CN104556360A - 一种工业生产废水的处理方法 - Google Patents

一种工业生产废水的处理方法 Download PDF

Info

Publication number
CN104556360A
CN104556360A CN201310471484.3A CN201310471484A CN104556360A CN 104556360 A CN104556360 A CN 104556360A CN 201310471484 A CN201310471484 A CN 201310471484A CN 104556360 A CN104556360 A CN 104556360A
Authority
CN
China
Prior art keywords
activated carbon
industrial production
sludge
powdered activated
production wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310471484.3A
Other languages
English (en)
Inventor
卢保中
许威谋
仓一华
陈洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Petrochemical Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Petrochemical Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN201310471484.3A priority Critical patent/CN104556360A/zh
Publication of CN104556360A publication Critical patent/CN104556360A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1226Particular type of activated sludge processes comprising an absorbent material suspended in the mixed liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种工业生产废水的处理方法,包括步骤:向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量为10~30mg/L;②进行活性污泥法处理。本发明效果十分明显,显著降低运行成本,活性炭与生化处理相结合的方法使得粉末活性炭可以自行再生,减少了再生装置。有本发明提供的技术方案对石化废水进行处理,COD去除率最高可达83.32%,氨氮去除率最高可达95.94%。

Description

一种工业生产废水的处理方法
技术领域
本发明涉及工业废水处理技术领域,特别涉及一种利用低剂量粉末活性炭对工业生产废水的处理方法。
背景技术
上世纪七十年代以来,美国和世界各国对工业废水提出了BPT(Best PracticalTreatment)、BCT(Best Conventional Treatment)和BAT或BATEA(Best available Treatmentor Best Available Treatment Economically Achievable)的概念。BPT和BCT水平是保证其一般性污染物的去除,而BAT则已发展为包括对特定化学污染物的去除。
为了改善工业废水处理的现状和提高对特定污染物的去除,现有技术中,通过向曝气池直接投加粉末活性炭的工艺受到了广泛关注。美国和欧洲的不少大型联合企业、高等院校和一些研究机构,都相继进行了大量的试验和中试规模的研究以及若干的生产性试验。粉末活性炭废水处理工艺,其粉末活性炭(PAC)投加量较大,为100~2000毫克/升,活性炭需湿式空气氧化或多膛炉再生,已广泛应用于化工、印染、农药等较难生物处理的废水处理,获得较好的环境效益和社会效益。但其缺点是:粉末活性炭价格较高,且投入量大,需再生装置,从而使得废水处理成本较高。
发明内容
为克服上述现有技术的不足,本发明提供一种工业生产废水的处理方法,将粉末活性炭处理工艺与活性污泥法联合使用,该工艺中采用低剂量粉末活性炭废水处理技术,所要解决的问题是减少粉末活性炭的加入量,在达到相同废水处理效果的前提下,降低运行成本,弥补现有技术存在的缺陷。
以下是本发明的技术方案:
一种工业生产废水的处理方法,包括如下步骤:
①向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量为10~30mg/L;
②进行活性污泥法处理。
上述粉末活性炭粒度为325目/吋>97%,亚甲基兰吸附为130ml/g,pH为5.0-7.5,含水率为0~10%
上述水体中粉末活性炭加入量最好为15~28mg/l;
上述活性污泥处理单元一次包括一个曝气工段与沉淀工段,含有粉末活性炭的污水先于曝气工段中与活性污泥均匀混合,污泥负荷控制为0.05~0.10kgBOD5/(kgMLVSS·d),曝气工段中曝气充氧,溶解氧控制为0.5~3.5mg/L,污水于曝气工段中的停留时间控制为6~10hr,随后于沉淀工段中沉降的含炭污泥部分进行回流,并排除部分含炭污泥作为剩余污泥进行处理。
本发明是在活性污泥法曝气池前投加粉末活性炭,使粉末活性炭与废水同时进入曝气池,在池内与活性污泥一起充分地混合和曝气,曝气池出流的混合液经沉淀池澄清,上清液即为处理的最终出流。沉淀池中沉降的含炭污泥部分进行回流,并排除部分含炭污泥作为剩余污泥进行处置。发明人经大量试验研究发现,当活性炭粉末投入到曝气池后,与池内的悬浮生物体结合,形成黑色的活性炭粉末污泥,改善了有机物的去除效果。这种作用并非单纯是由活性炭粉末的吸附作用所能完成的,而是由活性炭粉末与微生物两者结合共同作用的结果。这种共同作用,归纳起来包括生物降解作用的加强、活性炭粉末的生物再生作用和活性炭粉末对代谢最终产物的吸附三个相互影响而又有区别的方面所组成的。
生物降解作用的增强主要是指活性炭粉末的投加提高了活性污泥系统的有机物去除能力。曝气池内混合液与投加的活性炭粉末充分混合和接触,由于活性炭粉末强大的吸附作用所产生的中间结果是:提高了活性炭粉末表面的有机物浓度和氧浓度;延长了微生物与有机物的接触时间;增加了反应器内的生物质量浓度;吸附非絮凝细菌,改变了微生物的种群关系。同时,由于若干游离细菌在活性炭粉末表面和空隙中获得良好的生长场所,避免了动物微生物的吞噬危险,又逐步适应外界环境的变化冲击,而驯化成能降解难降解物质的特定菌族。不少文献还特别强调,活性炭粉末对有毒有害物质吸附而对微生物生产所起的保护作用。上述这些由投加活性炭粉末产生的影响,都无疑有利于生物降解作用的加强。
活性炭粉末的生物再生作用实质上指活性炭粉末吸附的有机物被生物利用而逐步降解的这一过程。也就是,吸附了有机物质的活性炭粉末的表面,在生物处理过程中获得更新,使其重新恢复吸附能力。活性炭粉末表面吸附的有机物可以由解吸和直接由细菌同化或酶的作用所去除。从氧吸收试验和反复投料试验的结果表明,可逆的吸附基质(如酚)是可以从活性炭粉末表面去除的,然而更复杂的基质其生物再生程度将受到某种限制。有研究者提出,某些复杂有机物的吸附是一种不可逆的吸附,而生物再生是由吸附可逆性所控制。以酚为基质的研究结果表示,在活性炭粉末的吸附和液相之间并没有取得平衡,同一研究中的解吸试验又表明,生物再生的控制机理是液相低浓度的酚解吸,而并不是细菌对吸附酚的直接作用。因而,投加活性炭粉末的主要优点是在于活性炭粉末对可吸附的有机物冲击负荷具有减幅和储备作用。
由此可见,本发明积极效果十分明显,在污水进入生化处理前,加入活性炭粉末取得了对活性污泥处理具有促进的功效,相对于单纯的生化处理或活性炭吸附处理,本发明的优点在于:运行成本显著降低,活性炭与生化处理相结合的方法使得粉末活性炭可以自行再生,减少了再生装置。有本发明提供的技术方案对石化废水进行处理,COD去除率最高可达83.32%,氨氮去除率最高可达95.94%。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
【实施例1~10】
一种工业生产废水的处理方法,包括步骤:
①向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量见表1,粉末活性炭的粒度为325目/吋>97%,粉末活性炭的亚甲基兰吸附为130ml/g,pH为5.0-7.5,含水率为0~10%,
②进行活性污泥法处理,包括曝气工段与沉淀工段:
所述的曝气工段是指含有粉末活性炭的废水水体与活性污泥在曝气池中混合、曝气充氧得到混合液,污泥负荷控制为0.05~0.10kgBOD5/(kgMLVSS·d),溶解氧控制为0.5~3.5毫克/升,停留时间控制为8.3小时,
所述的沉淀工段是指混合液经沉淀池澄清,上清液位处理的最终出流,沉降的含炭污泥部分进行回流,并排除部分含炭污泥作为剩余污泥进行处理。
在实施例中,CODcr采用GB11914-89测定,NH3-N采用GB7479-87进行测定,CODcr去除率定义式与NH3-N去除率定义式分别为:
各实施例污水为石油化工综合污水。进水水质为:
COD:243mg/L,氨氮:25.1mg/L,PH值6~9
采用粉末活性炭与活性污泥法组合工艺,运行工艺条件为:
溶解氧:0.5~3.5毫克/升
污泥浓度:2.7~4.4克/升
水力停留时间:8.3小时
温度:15~35℃
表1
粉末活性炭加入量(毫克/升)
实施例1 10
实施例2 20
实施例3 25
实施例4 30
实施例5 12
实施例6 14
实施例7 18
实施例8 16
实施例9 19
实施例10 23
表2
由表2各实施例结果表明,有本发明提供的技术方案对石化废水进行处理,COD去除率最高可达83.32%,氨氮去除率最高可达95.94%。本发明效果十分明显,显著降低运行成本,活性炭与生化处理相结合的方法使得粉末活性炭可以自行再生,减少了再生装置。
虽然本发明已将较佳实施例揭示如上,然其并非用以限定本发明的内容,任何熟悉此技艺者,在不脱离本发明的主要精神和内容范围内,当可作各种更动与润饰,因此发明的保护范围应以申请专利的实际权利要求范围为准。

Claims (5)

1.一种工业生产废水的处理方法,其特征在于,包括步骤:
①向废水水体中投入粉末活性炭,废水水体中粉末活性碳的加入量为10~30mg/L;
②进行活性污泥法处理。
2.根据权利要求1所述的一种工业生产废水的处理方法,其特征在于,所述的活性污泥法处理依次包括曝气工段与沉淀工段:
所述的曝气工段是指含有粉末活性炭的废水水体与活性污泥在曝气池中混合、曝气充氧得到混合液,污泥负荷控制为0.05~0.10kgBOD5/(kgMLVSS·d),溶解氧控制为0.5~3.5mg/L,停留时间控制为6~10hr,
所述的沉淀工段是指混合液经沉淀池澄清,上清液位处理的最终出流,沉降的含炭污泥部分进行回流,并排除部分含炭污泥作为剩余污泥进行处理。
3.根据权利要求1或2所述的一种工业生产废水的处理方法,其特征在于所述粉末活性炭的粒度为325目/吋>97%。
4.根据权利要求3所述的一种工业生产废水的处理方法,其特征在于所述粉末活性炭的亚甲基兰吸附为130ml/g,pH为5.0-7.5,含水率为0~10%。
5.根据权利要求1所述的一种废工业生产废水的处理方法,其特征在于废水水体中粉末活性炭加入量最好为15~28mg/l。
CN201310471484.3A 2013-10-11 2013-10-11 一种工业生产废水的处理方法 Pending CN104556360A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310471484.3A CN104556360A (zh) 2013-10-11 2013-10-11 一种工业生产废水的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310471484.3A CN104556360A (zh) 2013-10-11 2013-10-11 一种工业生产废水的处理方法

Publications (1)

Publication Number Publication Date
CN104556360A true CN104556360A (zh) 2015-04-29

Family

ID=53073562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310471484.3A Pending CN104556360A (zh) 2013-10-11 2013-10-11 一种工业生产废水的处理方法

Country Status (1)

Country Link
CN (1) CN104556360A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956553A (zh) * 2017-12-22 2019-07-02 株式会社久保田 一种选择性吸附与生物处理相结合的废水处理方法和装置
CN110127855A (zh) * 2019-05-10 2019-08-16 河南省图天新能源科技有限公司 一种新型沼液深度处理的强化生物脱氨工艺
CN113042019A (zh) * 2021-03-16 2021-06-29 潍坊现代农业与生态环境研究院 一种Vc发酵生产中废弃活性炭的再生方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328066B1 (ko) * 1997-12-16 2002-06-26 이구택 폐활성탄을 이용한 활성오니 공법의 폐수처리효율 개선방법
CN1597565A (zh) * 2004-08-18 2005-03-23 哈尔滨工业大学 利用硅藻土和活性污泥处理煤气废水及焦化废水的方法
CN103086503A (zh) * 2013-02-26 2013-05-08 广东新大禹环境工程有限公司 Pact工艺、装置及其活性炭-微生物菌胶团培养方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328066B1 (ko) * 1997-12-16 2002-06-26 이구택 폐활성탄을 이용한 활성오니 공법의 폐수처리효율 개선방법
CN1597565A (zh) * 2004-08-18 2005-03-23 哈尔滨工业大学 利用硅藻土和活性污泥处理煤气废水及焦化废水的方法
CN103086503A (zh) * 2013-02-26 2013-05-08 广东新大禹环境工程有限公司 Pact工艺、装置及其活性炭-微生物菌胶团培养方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956553A (zh) * 2017-12-22 2019-07-02 株式会社久保田 一种选择性吸附与生物处理相结合的废水处理方法和装置
CN110127855A (zh) * 2019-05-10 2019-08-16 河南省图天新能源科技有限公司 一种新型沼液深度处理的强化生物脱氨工艺
CN113042019A (zh) * 2021-03-16 2021-06-29 潍坊现代农业与生态环境研究院 一种Vc发酵生产中废弃活性炭的再生方法

Similar Documents

Publication Publication Date Title
Han et al. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite
Jia et al. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system
Li et al. In-situ remediation of sediment by calcium nitrate combined with composite microorganisms under low-DO regulation
Shi et al. A novel enhanced anaerobic biodegradation method using biochar and Fe (OH) 3@ biochar for the removal of nitrogen heterocyclic compounds from coal gasification wastewater
Han et al. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater
Liu et al. La-based-adsorbents for efficient biological phosphorus treatment of wastewater: synergistically strengthen of chemical and biological removal
Ming et al. Bioreactor performance using biochar and its effect on aerobic granulation
Zhong et al. Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: The interactive effects of biochar and electrochemistry
CN103803711A (zh) 一种固定化微生物处理氨氮废水的方法
Zheng et al. Fungal pellets immobilized bacterial bioreactor for efficient nitrate removal at low C/N wastewater
CN112047464B (zh) 一种耐受低剂量富里酸厌氧氨氧化颗粒污泥培养方法
Kong et al. Influence of modified biochar supported sulfidation of nano-zero-valent-iron (S-nZVI/BC) on nitrate removal and greenhouse gas emission in constructed wetland
Zhang et al. Cathodes of membrane and packed manganese dioxide/titanium dioxide/graphitic carbon nitride/granular activated carbon promoted treatment of coking wastewater in microbial fuel cell
Zhou et al. The effects of undulating seasonal temperature on the performance and microbial community characteristics of simultaneous anammox and denitrification (SAD) process
Zhao et al. Effects of nZVI dosing on the improvement in the contaminant removal performance of constructed wetlands under the dye stress
CN107055760A (zh) 一种基于氨氮废水实现高效亚硝化的方法
Li et al. Achieving deep autotrophic nitrogen removal from low strength ammonia nitrogen wastewater in aeration sponge iron biofilter: Simultaneous nitrification, Feammox, NDFO and Anammox
Yang et al. Performance and enhanced mechanism of a novel bio-diatomite biofilm pretreatment process treating polluted raw water
Liao et al. Efficient removal mechanism and microbial characteristics of tidal flow constructed wetland based on in-situ biochar regeneration (BR-TFCW) for rural gray water
Zhou et al. Four-stage biofilm anaerobic–anoxic–oxic–oxic system for strengthening the biological treatment of coking wastewater: COD removal behaviors and biokinetic modeling
CN1792872A (zh) 好氧生物流化床与微电解技术结合处理生活污水的方法
Wang et al. Response mechanism of microorganisms to the inhibition of endogenous pollution release by calcium peroxide
Zhang et al. Mitigating mechanism of nZVI-C on the inhibition of anammox consortia under long-term tetracycline hydrochloride stress: Extracellular polymeric substance properties and microbial community evolution
Zheng et al. Biochar fungal pellet based biological immobilization reactor efficiently removed nitrate and cadmium
CN104556360A (zh) 一种工业生产废水的处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150429

WD01 Invention patent application deemed withdrawn after publication