CN104569322A - 一种地下水动态模拟实验平台的构建方法 - Google Patents

一种地下水动态模拟实验平台的构建方法 Download PDF

Info

Publication number
CN104569322A
CN104569322A CN201510081303.5A CN201510081303A CN104569322A CN 104569322 A CN104569322 A CN 104569322A CN 201510081303 A CN201510081303 A CN 201510081303A CN 104569322 A CN104569322 A CN 104569322A
Authority
CN
China
Prior art keywords
type shell
water
box
pipe
pedotheque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510081303.5A
Other languages
English (en)
Other versions
CN104569322B (zh
Inventor
崔海炜
黄冠星
温吉利
靳胜海
陈玺
王金翠
刘春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hydrogeology and Environmental Geology CAGS
Original Assignee
Institute of Hydrogeology and Environmental Geology CAGS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hydrogeology and Environmental Geology CAGS filed Critical Institute of Hydrogeology and Environmental Geology CAGS
Priority to CN201510081303.5A priority Critical patent/CN104569322B/zh
Publication of CN104569322A publication Critical patent/CN104569322A/zh
Application granted granted Critical
Publication of CN104569322B publication Critical patent/CN104569322B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种地下水动态模拟实验平台的构建方法,具体是在地下水动态模拟实验平台的箱式壳体中安装配气管、曝气管、监测/加药孔管,再将各多孔配水板插入箱式壳体中,将箱式壳体分隔为若干样品空间,从确定的被研究流域地质剖面的包气带和含水层介质分层采集土壤样品,对土壤样品分别进行细化干燥处理后放入箱式壳体的样品空间,从箱式壳体的进水口由下至上连续注水,使箱式壳体中的土壤样品充分湿润至饱和。发明可构建一种典型的地下水文地质单元模型,通过对动态模拟装置的在线监测,能够实现全方位水动力场、水化学场的模拟再现,观测药品在包气带土壤及含水层中的运移过程,能够在实验室内“真实”再现野外水文地质条件。

Description

一种地下水动态模拟实验平台的构建方法
技术领域
本发明涉及一种环境水文地质模拟装置,具体地说是一种地下水动态模拟实验平台的构建方法。
背景技术
地下水资源在我国水资源中占有举足轻重的地位,在维护生态环境安全和经济社会健康发展等方面发挥着不可替代的作用。然而,随着社会经济发展,大量不合理排放的生活废水废物、工业废水废物、农业污染物等,以及地下水无序开发,导致大量污染物进入地下水环境,引起包气带土壤和地下水污染愈加严重,致使地下水环境污染问题日益复杂。
地下水污染是我国面临的严峻问题,控制和修复地下水污染是保护水资源的重要工作之一。包气带结构复杂,污染物通过水流等作用极其缓慢向下迁移转化,因此包气带既是污染物通道,也是污染物储存空间,导致污染物进入含水层,以及在含水层中运动都比较缓慢,污染往往是逐渐发生,发现地下水污染后,确定污染源也远不如地表水那么容易。因此,多年来,众多科研工作者不断开展地下水污染防治的科学研究工作,而探索此类科学问题必须依托相应的模拟地下水环境实验装置,因此设计合理的地下水动态模拟装置成为从事地下水污染修复研究热点问题。
研究发现,当今的地下水物理模拟装置存在如下缺点:首先,从功能上看现有模拟装置大多片面针对包气带或者含水层,缺乏包气带与饱水带两方面模拟功能的有机组合装置,从而缺少污染物从包气带进入饱水带途经模拟监测功能,不能够从整个循环流程上抓住污染物迁移转化过程,导致模拟装置缺乏整体性;其次,野外原位进行实验和数据采集往往难以实现。
发明内容
本发明的目的就是提供一种地下水动态模拟实验平台的构建方法,以解决现有模拟装置功能单一和模拟效果差的问题。
本发明是这样实现的:一种地下水动态模拟实验平台的构建方法,先设置地下水动态模拟实验平台,再进行构建操作。
所述地下水动态模拟实验平台包括有动态模拟装置、曝气装置、模拟雨淋装置和中控计算机。
所述动态模拟装置的主体为长方形的箱式壳体,所述箱式壳体采用有机玻璃板加工而成,外围采用不锈钢方管加固和支撑;在所述箱式壳体的前壁板与后壁板的内侧按100mm的间距设置有若干直立的凹形卡槽,所述卡槽的下沿与所述箱式壳体的底板相接触,所述卡槽的上沿与所述箱式壳体的上口平齐;在所述箱式壳体的前壁板与后壁板上的位置相对的两个所述卡槽之间插接一张矩形的多孔配水板,在所述多孔配水板的板面上密布有孔径为2mm的过流孔眼,所述多孔配水板的下沿与所述箱式壳体的底板相接触,所述多孔配水板的上沿与所述箱式壳体的上口相平齐;
在所述箱式壳体的一端侧壁板上接有分层设置的若干进水口,在所述箱式壳体的另一端的侧壁板上接有分层设置的若干出水口,所述进水口和所述出水口均由孔径为8mm的有机玻璃管制成,在所述箱式壳体的侧壁板上呈矩阵分布;
在所述箱式壳体的前壁板与后壁板上分别设置有若干分层设置的由孔径为8mm有机玻璃管制成的采样口,所述采样口分布在由所述多孔配水板分隔开的每个样品空间所对应的前壁板或后壁板上,在每个所述采样口上安装有取样器或者封接有封口塞,在所述箱式壳体的前壁板与后壁的两端分别设置有呈纵向排列的一列由孔径为8mm有机玻璃管制成的溢流口,在所述溢流口处安装有取样器或者接有带控制阀的溢流管;
在所述箱式壳体的底板上开有若干排水排泥孔,每个排水排泥孔上接有一个排水排泥管,所述排水排泥管用直径40mm的PVC管制成,在所述排水排泥孔的内孔口处封接有不锈钢纱网,在所述排水排泥管上接有排水排泥控制阀,所有所述排水排泥管的下端共接到一根排水排泥总管上;
在所述箱式壳体的底部架设有底盘,所述底盘由若干脚轮支撑连接;在所述底盘的两端各连接一个折叠式矩形吊架,在所述吊架上安放有高度可调的水箱,一个所述水箱通过连通管路连接到所述箱式壳体的所述进水口上,另一个所述水箱通过连通管路连接到所述箱式壳体的所述出水口上;在所述连通管路上分别安装有电磁阀和流量计,所述流量计上的数据线连接到所述中控计算机上;
在所述箱式壳体内的由所述多孔配水板分隔开的每个样品空间中装填有用于模拟典型水文地质单元的含水层介质,在每个样品空间中分别插接有若干直立的由管径为20mm的PVC管制成的监测/加药孔管,所述监测/加药孔管的底端与所述箱式壳体的底板相接触,所述监测/加药孔管的顶端与所述箱式壳体的上口相平齐;在所述监测/加药孔管的管壁上沿圆周对称开有四列孔径为2mm的孔眼,每列孔眼的上下间距为10mm,在所述监测/加药孔管的外侧包裹有不锈钢纱网;所述监测/加药孔管供在线监测装置的监测探头插入其中,所述监测探头为水质监测探头、水位监测探头、pH监测探头、氧化还原电位监测探头、电导率监测探头、温度监测探头及溶解氧监测探头中的一种或数种,所述监测探头的数据线连接到所述中控计算机上,以传输和处理所采集的实验检测信号。
在所述箱式壳体的上口设置有可掀起或扣合的密封盖。
所述曝气装置包括供气总管、配气管和曝气管;所述曝气管是在管径为10mm的PVC管上沿轴向开有双排气孔,每个气孔的孔径为1mm,每排气孔的孔距为5mm,两排气孔的圆心夹角为45°;所述曝气管水平设置在所述箱式壳体内的由所述多孔配水板分隔开的各样品空间的底部,所述曝气管的一端连接到插接在所述箱式壳体内各样品空间中的所述配气管上,所述配气管的上端连接到设置于所述箱式壳体上方的所述供气总管上,在每根所述配气管上装有曝气控制阀,所述供气总管由鼓风机或高压氮气瓶供气,通过调控所述曝气控制阀形成曝气。
所述模拟降雨装置包括供水总管、配水管、蛇形管和喷淋管,所述喷淋管包括一根分水管和垂直连接所述分水管上的若干喷淋管,所述喷淋管是管径为10mm的PVC管,在喷淋管上沿轴向开有双排水孔,每个水孔的孔径为1mm,每排水孔的孔距为5mm,两排水孔的圆心夹角为45°;所述喷淋管分成若干组,水平设置在所述箱式壳体的上方,每组所述喷淋管通过所述蛇形管连接到所述配水管的下端,各组的所述配水管的上端共接到所述供水总管上,在每根所述配水管上装有一个雨淋控制阀;所述供水总管由水泵或自来水管供水,通过调控所述雨淋控制阀形成降雨模拟。
所述构建操作包括以下步骤:
a、在所述箱式壳体中安装固定好配气管、曝气管、监测/加药孔管,用不锈钢纱网将各监测/加药孔管的上口包住,再用不锈钢纱网遮挡在箱式壳体底部的排水排泥孔上,然后将各多孔配水板依次插入到所述箱式壳体中对应的卡槽中,将箱式壳体分隔为若干样品空间;
b、从确定的被研究流域地质剖面的包气带和含水层介质分层采集土壤样品,土壤样品的采集方式是,根据被研究流域地质剖面,依次针对包气带结构和含水层介质分层采集土壤样品,采样时一般采取S形布点采样,在地形变化小、地力较均匀、采样单元面积较小的情况下,也可采用梅花布点取样;每个采样点的取土深度及采样量保持均匀一致,土壤样品的上层与下层的比例要相同;采集的土壤样品分别放入样品袋,写下同样的两张标签,在样品袋的内外各具一张,注明采样地点、日期、采样深度、土壤名称、编号等信息,同时做好采样记录;
c、将分层采集的土壤样品带回后,对土壤样品分别进行细化干燥处理,具体处理方式是,对所有采集的同层土壤样品进行均匀混合,即将采集的所有同层土壤样品放在塑料布上,压碎,混匀,摊铺成四方形,在土壤样品上划两条十字交叉的对角线,将土壤样品分成四份,把对角位置的两份土壤样品合并成一份,形成两份合并的土样,取其中一份留用;各层的留用土壤样品分别进行细化处理,具体是将土壤样品碾细,挑出其中的石子杂物,再将土壤样品置于烘干炉中,在60℃的温度下连续烘干12个小时,经烘干处理后,从炉内取出,用土壤振动机和50—200目的土壤筛对土壤样品进行过筛处理;
d、将细化干燥处理过的对应地理位置上的土壤样品依据被研究流域的地质结构关系,逐层均匀填入所述箱式壳体中的所有样品空间中,各样品空间中填入的同一含水层介质层的土壤样品的铺设厚度基本相同,并位于所述箱式壳体内的同一高度上,土壤样品的顶面高度比所述箱式壳体的上口低50mm;
e、根据实验规程的要求确定检测位置,并在所述箱式壳体内的相关的监测/加药孔管中插入对应监测装置的监测探头,插入深度按照实验规程的需要确定,所有监测装置的监测探头的数据线均连接到中控计算机上;根据实验规程的要求确定样品采集的位置,在所述箱式壳体上确定的采样口和溢流口上分别取下封口塞并安装好取样器;
f、从所述箱式壳体的进水口连续注水,先从最下层的进水口缓缓注入清水,每隔24小时向上变换一次进水口的位置,直到变换到最上层进水口并注水后,使所述箱式壳体中的土壤样品充分湿润至饱和,至此地下水动态模拟实验平台构建完毕。
地下水动态模拟实验平台是通过中控计算机对所述动态模拟装置的进水流量和水压的调控,实现对典型水文地质单元的含水层介质中地下水的流量、流速等参数的模拟和调控。中控计算机通过设置于动态模拟装置中各种监测装置的监测探头的信息采集,在动态模拟装置中实现对典型水文地质单元的含水层介质中地下水动力场、地下水化学场的模拟。
本发明可以构建一种典型的地下水文地质单元模型,在配备完善的在线监测系统之后,即可模拟污染物从地表进入到地下含水层过程,模拟污染物在地下水含水层中从补给区、径流区到排泄区的迁移转化过程,能够实现全方位水动力场、水化学场的模拟再现,可清晰地观测药品在包气带土壤及含水层中的运移过程,便于深入分析药品在包气带土壤及含水层中的溶质运移及迁移转化规律。
本发明改变了原有物理模拟装置的组成、结构和工作原理,实现包气带与饱水带的有机结合,不仅能满足包气带土壤非饱和渗流模拟,而且具有二维及多维流动模拟能力,能够在实验室内“真实”再现野外水文地质条件。
附图说明
图1是地下水动态模拟实验平台的结构示意图。
图2是箱式壳体的俯视结构示意图。
图3是喷淋管的平面布置图。
图4是曝气管的平面布置图。
图中:1、箱式壳体,2、进水口,3、溢流口,4、曝气控制阀,5、喷淋管,6、雨淋控制阀,7、蛇形管,8、配气管,9、采样口,10、出水口,11、卡槽,12、底盘,13、排水排泥管,14、排水排泥控制阀,15、脚轮,16、吊架,17、供水总管,18、配水管,19、供气总管,20、排水排泥总管,21、监测/加药孔管,22、排水排泥孔,23、多孔配水板,24、曝气管,25、加药管口。
具体实施方式
本发明地下水动态模拟实验平台的构建方法是先设置地下水动态模拟实验平台,然后再进行具体构建操作。
所述地下水动态模拟实验平台包括有动态模拟装置、曝气装置、模拟雨淋装置和中控计算机等四部分。
如图1所示,所述动态模拟装置的主体为长方形的箱式壳体1,箱式壳体1采用10mm厚是有机玻璃板加工而成,在有机玻璃板的外围用不锈钢方管加固和支撑。在箱式壳体1的前壁板与后壁板的内侧按100mm的间距设置有若干直立的凹形卡槽(图 2),卡槽11的下沿与箱式壳体1的底板相接触,卡槽11的上沿与箱式壳体1的上口平齐。在箱式壳体1的前壁板与后壁板上的位置相对的两个卡槽11之间插接一张矩形的多孔配水板23,在多孔配水板23的板面上密布有过流孔眼,过流孔眼的孔径为2mm,孔距为4mm,呈梅花阵分布。多孔配水板23的下沿与箱式壳体1的底板相接触,多孔配水板23的上沿与箱式壳体1的上口相平齐。
在箱式壳体1的右端侧壁板上接有分五层设置的进水口2,每层进水口有至少两个,形成矩阵式分布。在箱式壳体1的左端侧壁板上接有分五层设置的出水口10,每层出水口有至少两个,形成矩阵式分布。进水口2和出水口10均由孔径为8mm的有机玻璃管制成。这样就使得动态模拟装置从右到左依次形成地下水的补给区、径流区和排泄区。
图1中,在箱式壳体1的前壁板与后壁板上分别设置有分五层设置的采样口9,采样口9由孔径为8mm的有机玻璃管制成,分布在由多孔配水板23分隔开的每个样品空间所对应的前壁板或后壁板上。在每个采样口9上安装有取样器或者封接有封口塞。在箱式壳体1的前壁板与后壁的左右两端分别设置有呈纵向排列的一列溢流口3,溢流口由孔径为8mm有机玻璃管制成。在溢流口3处安装有取样器或者接有带控制阀的溢流管。
图1中,在箱式壳体1的底板上开有八个排水排泥孔22(图2),每个排水排泥孔22上接有一个排水排泥管13,排水排泥管13用直径40mm的PVC管制成,在排水排泥孔的内孔口处封接有不锈钢纱网,在排水排泥管13上接有排水排泥控制阀14,所有排水排泥管13的下端共接到一根横置的排水排泥总管20上。
在箱式壳体1的底部架设有底盘12,底盘12由6—8个脚轮15支撑连接。在底盘12的两端各连接一个折叠式矩形吊架16,在吊架16上安放有高度可调的水箱(未图示),右端的水箱通过连通管路连接到箱式壳体1右端的进水口2上,左端的水箱通过连通管路连接到箱式壳体1左端的出水口10上。在连通管路上分别安装有电磁阀和流量计,流量计上的数据线连接到中控计算机上。
在箱式壳体1内的由多孔配水板23分隔开的每个样品空间中装填有用于模拟典型水文地质单元的含水层介质,在每个样品空间中分别插接有若干直立的监测/加药孔管21,监测/加药孔管21由管径为20mm的PVC管制成。监测/加药孔管21的底端与箱式壳体1的底板相接触,监测/加药孔管21的顶端与箱式壳体1的上口相平齐。在监测/加药孔管21的管壁上沿圆周对称开有四列孔径为2mm的孔眼,每列孔眼的上下间距为10mm。在监测/加药孔管21的外侧包裹有不锈钢纱网,以防止泥沙封堵孔眼。各监测/加药孔管21供模拟实验使用的各种在线监测装置上的监测探头插入其中,所述监测探头为水质监测探头、水位监测探头、pH监测探头、氧化还原电位监测探头、电导率监测探头、温度监测探头及溶解氧监测探头等多种专业监测探头中的一种或数种,在一个监测/加药孔管21中可以插接一种或数种监测探头。监测探头的数据线连接到中控计算机上,以传输和处理所采集的实验检测信号。
本发明还制有一个封盖箱式壳体1上口的密封盖(未图示),密封盖可以是通过合页连接在箱式壳体1上,也可以是单独设置,在使用时扣盖到箱式壳体1的上口。
如图1、图4所示,所述曝气装置包括供气总管19、配气管8和曝气管24等部分。曝气管24是在管径为10mm的PVC管上沿轴向开有双排气孔,每个气孔的孔径为1mm,每排气孔的孔距为5mm,两排气孔的圆心夹角为45°。曝气管24水平设置在箱式壳体1内的由多孔配水板23分隔开的各样品空间的底部(图4),曝气管24的一端连接到配气管8上,配气管8插接在箱式壳体1内每个样品空间的边缘(图4),配气管8的上端连接到设置于箱式壳体1上方的供气总管19上(图1)。在每根配气管8上装有曝气控制阀4,供气总管19与鼓风机或高压氮气瓶连接,以提供空气或氮气,在曝气控制阀4的调控下,通入箱式壳体1内的含水介质中的空气或氮气形成曝气。
如图1、图3所示,所述模拟降雨装置设置在所述动态模拟装置的上方,包括有供水总管17、配水管18、蛇形管7和喷淋管5等部分。喷淋管5包括一根分水管和若干喷淋管5,若干喷淋管5平行设置,端部与一根分水管垂直连接,形成一组固接的喷淋管。喷淋管5是由管径为10mm的PVC管制成,在喷淋管上沿轴向开有双排水孔,每个水孔的孔径为1mm,每排水孔的孔距为5mm,两排水孔的圆心夹角为45°,两排水孔的对称中心面垂直向下设置。图3中的喷淋管有三组,水平设置在箱式壳体1的上方,每组喷淋管5通过一根蛇形管7连接到配水管18的下端,以适当调整每组喷淋管的设置高度;配水管18的上端共接到一根横置的供水总管17上,在每根配水管18上装有一个雨淋控制阀6,雨淋控制阀6为电磁阀。供水总管17与水泵或自来水管网相接,由水泵或自来水管供水,通过调控雨淋控制阀6形成降雨模拟。在供水总管17上开有一个加药管口25(图1),管口上设有封堵,打开后可向里加药,通过降雨的淋漓作用,将药品带入箱式壳体1内,从而可以在箱式壳体1内形成持续性的面源污染扩散模拟。模拟降雨装置可通过升降架吊装在箱式壳体1的上方,通过升降架的调节,使喷淋管距箱式壳体1顶面的高度在100~500mm之间,同时还可根据实验要求进行左右平移,平移距离可在400mm左右。模拟降雨装置的作用是模拟自然环境中的降雨,可以模拟小雨、中雨、大雨、暴雨等各种自然环境中所出现的降雨状态。
中控计算机是整个模拟实验平台的一部分,其功能是实时、自动的在线采集和处理各种传感器监测的水循环过程数据;通过对动态模拟装置进水流量和水压的调控,实现对典型水文地质单元的含水层介质中地下水的流量、流速等参数的模拟和调控。
中控计算机通过设置于动态模拟装置中各种监测装置的监测探头的信息采集,在动态模拟装置中实现对典型水文地质单元的含水层介质中地下水动力场、地下水化学场的模拟。
本发明构建方法包括以下操作步骤:
一、在动态模拟装置的箱式壳体1中安装固定好配气管18、曝气管24、监测/加药孔管21,用不锈钢纱网将各监测/加药孔管的上口包住,再用不锈钢纱网遮挡在箱式壳体底部的排水排泥孔22上,然后将各多孔配水板23依次插入到箱式壳体1中对应的卡槽11中,将箱式壳体1分隔为若干样品空间。
二、从确定的被研究流域地质剖面的包气带和含水层介质分层采集土壤样品,土壤样品的采集方式是,根据被研究流域地质剖面,依次针对包气带结构和含水层介质分层采集土壤样品,采样时一般采取S形布点采样,在地形变化小、地力较均匀、采样单元面积较小的情况下,也可采用梅花布点取样;每个采样点的取土深度及采样量保持均匀一致,土壤样品的上层与下层的比例要相同;采集的土壤样品分别放入样品袋,写下同样的两张标签,在样品袋的内外各具一张,注明采样地点、日期、采样深度、土壤名称、编号等信息,同时做好采样记录。
三、将分层采集的土壤样品带回后,对土壤样品分别进行细化干燥处理,具体处理方式是,对所有采集的同层土壤样品进行均匀混合,即将采集的所有同层土壤样品放在塑料布上,压碎,混匀,摊铺成四方形,在土壤样品上划两条十字交叉的对角线,将土壤样品分成四份,把对角位置的两份土壤样品合并成一份,形成两份合并的土样,取其中一份留用;各层的留用土壤样品分别进行细化处理,具体是将土壤样品碾细,挑出其中的石子杂物,再将土壤样品置于烘干炉中,在60℃的温度下连续烘干12个小时,经烘干处理后,从炉内取出,用土壤振动机和50—200目的土壤筛对土壤样品进行过筛处理。
四、将细化干燥处理过的对应地理位置上的土壤样品依据被研究流域的地质结构关系,逐层均匀填入所述箱式壳体中的所有样品空间中,各样品空间中填入的同一含水层介质层的土壤样品的铺设厚度基本相同,并位于所述箱式壳体内的同一高度上,土壤样品的顶面高度比所述箱式壳体的上口低50mm。
五、根据实验规程的要求确定检测位置,并在箱式壳体1内的相关的监测/加药孔管21中插入对应监测装置的监测探头,插入深度按照实验规程的需要确定,所有监测装置的监测探头的数据线均连接到中控计算机上;根据实验规程的要求确定样品采集的位置,在所述箱式壳体上确定的采样口和溢流口上分别取下封口塞并安装好取样器。
六、从箱式壳体1的进水口2连续注水,先从最下层的进水口2缓缓注入清水,每隔24小时向上变换一次进水口的位置,直到变换到最上层进水口并注水后,使箱式壳体1中的土壤样品充分湿润至饱和,通过由下往上缓慢进水,分段提高供水装置的水头,保证箱式壳体1中的填充物缓慢饱水,整个饱水过程充分保证多孔介质中的气体排出,至此地下水动态模拟实验平台构建完毕。利用中控计算机对水循环过程的各种参数进行实时、自动采集,并观察地下水动力场、地下水化学场的变化,得到相应的检测数据。利用计算机监控平台对水循环过程的各种参数进行实时、自动采集,并实时观测地下水环境及地下水迁移转化数据,从而实现地下水动态模拟实验的实时在线监测的目的。
本发明地下水动态模拟实验平台构建完毕,即可开始利用中控计算机和各种监控装置对水循环过程的各种参数进行实时、自动采集,并观察地下水迁移转化和变化数据。同时可以针对具体的研究目的,设定不同的实验研究方案。利用模拟雨淋装置、水位控制装置可以实现自然界不同水循环过程的模拟和再现,从而为不同的水循环过程研究服务。
本发明通过在动态模拟装置上的监测/加药孔管中添加药物,在动态模拟装置中实现典型水文地质单元的含水层介质中地下水的污染模拟;通过在模拟降雨装置的供水总管中添加药物(如硫酸、硝酸等),实现模拟含特殊污染因子(酸雨)的降雨过程,在动态模拟装置中实现典型水文地质单元的含水层介质受酸雨影响对地下水产生的污染模拟。
动态模拟装置中的填充材料在选定研究区选定取土点,按照实验需求进行分层取土,填充过程应严格按照取土顺序进行分层回填;含水层的填充材料主要采用级配河沙填充,粒径在0.1~2.0 mm,渗透系数在20m/d左右,以实现动态模拟装置内含水层中的水为典型潜水的模拟。包气带的填充材料主要采用砂质粉土,粒径在0.005~0.075 mm,渗透系数为0.5m/d左右,以实现动态模拟装置内典型包气带的模拟。
本发明中的模拟雨淋装置和水位控制如采用自来水直接供水控制,则供水主管和箱式壳体进水管前端必须安装防止水倒流的装置,避免在自来水停水或自来水供水压力波动时污水回流而污染自来水管网系统。
本发明与实验材料及药品接触部位采用的主要材料由高透明度有机玻璃、PVC管和316不锈钢组成,这些材料具有较强的耐腐蚀性,其物理、化学性能稳定,没有释出物质,可避免实验过程中由于设备本身材料使用不当而造成的人为污染。

Claims (1)

1.一种地下水动态模拟实验平台的构建方法,其特征是,先设置地下水动态模拟实验平台,再进行构建操作;
所述地下水动态模拟实验平台包括有动态模拟装置、曝气装置、模拟雨淋装置和中控计算机;
所述动态模拟装置的主体为长方形的箱式壳体,所述箱式壳体采用有机玻璃板加工而成,外围采用不锈钢方管加固和支撑;在所述箱式壳体的前壁板与后壁板的内侧按100mm的间距设置有若干直立的凹形卡槽,所述卡槽的下沿与所述箱式壳体的底板相接触,所述卡槽的上沿与所述箱式壳体的上口平齐;在所述箱式壳体的前壁板与后壁板上的位置相对的两个所述卡槽之间插接一张矩形的多孔配水板,在所述多孔配水板的板面上密布有孔径为2mm的过流孔眼,所述多孔配水板的下沿与所述箱式壳体的底板相接触,所述多孔配水板的上沿与所述箱式壳体的上口相平齐;
在所述箱式壳体的一端侧壁板上接有分层设置的若干进水口,在所述箱式壳体的另一端的侧壁板上接有分层设置的若干出水口,所述进水口和所述出水口均由孔径为8mm的有机玻璃管制成,在所述箱式壳体的侧壁板上呈矩阵分布;
在所述箱式壳体的前壁板与后壁板上分别设置有若干分层设置的由孔径为8mm有机玻璃管制成的采样口,所述采样口分布在由所述多孔配水板分隔开的每个样品空间所对应的前壁板或后壁板上,在每个所述采样口上安装有取样器或者封接有封口塞,在所述箱式壳体的前壁板与后壁的两端分别设置有呈纵向排列的一列由孔径为8mm有机玻璃管制成的溢流口,在所述溢流口处安装有取样器或者接有带控制阀的溢流管;
在所述箱式壳体的底板上开有若干排水排泥孔,每个排水排泥孔上接有一个排水排泥管,所述排水排泥管用直径40mm的PVC管制成,在所述排水排泥孔的内孔口处封接有不锈钢纱网,在所述排水排泥管上接有排水排泥控制阀,所有所述排水排泥管的下端共接到一根排水排泥总管上;
在所述箱式壳体的底部架设有底盘,所述底盘由若干脚轮支撑连接;在所述底盘的两端各连接一个折叠式矩形吊架,在所述吊架上安放有高度可调的水箱,一个所述水箱通过连通管路连接到所述箱式壳体的所述进水口上,另一个所述水箱通过连通管路连接到所述箱式壳体的所述出水口上;在所述连通管路上分别安装有电磁阀和流量计,所述流量计上的数据线连接到所述中控计算机上;
在所述箱式壳体内的由所述多孔配水板分隔开的每个样品空间中装填有用于模拟典型水文地质单元的含水层介质,在每个样品空间中分别插接有若干直立的由管径为20mm的PVC管制成的监测/加药孔管,所述监测/加药孔管的底端与所述箱式壳体的底板相接触,所述监测/加药孔管的顶端与所述箱式壳体的上口相平齐;在所述监测/加药孔管的管壁上沿圆周对称开有四列孔径为2mm的孔眼,每列孔眼的上下间距为10mm,在所述监测/加药孔管的外侧包裹有不锈钢纱网;所述监测/加药孔管供在线监测装置的监测探头插入其中,所述监测探头为水质监测探头、水位监测探头、pH监测探头、氧化还原电位监测探头、电导率监测探头、温度监测探头及溶解氧监测探头中的一种或数种,所述监测探头的数据线连接到所述中控计算机上,以传输和处理所采集的实验检测信号;
在所述箱式壳体的上口设置有可掀起或扣合的密封盖;
所述曝气装置包括供气总管、配气管和曝气管;所述曝气管是在管径为10mm的PVC管上沿轴向开有双排气孔,每个气孔的孔径为1mm,每排气孔的孔距为5mm,两排气孔的圆心夹角为45°;所述曝气管水平设置在所述箱式壳体内的由所述多孔配水板分隔开的各样品空间的底部,所述曝气管的一端连接到插接在所述箱式壳体内各样品空间中的所述配气管上,所述配气管的上端连接到设置于所述箱式壳体上方的所述供气总管上,在每根所述配气管上装有曝气控制阀,所述供气总管由鼓风机或高压氮气瓶供气,通过调控所述曝气控制阀形成曝气;
所述模拟降雨装置包括供水总管、配水管、蛇形管和喷淋管,所述喷淋管包括一根分水管和垂直连接所述分水管上的若干喷淋管,所述喷淋管是管径为10mm的PVC管,在喷淋管上沿轴向开有双排水孔,每个水孔的孔径为1mm,每排水孔的孔距为5mm,两排水孔的圆心夹角为45°;所述喷淋管分成若干组,水平设置在所述箱式壳体的上方,每组所述喷淋管通过所述蛇形管连接到所述配水管的下端,各组的所述配水管的上端共接到所述供水总管上,在每根所述配水管上装有一个雨淋控制阀;所述供水总管由水泵或自来水管供水,通过调控所述雨淋控制阀形成降雨模拟;
所述构建操作包括以下步骤:
a、在所述箱式壳体中安装固定好配气管、曝气管、监测/加药孔管,用不锈钢纱网将各监测/加药孔管的上口包住,再用不锈钢纱网遮挡在箱式壳体底部的排水排泥孔上,然后将各多孔配水板依次插入到所述箱式壳体中对应的卡槽中,将箱式壳体分隔为若干样品空间;
b、从确定的被研究流域地质剖面的包气带和含水层介质分层采集土壤样品,土壤样品的采集方式是,根据被研究流域地质剖面,依次针对包气带结构和含水层介质分层采集土壤样品,采样时一般采取S形布点采样,在地形变化小、地力较均匀、采样单元面积较小的情况下,也可采用梅花布点取样;每个采样点的取土深度及采样量保持均匀一致,土壤样品的上层与下层的比例要相同;采集的土壤样品分别放入样品袋,写下同样的两张标签,在样品袋的内外各具一张,注明采样地点、日期、采样深度、土壤名称、编号等信息,同时做好采样记录;
c、将分层采集的土壤样品带回后,对土壤样品分别进行细化干燥处理,具体处理方式是,对所有采集的同层土壤样品进行均匀混合,即将采集的所有同层土壤样品放在塑料布上,压碎,混匀,摊铺成四方形,在土壤样品上划两条十字交叉的对角线,将土壤样品分成四份,把对角位置的两份土壤样品合并成一份,形成两份合并的土样,取其中一份留用;各层的留用土壤样品分别进行细化处理,具体是将土壤样品碾细,挑出其中的石子杂物,再将土壤样品置于烘干炉中,在60℃的温度下连续烘干12个小时,经烘干处理后,从炉内取出,用土壤振动机和50—200目的土壤筛对土壤样品进行过筛处理;
d、将细化干燥处理过的对应地理位置上的土壤样品依据被研究流域的地质结构关系,逐层均匀填入所述箱式壳体中的所有样品空间中,各样品空间中填入的同一含水层介质层的土壤样品的铺设厚度基本相同,并位于所述箱式壳体内的同一高度上,土壤样品的顶面高度比所述箱式壳体的上口低50mm;
e、根据实验规程的要求确定检测位置,并在所述箱式壳体内的相关的监测/加药孔管中插入对应监测装置的监测探头,插入深度按照实验规程的需要确定,所有监测装置的监测探头的数据线均连接到中控计算机上;根据实验规程的要求确定样品采集的位置,在所述箱式壳体上确定的采样口和溢流口上分别取下封口塞并安装好取样器;
f、从所述箱式壳体的进水口连续注水,先从最下层的进水口缓缓注入清水,每隔24小时向上变换一次进水口的位置,直到变换到最上层进水口并注水后,使所述箱式壳体中的土壤样品充分湿润至饱和,至此地下水动态模拟实验平台构建完毕。
CN201510081303.5A 2015-02-15 2015-02-15 一种地下水动态模拟实验平台的构建方法 Expired - Fee Related CN104569322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510081303.5A CN104569322B (zh) 2015-02-15 2015-02-15 一种地下水动态模拟实验平台的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510081303.5A CN104569322B (zh) 2015-02-15 2015-02-15 一种地下水动态模拟实验平台的构建方法

Publications (2)

Publication Number Publication Date
CN104569322A true CN104569322A (zh) 2015-04-29
CN104569322B CN104569322B (zh) 2016-02-10

Family

ID=53085878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510081303.5A Expired - Fee Related CN104569322B (zh) 2015-02-15 2015-02-15 一种地下水动态模拟实验平台的构建方法

Country Status (1)

Country Link
CN (1) CN104569322B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651954A (zh) * 2015-12-30 2016-06-08 华北水利水电大学 一种地下水质监测系统
CN106128231A (zh) * 2016-07-27 2016-11-16 南京君源环保工程有限公司 一种湿地生态模拟系统
CN111960603A (zh) * 2020-08-14 2020-11-20 中国地质科学院水文地质环境地质研究所 含1,2-二氯乙烷地下水的模拟修复系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119951A (ja) * 2000-10-13 2002-04-23 Sumitomo Metal Mining Co Ltd 土壌及び地下水浄化の管理システム並びに浄化の管理方法
JP2004177358A (ja) * 2002-11-29 2004-06-24 National Institute Of Advanced Industrial & Technology 地質構造及び水理のモデリング装置
CN1715860A (zh) * 2005-07-07 2006-01-04 吴伟祥 多层取样型生活垃圾生态填埋反应器
CN201678510U (zh) * 2010-04-27 2010-12-22 滕新君 一种方便检修的高效地埋式污水处理设备
CN102225422A (zh) * 2011-04-26 2011-10-26 华北电力大学 一种双相真空抽吸模拟系统及其模拟方法
CN103148838A (zh) * 2013-02-06 2013-06-12 清华大学 地下水曝气修复过程模拟试验系统及方法
CN102359084B (zh) * 2011-07-29 2013-07-03 中国农业大学 河湖包气带渗滤性能的模拟调控系统及其方法
CN103529190A (zh) * 2013-10-22 2014-01-22 东南大学 一种曝气联合气相抽提二维试验装置
CN103994951A (zh) * 2014-04-25 2014-08-20 南开大学 环境污染物在地下水不同含水层中迁移转化的模拟装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119951A (ja) * 2000-10-13 2002-04-23 Sumitomo Metal Mining Co Ltd 土壌及び地下水浄化の管理システム並びに浄化の管理方法
JP2004177358A (ja) * 2002-11-29 2004-06-24 National Institute Of Advanced Industrial & Technology 地質構造及び水理のモデリング装置
CN1715860A (zh) * 2005-07-07 2006-01-04 吴伟祥 多层取样型生活垃圾生态填埋反应器
CN201678510U (zh) * 2010-04-27 2010-12-22 滕新君 一种方便检修的高效地埋式污水处理设备
CN102225422A (zh) * 2011-04-26 2011-10-26 华北电力大学 一种双相真空抽吸模拟系统及其模拟方法
CN102359084B (zh) * 2011-07-29 2013-07-03 中国农业大学 河湖包气带渗滤性能的模拟调控系统及其方法
CN103148838A (zh) * 2013-02-06 2013-06-12 清华大学 地下水曝气修复过程模拟试验系统及方法
CN103529190A (zh) * 2013-10-22 2014-01-22 东南大学 一种曝气联合气相抽提二维试验装置
CN103994951A (zh) * 2014-04-25 2014-08-20 南开大学 环境污染物在地下水不同含水层中迁移转化的模拟装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
崔海炜 等: "可渗透反应墙原位修复垃圾渗滤", 《环境工程学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651954A (zh) * 2015-12-30 2016-06-08 华北水利水电大学 一种地下水质监测系统
CN106128231A (zh) * 2016-07-27 2016-11-16 南京君源环保工程有限公司 一种湿地生态模拟系统
CN111960603A (zh) * 2020-08-14 2020-11-20 中国地质科学院水文地质环境地质研究所 含1,2-二氯乙烷地下水的模拟修复系统和方法

Also Published As

Publication number Publication date
CN104569322B (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
CN104569321B (zh) 一种基于地下水动态模拟实验平台的地表及含水层污染源模拟实验方法
CN104569323B (zh) 一种基于地下水动态模拟实验平台的自然降雨模拟实验方法
CN104596895B (zh) 地下水污染迁移转化与最终归宿一体化移动模拟平台及模拟实验方法
CN104597218B (zh) 地下水动态模拟实验平台
CN104596737B (zh) 一种基于地下水动态模拟实验平台的地下水位动态模拟实验方法
CN101556269B (zh) 地下水污染模拟槽
CN106908368B (zh) 模拟降雨土柱入渗试验系统
CN204116335U (zh) 土壤污染物迁移转化模拟实验装置
CN108318386B (zh) 河流污染质迁移及下渗规律的多功能模拟实验装置及方法
CN110681685A (zh) 污染场地土壤-地下水一体式模拟修复装置及方法
CN111157406B (zh) 非水相液体污染物在地下水中迁移及阻隔试验系统及方法
CN108147551A (zh) 一种浅层地下水氮污染运移双向原位阻断修复系统
CN104807961A (zh) 带有井管的人工岸带污染物迁移转化室内模拟装置
CN104569322B (zh) 一种地下水动态模拟实验平台的构建方法
CN109839491A (zh) 一种地下水回补模拟实验方法
CN210995782U (zh) 污染场地土壤-地下水一体式模拟修复装置
CN108447376A (zh) 一种评估纳米粒子在地下环境中运移和归趋的模拟实验装置和方法
CN212964501U (zh) 一种污染物在土壤-地下水体系运移过程的模拟装置
CN202929029U (zh) 地下水原位化学和生物修复模拟试验装置
CN204064859U (zh) 土壤污染物纵向迁移模拟装置
CN206223767U (zh) 一种模拟地下环境中污染物在饱和非均质含水层中迁移转化的三维可视模拟装置
CN115046890A (zh) 一种地下环境中污染物迁移转化和修复的三维模拟系统及方法
CN104713806A (zh) 一种平板式二维地下水水动力及水质模型装置
CN112007943B (zh) 原位注入高压旋喷注射修复地下水污染注入药剂扩散半径的确定方法
CN104655816B (zh) 一种基于地下水动态模拟实验平台的含水层氧化还原环境模拟实验的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160210

Termination date: 20190215

CF01 Termination of patent right due to non-payment of annual fee