CN104570073B - 一种适用于复杂高陡构造的双反射地震波成像方法 - Google Patents

一种适用于复杂高陡构造的双反射地震波成像方法 Download PDF

Info

Publication number
CN104570073B
CN104570073B CN201310483344.8A CN201310483344A CN104570073B CN 104570073 B CN104570073 B CN 104570073B CN 201310483344 A CN201310483344 A CN 201310483344A CN 104570073 B CN104570073 B CN 104570073B
Authority
CN
China
Prior art keywords
bireflectance
travel time
time field
migration
complicated high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310483344.8A
Other languages
English (en)
Other versions
CN104570073A (zh
Inventor
张兵
郑小鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Geophysical Research Institute
Original Assignee
China Petroleum and Chemical Corp
Sinopec Geophysical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Geophysical Research Institute filed Critical China Petroleum and Chemical Corp
Priority to CN201310483344.8A priority Critical patent/CN104570073B/zh
Publication of CN104570073A publication Critical patent/CN104570073A/zh
Application granted granted Critical
Publication of CN104570073B publication Critical patent/CN104570073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供了一种适用于复杂高陡构造的双反射地震波成像方法,属于石油地球物理勘探的地震资料处理领域。本方法包括:(1)将地震数据按照炮点和接收点之间的偏移距进行分组,得到分组后的地震数据;对地震数据进行处理得到速度模型;(2)利用所述速度模型计算下行旅行时场;(3)利用步骤(2)得到的下行旅行时场和步骤(1)得到的分组后的地震数据,逐组进行叠前深度偏移得到每组的偏移结果,将每组的偏移结果进行叠加得到常规偏移剖面;(4)在所述常规偏移剖面上拾取复杂高陡构造下面的主要反射层位的深度值;所述主要反射层位是指复杂高陡构造下面反射振幅最大的层位。

Description

一种适用于复杂高陡构造的双反射地震波成像方法
技术领域
本发明属于石油地球物理勘探的地震资料处理领域,具体涉及一种适用于复杂高陡构造的双反射地震波成像方法。
背景技术
对于高陡构造和垂直裂缝发育带,现有的偏移方法不适应,如单程波偏移方法的有效成像倾角小于60度,逆时偏移受制于模型精度,也难以对垂直构造进行准确成像。然而,双次反射波是经过水平界面和垂直界面两次反射的波场,对垂直构造成像具有天然优势,国内外的一些应用实例证明了该方法对垂直陡构造成像的能力。
国内关于双反射成像技术研究的文章比较少,还处于理论研究阶段。其中张宇、徐生等(2003)通过首先向下延拓激发波场和接收波场,然后再将回转波场向上传播,从而将波场的传播角度范围拓宽到180°,可以对任意倾角的构造进行成像,但不是严格意义上的双反射成像技术。王愫(2008)介绍了国外的双反射成像技术,通过波动方程全波场正演模拟揭示了双反射的波场特征,在此基础上研究了双反射偏移成像技术,并通过模型测试表明了双反射偏移成像技术可使地下垂直或接近垂直的界面得以准确成像。方伍宝、张兵(2009)基于单程波外推方法实现了二次反射波成像技术,并对山地资料进行了初步应用。
国外从事双反射成像技术研究的人员不多,但相对固定,他们连续发表了一系列文章,并申请了一些有关双反射的专利。NaumMarmalyevskyy(2005)提出了双反射成像的概念,并给出了理论分析和三维数据测试;Shengwen Jin(2006)通过设计成像条件和优化波场延拓,利用单程波方程对二次反射波进行了成像;Brian Link,NaumMarmalevsky,Khromova(2006,2007,2009,2010,2011)介绍了基于Kirchhoff积分的双反射成像方法,给出了该方法在北美碳酸盐裂缝区、复杂裂缝区的多个应用实例以及与测井资料的对比。Kostyukevych(2009)研究了转换PS波双反射偏移成像技术。NaumMarmalYevskyy等(2005,2008,2010)申请了双反射成像技术以及双反射和透射波联合成像技术的专利;KHROMOVA(2009)通过限制垂直反射层的位置范围,提高了岩石垂直裂缝的成像精度,并申请了相关的专利。
上述专利技术和文章仅仅研究或适用于地下水平反射界面比较平的情况,不适用于我国西部复杂山前带构造区域的高陡构造成像。
发明内容
本发明的目的在于解决上述现有技术中存在的难题,提供一种适用于复杂高陡构造的双反射地震波成像方法,利用双反射Kirchhoff叠前深度偏移技术,提供双反射成像技术,即针对复杂高陡断裂、盐丘等高陡构造成像问题,以双反射地震波的传播规律为基础,建立复杂构造双反射格林函数旅行时场,进而利用双反射地震波成像条件进行偏移成像,最终得到复杂高陡构造区域的双反射成像剖面。
本发明是通过以下技术方案实现的:
一种适用于复杂高陡构造的双反射地震波成像方法,所述方法包括以下步骤:
(1)将地震数据按照炮点和接收点之间的偏移距进行分组,得到分组后的地震数据;对地震数据进行处理得到速度模型;
(2)利用所述速度模型计算下行旅行时场;
(3)利用步骤(2)得到的下行旅行时场和步骤(1)得到的分组后的地震数据,逐组进行叠前深度偏移得到每组的偏移结果,将每组的偏移结果进行叠加得到常规偏移剖面;
(4)在所述常规偏移剖面上拾取复杂高陡构造下面的主要反射层位的深度值;所述主要反射层位是指复杂高陡构造下面反射振幅最大的层位,一般拾取一层;
(5)利用所述速度模型和步骤(4)拾取的主要反射层位,以主要反射层位为震源计算绕射源双反射旅行时场:
(6)根据步骤(4)中拾取的主要反射层位的深度值,从步骤(2)计算的下行旅行时场中根据坐标值选择主要反射层位深度处的常规旅行时值,并将该常规旅行时值加到步骤(5)中得到的绕射源双反射旅行时场中,即绕射源双反射旅行时场的每个坐标点都加上该绕射源处的常规旅行时值,得到经过双反射底面反射后的旅行时场;
(7)在每一个坐标位置处,对步骤(6)得到的旅行时场取最小值,即为该坐标位置处经过双反射底面的双反射旅行时场;
(8)利用步骤(2)得到的常规旅行时场和步骤(7)得到的双反射旅行时场,对步骤(1)得到的分组后的地震数据逐组进行双反射Kirchhoff叠前深度偏移,得到双反射偏移剖面;
(9)将步骤(3)中得到的常规偏移剖面与步骤(8)中得到的双反射偏移剖面按照最大值进行归一化之后进行相加,得到最终的深度偏移剖面。
所述步骤(1)中的,偏移距间隔取50米~500米。
所述步骤(3)中的叠前深度偏移是采用常规Kirchhoff叠前深度偏移实现的。
所述步骤(5)是这样实现的:
首先把震源放在步骤(4)中拾取的主要反射层位上,计算各个绕射源的最小到达旅行时场,此处利用动态规划法地震波走时计算,得到以双反射底面为绕射源的旅行时场。
所述步骤(7)中,每一个坐标位置处旅行时场的个数等于旅行时计算孔径除以旅行时计算步长。
所述步骤(9)是这样实现的:
将步骤(3)中得到的常规偏移剖面与步骤(8)中得到的双反射偏移剖面按照最大值进行归一化处理,使得常规偏移剖面和双反射偏移剖面的最大值相等,然后按照坐标值进行逐点相加,得到最终的深度偏移剖面。
与现有技术相比,本发明的有益效果是:
1)本发明可以对复杂反射层之上的高陡断裂、高陡盐丘进行精确成像,能够适应复杂的地下地质构造,具有实际应用价值。
2)本发明可以借助于常规Kirchhoff叠前深度偏移的速度模型,不需要另外建立速度模型,减少了处理工期和处理难度;
3)本发明可以重复利用常规Kirchhoff叠前深度偏移的旅行时场,双反射偏移仅需要额外计算双反射旅行时场,增加的计算量较小。
4)本发明只需要在常规Kirchhoff叠前深度偏移剖面上拾取复杂反射底面即可,增加的工作量较少。
5)本发明的偏移结果可与常规的Kirchhoff叠前深度偏移相结合,形成完整的复杂构造偏移剖面。
附图说明
图1本发明实施例中双反射旅行时场构建流程。
图2本发明实施例中常规的Kirchhoff振幅加权响应曲线。
图3本发明实施例中双反射偏移振幅加权响应曲线。
图4本发明实施例中常规Kirchhoff积分几何关系示意图。
图5本发明实施例中双反射Kirchhoff积分几何关系示意图。
图6本发明实施例中双反射偏移实现流程图。
图7本发明实施例中高陡断裂的测试模型。
图8本发明实施例中复杂反射层垂直高陡断裂图7的常规偏移结果。
图9本发明实施例中复杂反射层垂直高陡断裂图7的双反射成像结果。
图10本发明实施例中复杂反射层垂直高陡断裂图7的综合成像结果。
图11本发明实施例中高陡盐丘的测试模型。
图12本发明实施例中复杂反射层高陡盐丘图11常规偏移结果。
图13本发明实施例中复杂反射层高陡盐丘图11双反射成像结果。
图14本发明实施例中复杂反射层高陡盐丘图11综合成像结果。
具体实施方式
下面结合附图对本发明作进一步详细描述:
本发明针对勘探地震叠前深度偏移处理中深度域复杂高陡构造(如断裂、盐体边界等)的偏移成像问题,涉及地震勘探中深度域的构造成像。本发明利用双反射Kirchhoff叠前深度偏移技术,提供针对复杂高陡断裂、盐丘等高陡构造成像的双反射成像技术。
本发明为适用于复杂反射层之上的高陡构造双反射地震波成像技术方法,所述方法首先对偏移距分段,将输入道集按照偏移距进行分组;然后利用已有速度模型进行kirchhoff叠前深度偏移,产生常规的叠前深度偏移剖面;接着在偏移剖面上拾取复杂高陡构造下面的主要反射层位;再利用已有速度模型和拾取的反射层位进行双反射旅行时场计算;最后利用双反射旅行时场和双反射地震波成像条件进行偏移成像,得到复杂高陡构造的双反射成像剖面。
本发明针对复杂高陡断裂、盐丘等高陡构造成像问题,基于双反射地震波的传播规律,建立复杂反射层之上的高陡构造双反射叠前深度偏移旅行时场计算方法和成像条件,最终形成适合复杂高陡构造区域的双反射成像技术。
如图6所示,所述方法包括以下步骤:
(1)将具有一定分辨率、一定信噪比的地震数据按照炮点和接收点之间的偏移距进行分组,偏移距间隔取50米~500米不等;
(2)利用已有的速度模型进行下行旅行时场计算,该速度模型可通过现有的商业地震数据处理软件得到,如图7所示;
(3)利用步骤(2)计算的旅行时和步骤(1)得到的地震数据,逐组进行常规Kirchhoff叠前深度偏移,叠加每组的偏移结果得到常规偏移剖面,如图8所示。单个地震接收子波的偏移响应如图2所示。
常规的Kirchhoff积分公式可以简化表示为:
其中:R=tsr*v是振幅球面扩散补偿因子,是振幅倾角加权因子,ΩR,Ωs是积分区域,I(x,y,z)是偏移结果,U(ξ,η)是分组后的输入数据,具体如图4所示。
(4)在常规偏移剖面上拾取复杂高陡构造下面的主要反射层位的深度值,该层位的拾取可通过现有的商业地震数据处理软件得到;
(5)利用已有速度模型和拾取的反射层位计算双反射旅行时场,具体如图1所示:
首先把震源放在地下产生双反射的主要反射层位(步骤(4)中拾取的主要反射层位)上,计算步骤(4)拾取的主要反射层位上各个绕射源的最小到达旅行时场,此处利用球面波近似旅行时计算方法(请参考地震波旅行时计算,王华忠等,1999,石油地球物理勘探,第32卷第2期,155~163),得到以双反射底面为绕射源的旅行时场;
(6)从步骤(2)中得到双反射底面处每一个反射点的常规旅行时值,并将该常规旅行时值加到步骤(5)中得到的绕射源旅行时场中,得到经过双反射底面反射后的旅行时场;
(7)在每一个坐标位置处,对步骤(6)得到的旅行时场取最小值即为该坐标位置处经过双反射底面的双反射旅行时场。
(8)利用步骤(2)得到的常规旅行时场、步骤(7)得到的双反射旅行时场和步骤(1)得到的地震数据,逐组进行双反射Kirchhoff叠前深度偏移,得到双反射偏移剖面,如图9所示。单个地震接收子波的双反射偏移响应如图3所示。
对于双反射Kirchhoff偏移有如下公式:
其中:R=tsr_duplex*v是振幅球面扩散补偿因子,是振幅倾角加权因子,ΩR,ΩS是积分区域,I(x,y,z)是偏移结果,U(ξ,η)是分组后的输入数据,具体如图5所示。
(9)将步骤(3)中得到的常规偏移剖面与步骤(8)中得到的双反射偏移剖面按照最大值进行归一化之后进行相加,得到最终的深度偏移剖面,如图10所示。
为了更好的说明本发明的技术效果,在此提供两种典型类型的复杂高陡构造成像实例,一种是复杂反射面之上的高陡断裂模型,一种是复杂反射面之上的高陡盐丘构造模型。图7是复杂反射面之上的断裂模型;图8是常规Kirchhoff叠前深度偏移结果,如图8所示,该偏移结果不能够对高陡的断裂进行成像;图9是高陡断裂的双反射偏移结果,对比图8,可以明显的得到垂直断裂的偏移结果;两者进行归一化加权融合后的偏移剖面如图10所示,可以看出偏移剖面能够准确的刻画出复杂高陡断裂模型的结构。图11是复杂反射面之上的高陡盐丘构造模型,可以看出盐丘的两翼超过了90度;图12是常规Kirchhoff叠前深度偏移结果,如图12所示,该偏移结果不能够对高陡的盐丘两翼进行成像;图13是高陡盐丘构造的双反射偏移结果,对比图12,可以明显得到高陡盐丘两翼的偏移结果;两者进行归一化加权融合后的偏移剖面如图14所示,可以看出偏移剖面能够准确的刻画出复杂高陡盐丘模型的结构。以上两个实施例有力的说明了本发明的技术效果。
本发明提供一种适用于复杂反射层之上高陡构造的双反射地震波成像方法,属于石油地球物理勘探的地震资料处理领域。所述方法包括:对输入地震数据按照偏移距分组;利用已有速度模型进行常规kirchhoff叠前深度偏移旅行时场计算和偏移成像,产生常规的叠前深度偏移剖面;在偏移剖面上拾取复杂高陡构造下面的主要反射层位;利用已有速度模型和拾取的反射层位进行双反射旅行时场计算;利用双反射旅行时场、常规kirchhoff叠前深度偏移旅行时场和双反射地震波成像条件进行偏移成像,得到复杂高陡构造的双反射成像剖面;对两种偏移剖面进行叠加成像,得到目标区的复杂高陡构造的成像结果。该方法计算效率较高,能得到复杂反射层之上高陡构造的高质量成像结果。
上述技术方案只是本发明的一种实施方式,对于本领域内的技术人员而言,在本发明公开了应用方法和原理的基础上,很容易做出各种类型的改进或变形,而不仅限于本发明上述具体实施方式所描述的方法,因此前面描述的方式只是优选的,而并不具有限制性的意义。

Claims (4)

1.一种适用于复杂高陡构造的双反射地震波成像方法,其特征在于:所述方法包括:
(1)将地震数据按照炮点和接收点之间的偏移距进行分组,得到分组后的地震数据;对地震数据进行处理得到速度模型;
(2)利用所述速度模型计算下行旅行时场;
(3)利用步骤(2)得到的下行旅行时场和步骤(1)得到的分组后的地震数据,逐组进行叠前深度偏移得到每组的偏移结果,将每组的偏移结果进行叠加得到常规偏移剖面;
(4)在所述常规偏移剖面上拾取复杂高陡构造下面的主要反射层位的深度值;所述主要反射层位是指复杂高陡构造下面反射振幅最大的层位;
(5)利用所述速度模型和步骤(4)拾取的主要反射层位,以主要反射层位为震源计算绕射源双反射旅行时场,首先把震源放在步骤(4)中拾取的主要反射层位上,计算各个绕射源的最小到达旅行时场,此处利用动态规划法地震波走时计算,得到以双反射底面为绕射源的旅行时场;
(6)根据步骤(4)中拾取的主要反射层位的深度值,从步骤(2)计算的下行旅行时场中根据坐标值选择主要反射层位深度处的常规旅行时值,并将该常规旅行时值加到步骤(5)中得到的绕射源双反射旅行时场中,得到经过双反射底面反射后的旅行时场;
(7)在每一个坐标位置处,对步骤(6)得到的旅行时场取最小值,即为该坐标位置处经过双反射底面的双反射旅行时场;
(8)利用步骤(2)得到的常规旅行时场和步骤(7)得到的双反射旅行时场,对步骤(1)得到的分组后的地震数据逐组进行双反射Kirchhoff叠前深度偏移,得到双反射偏移剖面;
(9)将步骤(3)中得到的常规偏移剖面与步骤(8)中得到的双反射偏移剖面按照最大值进行归一化处理,使得常规偏移剖面和双反射偏移剖面的最大值相等,然后按照坐标值进行逐点相加,得到最终的深度偏移剖面。
2.根据权利要求1所述的适用于复杂高陡构造的双反射地震波成像方法,其特征在于:所述步骤(1)中的,偏移距间隔取50米~500米。
3.根据权利要求2所述的适用于复杂高陡构造的双反射地震波成像方法,其特征在于:所述步骤(3)中的叠前深度偏移是采用常规Kirchhoff叠前深度偏移实现的。
4.根据权利要求1所述的适用于复杂高陡构造的双反射地震波成像方法,其特征在于:所述步骤(7)中,每一个坐标位置处旅行时场的个数等于旅行时计算孔径除以旅行时计算步长。
CN201310483344.8A 2013-10-16 2013-10-16 一种适用于复杂高陡构造的双反射地震波成像方法 Active CN104570073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310483344.8A CN104570073B (zh) 2013-10-16 2013-10-16 一种适用于复杂高陡构造的双反射地震波成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310483344.8A CN104570073B (zh) 2013-10-16 2013-10-16 一种适用于复杂高陡构造的双反射地震波成像方法

Publications (2)

Publication Number Publication Date
CN104570073A CN104570073A (zh) 2015-04-29
CN104570073B true CN104570073B (zh) 2017-12-01

Family

ID=53086587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310483344.8A Active CN104570073B (zh) 2013-10-16 2013-10-16 一种适用于复杂高陡构造的双反射地震波成像方法

Country Status (1)

Country Link
CN (1) CN104570073B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106250101A (zh) * 2015-06-12 2016-12-21 中国石油化工股份有限公司 基于MapReduce的叠前偏移并行处理方法和装置
CN106597536A (zh) * 2016-12-07 2017-04-26 中国石油天然气股份有限公司 一种地震成像的处理方法及装置
CN106772616A (zh) * 2016-12-20 2017-05-31 中国石油天然气股份有限公司 一种地震成像的处理方法及装置
CN109726422B (zh) * 2018-07-17 2020-09-08 中国科学院力学研究所 基于绕射理论的圆柱阵列波浪力曲线计算步长确定方法
CN111665563B (zh) * 2019-03-05 2024-02-20 中石化石油工程技术服务有限公司 基于聚焦分析的叠前偏移垂向分辨率评价方法
CN112379431B (zh) * 2020-11-13 2024-02-02 中国地质科学院 复杂地表条件下ps波地震数据偏移成像方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053489A2 (en) * 2006-11-03 2008-05-08 Paradigm Geophysical (Luxembourg) S.A.R.L. System and method for full azimuth angle domain imaging in reduced dimensional coordinate systems
CN102540253A (zh) * 2011-12-30 2012-07-04 中国石油天然气股份有限公司 一种陡倾角地层及裂缝地震偏移方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110323B2 (en) * 2003-08-19 2006-09-19 Naum Marmalyevskyy Method, system and apparatus for interpreting seismic data using duplex waves
US8077544B2 (en) * 2008-03-28 2011-12-13 Westerngeco L.L.C. Dual-wavefield multiple attenuation
US7872942B2 (en) * 2008-10-14 2011-01-18 Pgs Geophysical As Method for imaging a sea-surface reflector from towed dual-sensor streamer data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053489A2 (en) * 2006-11-03 2008-05-08 Paradigm Geophysical (Luxembourg) S.A.R.L. System and method for full azimuth angle domain imaging in reduced dimensional coordinate systems
CN102540253A (zh) * 2011-12-30 2012-07-04 中国石油天然气股份有限公司 一种陡倾角地层及裂缝地震偏移方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双反射偏移(DWM)技术介绍及应用;王愫;《岩性油气藏》;20080615(第02期);全文 *

Also Published As

Publication number Publication date
CN104570073A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104570073B (zh) 一种适用于复杂高陡构造的双反射地震波成像方法
CN102540250B (zh) 基于方位保真角度域成像的裂缝型油气储层地震探测方法
CN102193109B (zh) 起伏地表采集的三维地震资料的直接叠前时间偏移方法
CN102866421B (zh) 识别小断距断点的散射波叠前成像方法
CN103091710B (zh) 一种逆时偏移成像方法及装置
CN102053261B (zh) 一种地震数据处理方法
CN107817526B (zh) 叠前地震道集分段式振幅能量补偿方法及系统
CN102176053B (zh) 提升波动方程叠前深度偏移成像效果的方法
CN108445533B (zh) 基于obs的长偏移距构建浅水区速度模型的方法
CN106597533A (zh) 一种用于山前带地震资料处理的深度域速度建模方法
CN102841379B (zh) 一种基于共散射点道集的叠前时间偏移与速度分析方法
CN103630934B (zh) 一种确定转换波检波点大的横波静校正量的方法
CN102879819B (zh) 保持地震波场运动学特征的地震数据处理方法及装置
CN105093301B (zh) 共成像点反射角角道集的生成方法及装置
CN103809216B (zh) 一种电阻率数据与地震数据联合速度建场方法
CN101738636B (zh) 一种三维vsp高斯束法多波联合偏移成像方法
CN104483705A (zh) 一种三维剩余静校正方法
CN105277978A (zh) 一种确定近地表速度模型的方法及装置
CN105093320A (zh) 针对高速结晶盐壳覆盖区层析静校正初至拾取方法
WO2008067588A1 (en) Method of building a sub surface velocity model
CN102692648A (zh) 一种基于大炮初至的折射波剩余静校正方法
CN104977615B (zh) 一种基于模型统计拾取的深水obc资料多次波压制方法
CN107656308B (zh) 一种基于时间深度扫描的共散射点叠前时间偏移成像方法
CN102156299A (zh) 一种各向异性速度模型建立的方法
CN102901984A (zh) 真地表地震数据倾角道集构建方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant