CN104573267A - 一种评估特高压变电站进线段雷击安全性的仿真方法 - Google Patents

一种评估特高压变电站进线段雷击安全性的仿真方法 Download PDF

Info

Publication number
CN104573267A
CN104573267A CN201510038768.2A CN201510038768A CN104573267A CN 104573267 A CN104573267 A CN 104573267A CN 201510038768 A CN201510038768 A CN 201510038768A CN 104573267 A CN104573267 A CN 104573267A
Authority
CN
China
Prior art keywords
type frame
door type
simulation calculation
high voltage
optical cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510038768.2A
Other languages
English (en)
Other versions
CN104573267B (zh
Inventor
范冕
戴敏
万磊
李志军
李振强
王磊
何慧雯
娄颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Zhejiang Electric Power Co Ltd, China Electric Power Research Institute Co Ltd CEPRI filed Critical State Grid Corp of China SGCC
Priority to CN201510038768.2A priority Critical patent/CN104573267B/zh
Publication of CN104573267A publication Critical patent/CN104573267A/zh
Application granted granted Critical
Publication of CN104573267B publication Critical patent/CN104573267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明提供了一种评估特高压变电站进线段雷击安全性的仿真方法,该方法可用于仿真计算特高压变电站进线段与变电站构架在不同连接方式下的雷击故障发生时的瞬态电压水平值;根据瞬态过电压水平值评估多种不同连接方式的总仿真计算模型中OPGW光缆的雷击安全性和分析其断股的原因,根据雷击安全性最高的总仿真计算模型对特高压变电站中的门型架和OPGW光缆的连接方式进行调整。该仿真方法准确模拟特高压变电站进线段雷击过程;使得调整后的特高压变电站进线段的雷击安全性达到最高,大幅提高了特高压变电站进线段的雷击可靠性,从而提高了特高压输电系统的通信安全性和可靠性,保证了特高压输电系统的正常运行。

Description

一种评估特高压变电站进线段雷击安全性的仿真方法
技术领域
本发明涉及特高压输电技术领域,具体讲涉及一种评估特高压变电站进线段雷击安全性的仿真方法。
背景技术
特高压变电站的应用大幅提升了电网的输送能力。提高了送电量和送电距离,因此使电网的输送效率大幅提高。在特高压变电站的建设中,由于地线与变电站构架顶部之间的绝缘子并联间隙的距离较小,雷击进线段时,地线上的过电压会造成此间隙击穿;站内易发生出线OPGW光缆对变电站门型架放电而导致断股的事故。特高压变电站曾经多次发生出线OPGW光缆对变电站龙门架放电而断股的故障,严重影响特高压输电系统的通信安全和正常运行。
目前,现有的对特高压变电站的设计中,尚未有能够模拟上述故障的产生过程并准确获得提高雷击安全性的调整方法的应对方案;而随着特高压变电站的应用的日渐广泛,为保证特高压输电系统的通信安全和正常运行,如何设计一种能够有效模拟故障的产生过程且准确获其解决方案的方法,是本领域人员亟待解决的问题。
发明内容
有鉴于此,本发明提供一种评估特高压变电站进线段雷击安全性的仿真方法,该仿真方法能够准确且精细的模拟出特高压变电站进线段雷击过程;并获得对变电站进线段的最佳调整方案,使得根据最佳调整方案调整后的特高压变电站进线段的雷击安全性达到最高,大幅提高了特高压变电站进线段的雷击可靠性,从而提高了特高压输电系统的通信安全性和可靠性,并保证了特高压输电系统的正常运行。
一种评估特高压变电站进线段雷击安全性的仿真方法,特高压变电站进线段采用OPGW光缆,所述OPGW光缆的中部固定在所述特高压变电站的门型架的顶端,并沿着所述门型架垂下,所述OPGW光缆垂下后多余的部分盘绕成余缆圈,所述仿真方法包括如下步骤:
I-1、建立多种电磁暂态分布参数仿真计算模型;不同的所述电磁暂态分布参数仿真计算模型中的所述OPGW光缆与所述门型架的底部和门型架上的余缆头连接端的连接方式的不同;
I-2、搭建与所述电磁暂态分布参数仿真计算模型对应的雷电流的仿真电源模型;
I-3、将每个电磁暂态分布参数仿真计算模型和与其对应的雷电流的仿真电源模型搭均建成总仿真计算模型;
I-4、给定多个雷电波的电流幅值,并运行电磁暂态计算程序,分别计算不同的雷电波的电流幅值下,每个所述总仿真计算模型各处的瞬态过电压水平值;
I-5、根据瞬态过电压水平值评估多种不同连接方式的所述总仿真计算模型中所述OPGW光缆的雷击安全性和分析所述OPGW光缆断股的原因;
运行电磁暂态计算程序,根据所述总仿真计算模型对其雷击暂态过电压进行仿真计算,依据仿真计算结果对所述特高压变电站中的所述门型架和所述OPGW光缆的雷击安全性判断后对其接地方式进行调整。
优选的,多种不同连接方式的所述电磁暂态分布参数仿真计算模型包括仿真模型一、仿真模型二和仿真模型三;
所述仿真模型一为所述余缆圈与所述门型架的底部和门型架的余缆圈连接端均断开;
所述仿真模型二为所述余缆圈与门型架的底部连接且与所述余缆圈连接端断开;
所述仿真模型三为所述余缆圈与所述门型架的底部和所述余缆圈连接端均连接。
优选的,所述步骤I-1的具体步骤为:
II-1、选定需调整的特高压变电站中的所述门型架和OPGW光缆;并收集该特高压变电站的所述门型架和OPGW光缆的相关参数;
II-2、根据所述门型架和OPGW光缆的相关参数建立所述OPGW光缆与所述门型架的底部和门型架的余缆圈连接端的多种不同连接方式的所述电磁暂态分布参数仿真计算模型;建模中,将所述电磁暂态分布参数仿真计算模型进行多段细分建模,并加入所述余缆圈的电感参量。
优选的,所述余缆圈的电感参量的值为20~30μH。
优选的,所述多段细分建模的具体过程为:
将所述电磁暂态分布参数仿真计算模型中的OPGW光缆从所述门型架的顶部垂下的部分和与其连接的所述门型架均划分成长度相等的多段;对多段所述OPGW光缆和所述门型架分别进行细分建模。
优选的,所述门型架的相关参数包括门型架的主材、结构、形状和长度;所述OPGW光缆的相关参数包括OPGW光缆的长度、OPGW光缆的排列顺序与相对位置和所述余缆圈的半径。
优选的,所述步骤I-2的具体过程为:
将多种不同连接方式的所述电磁暂态分布参数仿真计算模型中的进线端处,均加载1个雷电波,使其沿OPGW光缆传播直至所述门型架的底部的接地末端;建成多种不同连接方式的所述雷电流的仿真电源模型。
优选的,根据瞬态过电压水平值评估多种不同连接方式的所述总仿真计算模型中的所述OPGW光缆的雷击安全性的评估过程为:
若其中一种连接方式的所述总仿真计算模型各处中的瞬态电压水平值在所述雷电波的数值为5kA和100kA的情况下均为最低值,则此种连接方式的所述总仿真计算模型即为雷击安全性最高的总仿真模型。
优选的,所述电磁暂态分布参数仿真计算模型、所述雷电流的仿真电源模型和所述总仿真计算模型均在电磁暂态计算程序中搭建。
优选的,所述电磁暂态计算程序为ATP-EMTP程序。
从上述的技术方案可以看出,本发明提供了一种评估特高压变电站进线段雷击安全性的仿真方法,该方法可用于仿真计算特高压变电站进线段与变电站构架在不同连接方式下的雷击故障发生时的瞬态电压水平值;根据瞬态过电压水平值评估多种不同连接方式的总仿真计算模型中OPGW光缆的雷击安全性和分析其断股的原因,根据雷击安全性最高的总仿真计算模型对特高压变电站中的门型架和OPGW光缆的连接方式进行调整。该仿真方法准确模拟特高压变电站进线段雷击过程;使得调整后的特高压变电站进线段的雷击安全性达到最高,大幅提高了特高压变电站进线段的雷击可靠性,从而提高了特高压输电系统的通信安全性和可靠性,保证了特高压输电系统的正常运行。
与最接近的现有技术比,本发明提供的技术方案具有以下优异效果:
1、本发明提供的技术方案,通过将建立的多种电磁暂态分布参数仿真计算模型与所述电磁暂态分布参数仿真计算模型对应的雷电流的仿真电源模型建成总仿真计算模型,实现了对雷击特高压变电站中进线段的仿真,提高了仿真的精度;保证了特高压变电站进线段的模拟雷击的可靠性。
2、本发明提供的技术方案,通过计算不同的雷电波的电流幅值下总仿真计算模型各处的瞬态过电压水平值,能够评估多种不同连接方式的总仿真计算模型中OPGW光缆的雷击安全性及分析其断股的原因并对其实际连接方式进行调整;实现了对特高压变电站中进线段的雷击安全性的准确评估,使得调整后的特高压变电站进线段的雷击安全性达到最高,大幅提高了特高压变电站进线段的雷击可靠性,从而提高了特高压输电系统的通信安全性和可靠性,保证了特高压输电系统的正常运行。
3、本发明提供的技术方案,电磁暂态分布参数仿真计算模型分多段细分建模,使得模型更加准确细致,从而保证了用来分析特高压变电站进线段断股的数据的可靠性,保证了对门型架和OPGW光缆的连接方式调整的准确性和有效性。
4、本发明提供的技术方案,通过将余缆圈的电感参量加入建模,使得被盘成多圈的余缆圈形成的电感在雷电波沿OPGW光缆传播时出现的瞬态电压被考虑进入建模中,找到已建工程可能出现的放电故障位置及原因。从而提高了建模的精度,实现了对特高压变电站中进线段的雷击安全性的准确评估,使得调整后的特高压变电站进线段的雷击安全性达到最高,保证了特高压输电系统的正常运行。
5、本发明提供的技术方案,应用广泛,具有显著的社会效益和经济效益。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简要地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的提高特高压变电站进线段雷击安全性的仿真方法示意图。
图2是本发明的仿真方法中的仿真模型一的结构示意图。
图3是本发明的仿真方法中的仿真模型二的结构示意图。
图4是本发明的仿真方法中的仿真模型三的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明的一种评估特高压变电站进线段雷击安全性的仿真方法,包括如下步骤:
I-1、建立多种电磁暂态分布参数仿真计算模型;不同的电磁暂态分布参数仿真计算模型中的OPGW光缆与门型架的底部和门型架上的余缆头连接端的连接方式的不同;
I-2、搭建与电磁暂态分布参数仿真计算模型对应的雷电流的仿真电源模型;
I-3、将每个电磁暂态分布参数仿真计算模型和与其对应的雷电流的仿真电源模型搭均建成总仿真计算模型;
I-4、给定多个雷电波的电流幅值,并运行电磁暂态计算程序,分别计算不同的雷电波的电流幅值下,每个总仿真计算模型各处的瞬态过电压水平值;
I-5、根据瞬态过电压水平值评估多种不同连接方式的总仿真计算模型中OPGW光缆的雷击安全性和分析OPGW光缆断股的原因;
运行电磁暂态计算程序,根据所述总仿真计算模型对其雷击暂态过电压进行仿真计算,依据仿真计算结果对所述特高压变电站中的所述门型架和所述OPGW光缆的雷击安全性判断后对其接地方式进行调整。
如图2至4所示,特高压变电站进线段采用OPGW光缆,OPGW光缆的中部固定在特高压变电站的门型架的顶端,并沿着门型架垂下,OPGW光缆垂下后多余的部分盘绕成余缆圈;
其中,雷击进线段时,由于地线与变电站构架顶部之间的绝缘子并联间隙的距离较小,地线上的过电压会造成此间隙击穿。因此,在雷电过电压下,地线和门型架顶部在电气上是相连的。OPGW光缆与门型架之间采用抱箍型胶头线夹固定,。OPGW引下线与门型架之间有一定的间距。两者之间有电位差。余缆被盘成多圈形成余缆圈,余缆圈形成一个电感(大约20~30μH)。雷电波沿OPGW光缆与门型架之间的OPGW光缆传播,在此处有阻抗突变,形成电压反射,出现较高的瞬态电压。所以,OPGW引下线与构架之间的最大电位差出现在余缆圈的头部。
其中,多种不同连接方式的电磁暂态分布参数仿真计算模型包括仿真模型一、仿真模型二和仿真模型三;
仿真模型一为余缆圈与门型架的底部和门型架的余缆圈连接端均断开;
仿真模型二为余缆圈与门型架的底部连接且与余缆圈连接端断开;
仿真模型三为余缆圈与门型架的底部和余缆圈连接端均连接。
其中,步骤I-1的具体步骤为:
II-1、选定需调整的特高压变电站中的门型架和OPGW光缆;并收集该特高压变电站的门型架和OPGW光缆的相关参数;
II-2、根据门型架和OPGW光缆的相关参数建立OPGW光缆与门型架的底部和门型架的余缆圈连接端的多种不同连接方式的电磁暂态分布参数仿真计算模型;建模中,将电磁暂态分布参数仿真计算模型进行多段细分建模,并加入余缆圈的电感参量。
其中,余缆圈的电感参量的值为20~30μH。
其中,本实施例中以五段细分建模为例说明多段建模的具体过程为:
将电磁暂态分布参数仿真计算模型中的OPGW光缆从门型架的顶部垂下的部分划分成长度相等的a、b、c、d、和e五段;与其连接的门型架划分成长度相等的A、B、C、D和E五段;对五段OPGW光缆和门型架分别进行细分建模。
其中,门型架的相关参数包括门型架的主材、结构、形状和长度;OPGW光缆的相关参数包括OPGW光缆的长度、OPGW光缆的排列顺序与相对位置和余缆圈的半径。
其中,步骤I-2的具体过程为:
将多种不同连接方式的电磁暂态分布参数仿真计算模型中的进线端处,均加载1个雷电波,使其沿OPGW光缆传播直至门型架的底部的接地末端;建成多种不同连接方式的雷电流的仿真电源模型。
其中,根据瞬态过电压水平值评估多种不同连接方式的总仿真计算模型中的OPGW光缆的雷击安全性的评估过程为:
若其中一种连接方式的总仿真计算模型各处中的瞬态电压水平值在雷电波的数值为5kA和100kA的情况下均为最低值,则此种连接方式的总仿真计算模型即为雷击安全性最高的总仿真模型。
其中,电磁暂态分布参数仿真计算模型、雷电流的仿真电源模型和总仿真计算模型均在电磁暂态计算程序中搭建。
其中,电磁暂态计算程序为ATP-EMTP程序。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,而这些未脱离本发明精神和范围的任何修改或者等同替换,其均在申请待批的本发明的权利要求保护范围之内。

Claims (10)

1.一种评估特高压变电站进线段雷击安全性的仿真方法,特高压变电站进线段采用OPGW光缆,所述OPGW光缆的中部固定在所述特高压变电站的门型架的顶端,并沿着所述门型架垂下,所述OPGW光缆垂下后多余的部分盘绕成余缆圈,其特征在于,所述仿真方法包括如下步骤:
I-1、建立多种电磁暂态分布参数仿真计算模型;不同的所述电磁暂态分布参数仿真计算模型中的所述OPGW光缆与所述门型架的底部和门型架上的余缆头连接端的连接方式的不同;
I-2、搭建与所述电磁暂态分布参数仿真计算模型对应的雷电流的仿真电源模型;
I-3、将每个电磁暂态分布参数仿真计算模型和与其对应的雷电流的仿真电源模型搭均建成总仿真计算模型;
I-4、给定多个雷电波的电流幅值,并运行电磁暂态计算程序,分别计算不同的雷电波的电流幅值下,每个所述总仿真计算模型各处的瞬态过电压水平值;
I-5、根据瞬态过电压水平值评估多种不同连接方式的所述总仿真计算模型中所述OPGW光缆的雷击安全性和分析所述OPGW光缆断股的原因;
运行电磁暂态计算程序,根据所述总仿真计算模型对其雷击暂态过电压进行仿真计算,依据仿真计算结果对所述特高压变电站中的所述门型架和所述OPGW光缆的雷击安全性判断后对其接地方式进行调整。
2.如权利要求1所述的仿真方法,其特征在于,多种不同连接方式的所述电磁暂态分布参数仿真计算模型包括仿真模型一、仿真模型二和仿真模型三;
所述仿真模型一为所述余缆圈与所述门型架的底部和门型架的余缆圈连接端均断开;
所述仿真模型二为所述余缆圈与门型架的底部连接且与所述余缆圈连接端断开;
所述仿真模型三为所述余缆圈与所述门型架的底部和所述余缆圈连接端均连接。
3.如权利要求1或2所述的仿真方法,其特征在于,所述步骤I-1的具体步骤为:
II-1、选定需调整的特高压变电站中的所述门型架和OPGW光缆;并收集该特高压变电站的所述门型架和OPGW光缆的相关参数;
II-2、根据所述门型架和OPGW光缆的相关参数建立所述OPGW光缆与所述门型架的底部和门型架的余缆圈连接端的多种不同连接方式的所述电磁暂态分布参数仿真计算模型;建模中,将所述电磁暂态分布参数仿真计算模型进行多段细分建模,并加入所述余缆圈的电感参量。
4.如权利要求3所述的仿真方法,其特征在于,所述余缆圈的电感参量的值为20~30μH。
5.如权利要求3或4所述的仿真方法,其特征在于,所述多段细分建模的具体过程为:
将所述电磁暂态分布参数仿真计算模型中的OPGW光缆从所述门型架的顶部垂下的部分和与其连接的所述门型架均划分成长度相等的多段;对多段所述OPGW光缆和所述门型架分别进行细分建模。
6.如权利要求3至5任一项所述的仿真方法,其特征在于,所述门型架的相关参数包括门型架的主材、结构、形状和长度;所述OPGW光缆的相关参数包括OPGW光缆的长度、OPGW光缆的排列顺序与相对位置和所述余缆圈的半径。
7.如权利要求1所述的仿真方法,其特征在于,所述步骤I-2的具体过程为:
将多种不同连接方式的所述电磁暂态分布参数仿真计算模型中的进线端处,均加载1个雷电波,使其沿OPGW光缆传播直至所述门型架的底部的接地末端;建成多种不同连接方式的所述雷电流的仿真电源模型。
8.如权利要求1所述的仿真方法,其特征在于,根据瞬态过电压水平值评估多种不同连接方式的所述总仿真计算模型中的所述OPGW光缆的雷击安全性的评估过程为:
若其中一种连接方式的所述总仿真计算模型各处中的瞬态电压水平值在所述雷电波的数值为5kA和100kA的情况下均为最低值,则此种连接方式的所述总仿真计算模型即为雷击安全性最高的总仿真模型。
9.如权利要求1所述的仿真方法,其特征在于,所述电磁暂态分布参数仿真计算模型、所述雷电流的仿真电源模型和所述总仿真计算模型均在电磁暂态计算程序中搭建。
10.如权利要求1或8所述的仿真方法,其特征在于,所述电磁暂态计算程序为ATP-EMTP程序。
CN201510038768.2A 2015-01-26 2015-01-26 一种评估特高压变电站进线段雷击安全性的仿真方法 Active CN104573267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510038768.2A CN104573267B (zh) 2015-01-26 2015-01-26 一种评估特高压变电站进线段雷击安全性的仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510038768.2A CN104573267B (zh) 2015-01-26 2015-01-26 一种评估特高压变电站进线段雷击安全性的仿真方法

Publications (2)

Publication Number Publication Date
CN104573267A true CN104573267A (zh) 2015-04-29
CN104573267B CN104573267B (zh) 2018-01-19

Family

ID=53089320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510038768.2A Active CN104573267B (zh) 2015-01-26 2015-01-26 一种评估特高压变电站进线段雷击安全性的仿真方法

Country Status (1)

Country Link
CN (1) CN104573267B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067911A (zh) * 2015-07-23 2015-11-18 国网电力科学研究院武汉南瑞有限责任公司 一种智能变电站弱电系统防雷性能评估方法
CN109948193A (zh) * 2019-02-26 2019-06-28 中铁第四勘察设计院集团有限公司 互联综合接地系统的铁路牵引变电所雷击安全性评价方法
CN113447768A (zh) * 2021-05-25 2021-09-28 南方电网科学研究院有限责任公司 多重雷下的断路器绝缘水平评估方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304838B1 (en) * 1997-01-31 2001-10-16 Linesoft Corporation Methods of increasing power handling capability of a power line
CN102946094A (zh) * 2012-10-10 2013-02-27 中国电力科学研究院 一种变电站特快速瞬态过电压的抑制措施选择方法
CN103646148A (zh) * 2013-12-20 2014-03-19 国家电网公司 一种特高压输电线路雷电反击性能仿真计算方法
CN103810339A (zh) * 2014-02-14 2014-05-21 国家电网公司 一种特高压输电线路大跨越段雷电反击性能的确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304838B1 (en) * 1997-01-31 2001-10-16 Linesoft Corporation Methods of increasing power handling capability of a power line
CN102946094A (zh) * 2012-10-10 2013-02-27 中国电力科学研究院 一种变电站特快速瞬态过电压的抑制措施选择方法
CN103646148A (zh) * 2013-12-20 2014-03-19 国家电网公司 一种特高压输电线路雷电反击性能仿真计算方法
CN103810339A (zh) * 2014-02-14 2014-05-21 国家电网公司 一种特高压输电线路大跨越段雷电反击性能的确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵丹丹等: "750kV架空地线接地方式及损耗研究", 《高压电器》 *
邢宁哲等: "OPGW进站光缆安全运行关键问题探讨", 《电气应用》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067911A (zh) * 2015-07-23 2015-11-18 国网电力科学研究院武汉南瑞有限责任公司 一种智能变电站弱电系统防雷性能评估方法
CN105067911B (zh) * 2015-07-23 2019-01-25 国家电网公司 一种智能变电站弱电系统防雷性能评估方法
CN109948193A (zh) * 2019-02-26 2019-06-28 中铁第四勘察设计院集团有限公司 互联综合接地系统的铁路牵引变电所雷击安全性评价方法
CN113447768A (zh) * 2021-05-25 2021-09-28 南方电网科学研究院有限责任公司 多重雷下的断路器绝缘水平评估方法及装置
CN113447768B (zh) * 2021-05-25 2022-03-15 南方电网科学研究院有限责任公司 多重雷下的断路器绝缘水平评估方法及装置

Also Published As

Publication number Publication date
CN104573267B (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
CN103236666B (zh) 输电线路差异化防雷方法
CN104502802A (zh) 输电线路雷击故障及雷击故障类型的识别方法及系统
CN103810323A (zh) 一种评估变电站通信设备接地体电位升的方法
CN103488815A (zh) 一种输电线路雷电绕击风险评估方法
CN104573267A (zh) 一种评估特高压变电站进线段雷击安全性的仿真方法
CN201876517U (zh) 大气过压侵入波监测系统
CN205752622U (zh) 一种开关柜母线、电缆头末端两用接地线
CN101477159A (zh) 特高压及超高压线路导线起晕电压高海拔修正方法
CN111597697A (zh) 特高压同塔双回线路避雷器布置优化方法
CN105321027A (zh) 输电线路的防雷方法和装置
CN102684134A (zh) 特高压交流双回直线塔的防雷系统
CN105067911A (zh) 一种智能变电站弱电系统防雷性能评估方法
CN100498357C (zh) 对高压输电系统防雷性能参数的测试方法
CN102509436A (zh) 输电线路杆塔接地状况远程在线监测系统
CN104833897A (zh) 一种变电站进线段雷击定位方法
CN110765731A (zh) 限流器的雷电过电压仿真计算方法、装置及计算机设备
Yang et al. Effects of segmented shield wires on signal attenuation of power-line carrier channels on overhead transmission lines—Part II: Signal attenuation results analysis
Yasuda et al. Analysis of lightning surge propagation in wind farm
CN112699576B (zh) 一种特高压直流雷电电磁暂态工程分析方法
CN114896815A (zh) 针对多分支配电线路的雷电监测终端布点分析方法及装置
Lundquist et al. Lightning impulse test levels for extruded HVDC cable systems
CN207281813U (zh) 一种输电线路防雷水平评估系统
CN103235192A (zh) 有害雷电概率分布分析方法
CN106227912A (zh) 获取简化风电场电缆系统不对称短路故障下最大暂态过电压的分析方法
CN202563012U (zh) 大型电站接地网阻抗参数测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant