稳健性,而且对模型应用域进行了表征。
通过查阅大量文献,搜集了水相kOH实验数据,建立了一个涵盖526种有机化合物的数据集,化合物种类不仅包括常见的烃类、芳香类、醇类、酸类化合物,而且涵盖了以往研究中很少研究的含氮、磷、硫等杂原子的化合物。
本发明的技术方案如下:
预测水相中有机化合物与羟基自由基反应速率常数的方法,步骤如下:
首先收集526种有机化合物的水相kOH数值,将其按照4:1随机拆分为训练集和验证集;训练集中的421种化合物用于构建模型,验证集中的105种化合物用于评估模型的外部预测能力;对上述526种有机化合物的分子结构进行优化,得到相应有机化合物的稳定构型并选取9个量子化学描述符;通过上述稳定构型得到2418个Dragon描述符;采用MLR回归分析方法筛选分子描述符和构建QSAR模型;
筛选出的最优QSAR模型如下:
logkOH=11.566+6.233×EHOMO-0.074×HATS2s-0.183×Mor23u+0.238×GATS1e-0.099×N-075+0.107×nR=Cp-0.230×nRCONH2-0.070×C-001+0.080×MLOGP+0.113×nS-0.265×nBR+0.651×qH ++0.119×Eig03_EA(dm);
其中,EHOMO表示最高占据分子轨道能量,HATS2s是与内蕴状态相关的GETAWAY描述符,Mor23u表示未加权的3D分子结构描述符,GATS1e表示Sanderson电负性加权的lag 1的Geary自相关指数,N-075表示苯环上的N原子或与O、N、S、卤素等电负性原子形成离域键的N原子碎片数,nR=Cp表示末端sp2杂化的主碳数目,nRCONH2表示分子中含RCONH2结构的数目,C-001表示分子中-CH3/CH4结构信息,MLOGP表示Moriguchi辛醇-水分配系数,nS表示分子中含S原子的数目,nBR表示分子中含Br原子的数目,qH +表示H原子最正净电荷,Eig03_EA(dm)表示偶极矩加权的本征值的边界邻接指数。
所述有机化合物为烷烃类化合物、烯烃类化合物、炔烃类化合物、芳香烃类化合物、醇类化合物、醛类化合物、酮类化合物、醚类化合物、酸类化合物、脂类化合物、卤代类化合物、含氮化合物、含硫化合物或含磷化合物。
所得模型中每个描述符的方差膨胀因子(VIF)均小于10,且自变量与因变量组成的矩阵MYX以及自变量矩阵MX的K相关指数满足KXX(0.209)<KXY(0.249),表明模型不存在多重相关性。模型的拟合能力由R2 adj和均方根误差(RMSE)表征,R2 adj=0.805,RMSE=0.165,表明该模型具有良好的拟合能力;模型的稳健性由内部验证的交叉验证系数(Q2 LOO)和Bootstrapping方法所得Q2 BOOT评价,Q2 LOO=0.797,Q2 BOOT=0.791,R2和Q2之差远小于0.3,可认为该模型不存在过拟合现象,具有良好的稳健性;在模型的外部验证过程中,外部预测相关系数的R2 ext=0.802,Q2 ext=0.801,RMSEext=0.232,表明该模型具有良好的外部预测能力。采用Williams图表征模型的应用域。结果表明所建的模型能够有效地用于烷烃类化合物、烯烃类化合物、炔烃类化合物、芳香烃类化合物、醇类化合物、醛类化合物、酮类化合物、醚类化合物、酸类化合物、脂类化合物、卤代类化合物、含氮化合物、含硫化合物、含磷化合物等的水相kOH预测。
本发明的有益效果是:所建模型可以用于预测多种类有机化合物的水相kOH。该方法简便快捷、成本低廉。水相kOH预测方法符合OECD规定的QSAR模型发展和使用导则,因此,使用该发明专利的kOH预测结果,可以为化学品监管提供数据支持,对化学品的生态风险性评价具有重要意义。
本发明提供的方法具有如下特点:
1.模型数据集涵盖烃类、醇类、酮类、酚类、酸类、芳香类等多种结构的有机化合物,尤其包含了其他模型中很少研究的含氮、磷、硫元素的化合物,应用域广,是目前涵盖化合物数目最大、种类最丰富的kOH预测模型;
2.建模过程中采用OECD对QSAR模型构建和使用导则推荐的透明算法——MLR算法,所建模型包含2个量子化学描述符和11个Dragon描述符,模型算法透明,机理易于解释,便于应用推广;
3.依照OECD关于QSAR模型的构建和使用导则构建和评估模型,所建模型具有良好的拟合能力、稳健性和预测能力,可以用于化学品的风险评价与管理。
附图说明
图1为训练集log kOH的实测值与预测值的拟合图,训练集化合物为421种。
图2为验证集log kOH的实测值与预测值的拟合图,验证集化合物为105种。
图3为模型应用域的Williams图。
具体实施方式
以下结合附图和技术方案进一步说明本发明的具体实施方式。
本发明的实施例,对构建的化合物分子结构,先进行能量最小化,之后再进行能量优化,然后基于优化结构,提取量子化学描述符并计算Dragon描述符。
实施例1
正庚醇,实验测定的水相logkOH值为9.87,计算的量子化学和Dragon描述符为:[EHOMO]=-0.394,[HATS2s]=0.818,[Mor23u]=-1.293,[GATS1e]=1.049,[N-075]=0,[nR=Cp]=0,[nRCONH2]=0,[C-001]=1,[MLOGP]=1.940,[nS]=0,[nBR]=0,[qH +]=0.326,[Eig03_EA(dm)]=0。
由MATLAB计算的h=0.0171<h*=0.0998,所以该化合物在应用域内,由模型计算如下:
logkOH=6.233[EHOMO]-0.074[HATS2s]-0.183[Mor23u]+0.238[GATS1e]-0.099[N-075]+0.107[nR=Cp]-0.230[nRCONH2]-0.070[C-001]+0.080[MLOGP]+0.113[nS]-0.265[nBR]+0.651[qH +]+0.119[Eig03_EA(dm)]+11.566
=6.233×(-0.394)-0.074×0.818-0.183×(-1.293)+0.238×1.049-0.07+0.080×1.940+0.651×0.326+11.566
=9.83
实施例2
苯甲腈,芳香族含氮化合物,实验测定的水相logkOH值为9.64,计算的量子化学和Dragon描述符为:[EHOMO]=-0.373,[HATS2s]=0.585,[Mor23u]=-0.500,[GATS1e]=0.476,[N-075]=0,[nR=Cp]=0,[nRCONH2]=0,[C-001]=0,[MLOGP]=1.769,[nS]=0,[nBR]=0,[qH +]=0.167,[Eig03_EA(dm)]=0。
由MATLAB计算的h=0.0171<h*=0.0998,所以该化合物在应用域内,由模型计算如下:
logkOH=6.233[EHOMO]-0.074[HATS2s]-0.183[Mor23u]+0.238[GATS1e]-0.099[N-075]+0.107[nR=Cp]-0.230[nRCONH2]-0.070[C-001]+0.080[MLOGP]+0.113[nS]-0.265[nBR]+0.651[qH +]+0.119[Eig03_EA(dm)]+11.566
=6.233×(-0.373)-0.074×0.585-0.183×(-0.500)+0.238×0.476+0.080×1.769+0.651×0.167+11.566
=9.65
实施例3
二异丙基亚砜,含S化合物,实验测定的水相logkOH值为9.83,计算的量子化学和Dragon描述符为:[EHOMO]=-0.314,[HATS2s]=0.864,[Mor23u]=-0.296,[GATS1e]=0.400,[N-075]=0,[nR=Cp]=0,[nRCONH2]=0,[C-001]=4,[MLOGP]=1.587,[nS]=1,[nBR]=0,[qH +]=0.171,[Eig03_EA(dm)]=0。
由MATLAB计算的h=0.0277<h*=0.0998,所以该化合物在应用域内,由模型计算如下:
logkOH=6.233[EHOMO]-0.074[HATS2s]-0.183[Mor23u]+0.238[GATS1e]-0.099[N-075]+0.107[nR=Cp]-0.230[nRCONH2]-0.070[C-001]+0.080[MLOGP]+0.113[nS]-0.265[nBR]+0.651[qH +]+0.119[Eig03_EA(dm)]+11.566
=6.233×(-0.314)-0.074×0.864-0.183×(-0.296)+0.238×0.400+0.070×4+0.080×1.587+0.113+0.651×0.171+11.566
=9.77
实施例4
葡萄糖-1-磷酸,含P化合物,实验测定的水相logkOH值为9.15,计算的量子化学和Dragon描述符为:[EHOMO]=-0.391,[HATS2s]=3.643,[Mor23u]=0.039,[GATS1e]=1.310,[N-075]=0,[nR=Cp]=0,[nRCONH2]=0,[C-001]=0,[MLOGP]=-2.438,[nS]=0,[nBR]=0,[qH +]=0.389,[Eig03_EA(dm)]=0。
由MATLAB计算的h=0.0192<h*=0.0998,所以该化合物在应用域内,由模型计算如下:
logkOH=6.233[EHOMO]-0.074[HATS2s]-0.183[Mor23u]+0.238[GATS1e]-0.099[N-075]+0.107[nR=Cp]-0.230[nRCONH2]-0.070[C-001]+0.080[MLOGP]+0.113[nS]-0.265[nBR]+0.651[qH +]+0.119[Eig03_EA(dm)]+11.566
=6.233×(-0.391)-0.074×3.643-0.183×0.039+0.238×1.310+0.080×(-2.438)+0.651×0.389+11.566
=9.22
实施例5
5-溴吲哚,含溴化合物,实验测定的水相logkOH值为10.20,计算的量子化学和Dragon描述符为:[EHOMO]=-0.329,[HATS2s]=0.644,[Mor23u]=-0.574,[GATS1e]=0.851,[N-075]=0,[nR=Cp]=0,[nRCONH2]=0,[C-001]=0,[MLOGP]=2.573,[nS]=0,[nBR]=1,[qH +]=0.294,[Eig03_EA(dm)]=0。
由MATLAB计算的h=0.1038>h*=0.0998,所以该化合物不在应用域内,由模型计算如下:
logkOH=6.233[EHOMO]-0.074[HATS2s]-0.183[Mor23u]+0.238[GATS1e]-0.099[N-075]+0.107[nR=Cp]-0.230[nRCONH2]-0.070[C-001]+0.080[MLOGP]+0.113[nS]-0.265[nBR]+0.651[qH +]+0.119[Eig03_EA(dm)]+11.566
=6.233×(-0.329)-0.074×0.644-0.183×(-0.574)+0.238×0.851+0.080×2.573-0.265+0.651×0.294+11.566
=9.91
模型预测值9.91与实验值10.20较为接近,说明模型能够较好预测应用域外的化合物,具有一定的外推能力。

Claims (2)

1.一种预测水相中有机化合物与羟基自由基反应速率常数的方法,其特征在于,
首先收集526种有机化合物的水相kOH数值,将其按照4:1随机拆分为训练集和验证集;训练集中的421种化合物用于构建模型,验证集中的105种化合物用于评估模型的外部预测能力;对上述526种有机化合物的分子结构进行优化,得到相应有机化合物的稳定构型并选取9个量子化学描述符;通过上述稳定构型得到2418个Dragon描述符;采用MLR回归分析方法筛选分子描述符和构建QSAR模型;
筛选出的最优QSAR模型如下:
logkOH=11.566+6.233×EHOMO-0.074×HATS2s-0.183×Mor23u+0.238×GATS1e-0.099×N-075+0.107×nR=Cp-0.230×nRCONH2-0.070×C-001+0.080×MLOGP+0.113×nS-0.265×nBR+0.651×qH ++0.119×Eig03_EA(dm);
其中,EHOMO表示最高占据分子轨道能量,HATS2s是与内蕴状态相关的GETAWAY描述符,Mor23u表示未加权的3D分子结构描述符,GATS1e表示Sanderson电负性加权的lag 1的Geary自相关指数,N-075表示苯环上的N原子或与O、N、S、卤素等电负性原子形成离域键的N原子碎片数,nR=Cp表示末端sp2杂化的主碳数目,nRCONH2表示分子中含RCONH2结构的数目,C-001表示分子中-CH3/CH4结构信息,MLOGP表示Moriguchi辛醇-水分配系数,nS表示分子中含S原子的数目,nBR表示分子中含Br原子的数目,qH +表示H原子最正净电荷,Eig03_EA(dm)表示偶极矩加权的本征值的边界邻接指数。
2.根据权利要求1所述的方法,其特征在于,所述有机化合物为烷烃类化合物、烯烃类化合物、炔烃类化合物、芳香烃类化合物、醇类化合物、醛类化合物、酮类化合物、醚类化合物、酸类化合物、脂类化合物、卤代类化合物、含氮化合物、含硫化合物或含磷化合物。
CN201510006729.4A 2015-01-07 2015-01-07 预测水相中有机化合物与羟基自由基反应速率常数的方法 Active CN104573863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510006729.4A CN104573863B (zh) 2015-01-07 2015-01-07 预测水相中有机化合物与羟基自由基反应速率常数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510006729.4A CN104573863B (zh) 2015-01-07 2015-01-07 预测水相中有机化合物与羟基自由基反应速率常数的方法

Publications (2)

Publication Number Publication Date
CN104573863A true CN104573863A (zh) 2015-04-29
CN104573863B CN104573863B (zh) 2017-10-17

Family

ID=53089878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510006729.4A Active CN104573863B (zh) 2015-01-07 2015-01-07 预测水相中有机化合物与羟基自由基反应速率常数的方法

Country Status (1)

Country Link
CN (1) CN104573863B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678069A (zh) * 2016-01-06 2016-06-15 昆明理工大学 预测气态含硫化合物在低温水解条件下消除速率常数的方法
CN107330254A (zh) * 2017-06-16 2017-11-07 大连理工大学 预测水相中有机物与硫酸自由基水相反应速率常数的定量结构活性关系模型
CN108416184A (zh) * 2017-02-09 2018-08-17 清华大学深圳研究生院 化合物的3d展示方法和系统
CN111696619A (zh) * 2019-03-13 2020-09-22 赣南师范大学 一种预测反应环境对反应活化能影响程度的方法
CN116312854A (zh) * 2023-03-06 2023-06-23 杭州以勒标准技术有限公司 一种预测磺胺甲基异恶唑类物质正辛醇水分配系数的方法
CN117497095A (zh) * 2023-11-17 2024-02-02 四川大学 基于特征融合和数据增强的含能材料键离解能的预测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425872A (zh) * 2013-07-20 2013-12-04 大连理工大学 通过定量构效关系模型预测大气中有机物与羟基反应速率常数的方法
US20140316755A1 (en) * 2011-11-30 2014-10-23 Dalian University Of Technology Method for predicting oxidation reaction rate constant between chemicals and ozone based on molecular structure and ambient temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140316755A1 (en) * 2011-11-30 2014-10-23 Dalian University Of Technology Method for predicting oxidation reaction rate constant between chemicals and ozone based on molecular structure and ambient temperature
CN103425872A (zh) * 2013-07-20 2013-12-04 大连理工大学 通过定量构效关系模型预测大气中有机物与羟基反应速率常数的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAO LI 等: "Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures", 《CHEMOSPHERE》 *
CHAO LI 等: "Predicting Gaseous Reaction Rates of Short Chain Chlorinated Paraffins with center dot OH:Overcoming the Difficulty in Experimental Determination", 《ENVIRONMENTAL SCIENCE&TECHNOLOGY》 *
YA-NAN WANG 等: "Estimation of Aqueous-Phase Reaction Rate Constants of Hydroxyl Radical with Phenols,Alkanes and Alcohols", 《QSAR&COMBINATORIAL SCIENCE》 *
王亚南: "典型有机污染物与·OH反应速率常数的QSAR研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678069A (zh) * 2016-01-06 2016-06-15 昆明理工大学 预测气态含硫化合物在低温水解条件下消除速率常数的方法
CN108416184A (zh) * 2017-02-09 2018-08-17 清华大学深圳研究生院 化合物的3d展示方法和系统
CN108416184B (zh) * 2017-02-09 2020-06-16 清华大学深圳研究生院 化合物的3d展示方法和系统
CN107330254A (zh) * 2017-06-16 2017-11-07 大连理工大学 预测水相中有机物与硫酸自由基水相反应速率常数的定量结构活性关系模型
CN107330254B (zh) * 2017-06-16 2020-08-14 大连理工大学 一种预测模型的建立方法
CN111696619A (zh) * 2019-03-13 2020-09-22 赣南师范大学 一种预测反应环境对反应活化能影响程度的方法
CN111696619B (zh) * 2019-03-13 2023-06-20 赣南师范大学 一种预测反应环境对反应活化能影响程度的方法
CN116312854A (zh) * 2023-03-06 2023-06-23 杭州以勒标准技术有限公司 一种预测磺胺甲基异恶唑类物质正辛醇水分配系数的方法
CN117497095A (zh) * 2023-11-17 2024-02-02 四川大学 基于特征融合和数据增强的含能材料键离解能的预测方法
CN117497095B (zh) * 2023-11-17 2024-06-04 四川大学 基于特征融合和数据增强的含能材料键离解能的预测方法

Also Published As

Publication number Publication date
CN104573863B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
CN104573863A (zh) 预测水相中有机化合物与羟基自由基反应速率常数的方法
Huerta et al. A spatiotemporal model for Mexico City ozone levels
Gonsior et al. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry
He et al. Effect of land use and climate change on runoff in the Dongjiang Basin of South China
Hui-Mean et al. Trivariate copula in drought analysis: a case study in peninsular Malaysia
Sadhukhan et al. The mathematics of life cycle sustainability assessment
CN103425872B (zh) 通过定量构效关系模型预测大气中有机物与羟基反应速率常数的方法
Tebakari et al. Impact of large‐scale reservoir operation on flow regime in the Chao Phraya River basin, Thailand
Zhao et al. Life cycle assessment of microplastics reveals their greater environmental hazards than mismanaged polymer waste losses
Yao et al. Land use as an important indicator for water quality prediction in a region under rapid urbanization
Kim et al. Forecasting abrupt depletion of dissolved oxygen in urban streams using discontinuously measured hourly time‐series data
CN110534163A (zh) 采用多参数线性自由能关系模型预测有机化合物的辛醇/水分配系数的方法
CN102999705A (zh) 通过定量构效关系和溶剂化模型预测不同温度下的正辛醇空气分配系数koa的方法
Assani et al. Temporal regionalization of 7-day low flows in the St. Lawrence watershed in Quebec (Canada)
CN103488901A (zh) 采用定量结构-活性关系模型预测有机化合物的土壤或沉积物吸附系数
CN102507630A (zh) 一种基于分子结构和环境温度预测化学物质与臭氧氧化反应速率常数的方法
CN103761431A (zh) 定量结构活性关系预测有机化学品鱼类生物富集因子
CN103345544B (zh) 采用逻辑回归方法预测有机化学品生物降解性
Liao et al. Prediction of photochemical properties of dissolved organic matter using machine learning
Yao et al. Heterogeneous preferences for shale water management: Evidence from a choice experiment in Fuling shale gas field, southwest China
Zhou et al. Integrating a mixed‐cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation
Wongso et al. A data‐driven framework to characterize state‐level water use in the United States
Ilyas et al. Prediction of the removal efficiency of emerging organic contaminants based on design and operational parameters of constructed wetlands
Zhao et al. Exploring the complexities of dissolved organic matter photochemistry from the molecular level by using machine learning approaches
Wang et al. The XGBoost and the SVM-based prediction models for bioretention cell decontamination effect

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant