CN104538837A - Nanometer plasma array laser device and manufacturing method thereof - Google Patents
Nanometer plasma array laser device and manufacturing method thereof Download PDFInfo
- Publication number
- CN104538837A CN104538837A CN201510013055.0A CN201510013055A CN104538837A CN 104538837 A CN104538837 A CN 104538837A CN 201510013055 A CN201510013055 A CN 201510013055A CN 104538837 A CN104538837 A CN 104538837A
- Authority
- CN
- China
- Prior art keywords
- array
- nanowire
- layer
- electrode
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 239000002070 nanowire Substances 0.000 claims abstract description 56
- 239000004065 semiconductor Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 10
- 229910052681 coesite Inorganic materials 0.000 claims description 7
- 229910052906 cristobalite Inorganic materials 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 229910052682 stishovite Inorganic materials 0.000 claims description 7
- 229910052905 tridymite Inorganic materials 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 abstract 4
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 29
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 19
- 239000010408 film Substances 0.000 description 17
- 239000010409 thin film Substances 0.000 description 9
- 239000011787 zinc oxide Substances 0.000 description 9
- 238000005086 pumping Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 3
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于光学技术领域,具体涉及一种纳米等离子体阵列激光器及其制作方法。The invention belongs to the field of optical technology, and in particular relates to a nano-plasma array laser and a manufacturing method thereof.
背景技术Background technique
自从50年前第一台激光器产生以来,一些新的纳米技术把微型激光器提高到一个新的领域,掀起了纳米激光器的研究热潮。目前,广泛应用的纳米激光器主要有光泵浦纳米等离子体激光器和电泵浦半导体纳米线阵列激光器。Since the first laser was produced 50 years ago, some new nanotechnology has improved the micro-laser to a new field, which has set off a research boom of nano-laser. At present, the widely used nanolasers mainly include optically pumped nanoplasmonic lasers and electrically pumped semiconductor nanowire array lasers.
光泵浦纳米等离子体激光器由单根半导体硫化镉(CdS)纳米线横置于金属-介质复合膜上构成纳米等离子体激光器,通过脉冲激光泵浦实现激光发射;由于纳米线-复合膜界面的纳米级缝隙实现表面等离子体局域场增强效应进行等离子体-光混合泵浦,实现在纳米线端面激光发射,激发光模式受到表面等离子体的限制增强作用已突破衍射极限。但是,其有以下缺点:1)纳米线为单根,限制了激光器的功率;2)泵浦方式为脉冲激光泵浦,实际应用时会大大增加激光器的尺寸;3)工作温度为小于10K的超低温,不利于实际应用。Optically pumped nanoplasmonic laser consists of a single semiconductor cadmium sulfide (CdS) nanowire placed horizontally on a metal-dielectric composite film to form a nanoplasmonic laser, and laser emission is achieved through pulsed laser pumping; The nano-scale slit realizes the surface plasmon local field enhancement effect for plasmon-optical hybrid pumping, and realizes laser emission at the end of the nanowire. The excitation light mode is restricted by the surface plasmon and has broken through the diffraction limit. However, it has the following disadvantages: 1) the nanowire is single, which limits the power of the laser; 2) the pumping method is pulsed laser pumping, which will greatly increase the size of the laser in practical applications; 3) the working temperature is less than 10K Ultra-low temperature is not conducive to practical application.
电泵浦半导体纳米线阵列激光器制作过程是:衬底上制备n型氧化锌(ZnO)薄膜,在n型ZnO薄膜上生长掺杂锑(Sb)元素的p型ZnO纳米线(六角棱柱)阵列,室温下,在衬底和纳米线顶端分别制作电极进行电泵浦,激光从纳米线顶端发射;其缺点也十分明显:1)生长纳米线阵列无规则,不利于光束的合成和功率的合成;2)未进行光束合成,未完成激光器的封装,没有形成器件。The manufacturing process of the electrically pumped semiconductor nanowire array laser is: prepare an n-type zinc oxide (ZnO) film on the substrate, and grow a p-type ZnO nanowire (hexagonal prism) array doped with antimony (Sb) on the n-type ZnO film At room temperature, electrodes are made on the substrate and the top of the nanowires for electrical pumping, and the laser is emitted from the top of the nanowires; its disadvantages are also very obvious: 1) The growth of nanowire arrays is irregular, which is not conducive to the synthesis of beams and power ; 2) Beam synthesis is not performed, laser packaging is not completed, and devices are not formed.
基于氧化锌、硫化镉等材料的纳米激光器研究引起科学家广泛关注,通过引入半导体纳米线或纳米阵列,已经使微型激光器和纳米激光器达到衍射极限的水平,但由于衍射极限的存在,限制了半导体纳米激光器的最小尺寸。为了突破衍射极限的限制,近年来兴起的基于表面等离子体技术的研究在克服这种限制的方面取得了很大的进展,逐渐成为研究热点。Research on nano-lasers based on zinc oxide, cadmium sulfide and other materials has attracted widespread attention from scientists. By introducing semiconductor nanowires or nano-arrays, micro-lasers and nano-lasers have reached the level of the diffraction limit, but due to the existence of the diffraction limit, semiconductor nano-lasers have been limited. The minimum size of the laser. In order to break through the limitation of the diffraction limit, the research based on surface plasmon technology, which has emerged in recent years, has made great progress in overcoming this limitation, and has gradually become a research hotspot.
纳米等离子体激光器集合了半导体纳米激光器的几何限制和等离子体激光器中表面等离子体模场限制突破衍射极限的双重优点,利用半导体纳米线实现工作物质和谐振腔的集成,表面等离子体可突破光学衍射极限,因此纳米等离子体激光器具有体积小,单色性、方向性好,工作效率高,能量阈值低和响应时间短等优点,将广泛应用于军事领域如微小飞行器姿态调控、激光陀螺、激光制导跟踪、激光引信、激光通信和激光测距等,民用生活领域如超薄显示中的激光点阵光源等。Nanoplasmonic lasers combine the geometric limitations of semiconductor nanolasers and the dual advantages of surface plasmon mode field limitation in plasma lasers to break through the diffraction limit. Semiconductor nanowires are used to realize the integration of working materials and resonant cavities, and surface plasmons can break through optical diffraction. Therefore, nanoplasma lasers have the advantages of small size, good monochromaticity, good directionality, high work efficiency, low energy threshold and short response time, and will be widely used in military fields such as micro-aircraft attitude control, laser gyro, and laser guidance. Tracking, laser fuze, laser communication and laser ranging, etc., and civilian life fields such as laser dot matrix light sources in ultra-thin displays.
发明内容Contents of the invention
本发明目的是提供一种规则阵列、高功率、低阈值、室温下电泵浦纳米等离子体激光器。The object of the invention is to provide a regular array, high power, low threshold, electrically pumped nanometer plasma laser at room temperature.
本发明利用电泵浦发射的光子和表面金属介质薄膜的作用所激发的表面等离子体激元(SPP),对半导体纳米线中产生的光子束进行约束调控,具体采用如下技术方案:The present invention utilizes the surface plasmon polaritons (SPP) excited by the photons emitted by the electric pump and the surface metal dielectric film to constrain and regulate the photon beams generated in the semiconductor nanowires, and specifically adopts the following technical scheme:
本发明提供一种纳米等离子体阵列激光器,其结构如图1所示,图2是其结构拆分示意图,包括ITO(Indium Tin Oxide)电极1、开设有通孔阵列的绝缘介质层3、半导体衬底4及金属电极5,所述绝缘介质层3设置于半导体衬底4上表面,所述每一个通孔上均生长有半导体材料纳米线203,半导体纳米线203底端与半导体衬底4直接相连;所述半导体材料纳米线203侧面由内至外依次覆盖有绝缘介质薄膜202和金属薄膜201,其横截面如图3所示,由此构成纳米线阵列2;所述纳米线阵列2顶端与ITO电极1的底面直接相连;ITO电极1上表面设有微透镜阵列7,用于将纳米线阵列中每根纳米线顶端发射的激光会聚准直;纳米线阵列2的顶端被微透镜阵列7完全覆盖;金属电极5设于半导体衬底4上且不与绝缘介质层3接触;使用时,将金属电极5与ITO电极1分别连至电源6的两端,当电流达到阈值时,即可发射激光。The present invention provides a kind of nano-plasma array laser, its structure is as shown in Figure 1, and Figure 2 is a schematic diagram of its structural disassembly, including ITO (Indium Tin Oxide) electrode 1, an insulating medium layer 3 provided with a through-hole array, a semiconductor The substrate 4 and the metal electrode 5, the insulating medium layer 3 is arranged on the upper surface of the semiconductor substrate 4, a semiconductor material nanowire 203 is grown on each of the through holes, and the bottom end of the semiconductor nanowire 203 is connected to the semiconductor substrate 4 directly connected; the side of the semiconductor material nanowire 203 is covered with an insulating dielectric film 202 and a metal film 201 from the inside to the outside in sequence, and its cross section is shown in Figure 3, thereby forming a nanowire array 2; the nanowire array 2 The top is directly connected to the bottom surface of the ITO electrode 1; the upper surface of the ITO electrode 1 is provided with a microlens array 7 for converging and collimating the laser light emitted from the top of each nanowire in the nanowire array; the top of the nanowire array 2 is covered by a microlens The array 7 is completely covered; the metal electrode 5 is arranged on the semiconductor substrate 4 and does not contact the insulating medium layer 3; during use, the metal electrode 5 and the ITO electrode 1 are respectively connected to the two ends of the power supply 6, and when the current reaches the threshold value, The laser can be emitted.
所述半导体材料纳米线203的长度为1-20μm。The length of the semiconductor material nanowire 203 is 1-20 μm.
所述绝缘介质薄膜202的厚度为5-30nm。The thickness of the insulating dielectric film 202 is 5-30 nm.
所述金属薄膜201的厚度为10-70nm。The thickness of the metal thin film 201 is 10-70nm.
进一步的,所述绝缘介质层3开设的通孔为圆形并呈六角密排阵列排布,如图4所示,通孔直径为100-300nm。Further, the through holes opened in the insulating dielectric layer 3 are circular and arranged in a hexagonal close-packed array, as shown in FIG. 4 , and the diameter of the through holes is 100-300 nm.
本发明还提供所述纳米等离子体阵列激光器的制作方法,具体包括以下步骤:The present invention also provides a method for manufacturing the nanoplasma array laser, which specifically includes the following steps:
步骤1.衬底的加工制备:Step 1. Processing and preparation of the substrate:
在半导体衬底4上溅射一层绝缘介质层3,使用电子束蚀刻技术(EBL)将绝缘介质层3刻蚀出孔洞阵列结构,刻蚀深度为绝缘介质层3厚度即刚好刻蚀穿绝缘介质层3;A layer of insulating dielectric layer 3 is sputtered on the semiconductor substrate 4, and the insulating dielectric layer 3 is etched into a hole array structure by using electron beam etching technology (EBL). medium layer 3;
步骤2.半导体材料纳米线的生长制备:Step 2. Growth and preparation of semiconductor material nanowires:
采用化学气相沉积法(CVD),在绝缘介质层3的孔洞上生长半导体材料纳米线203;growing semiconductor material nanowires 203 on the holes in the insulating dielectric layer 3 by chemical vapor deposition (CVD);
步骤3.溅射镀膜:Step 3. Sputter Coating:
采用磁控溅射工艺,在每根半导体材料纳米线203的侧面由内向外依次溅射一层绝缘介质薄膜层202及金属薄膜201;金属薄膜201的作用是光激发产生表面等离子体实现对光场的反馈和调控,绝缘介质薄膜层202的作用是防止金属薄膜201与半导体衬底4接触导致纳米线顶端和衬底间的电极短路;Using the magnetron sputtering process, a layer of insulating dielectric film layer 202 and metal film 201 are sequentially sputtered on the side of each semiconductor material nanowire 203 from the inside to the outside; Feedback and regulation of the field, the function of the insulating dielectric thin film layer 202 is to prevent the contact between the metal thin film 201 and the semiconductor substrate 4, resulting in an electrode short circuit between the top of the nanowire and the substrate;
步骤4.电极工艺:Step 4. Electrode process:
采用磁控溅射工艺,在由半导体材料纳米线203构成的纳米线阵列2的顶端溅射一层ITO电极1,在报道提衬底4上蒸镀金属电极5,例如银(Ag)或金(Au)电极,所述金属电极5不与绝缘介质层3接触;Using the magnetron sputtering process, a layer of ITO electrode 1 is sputtered on the top of the nanowire array 2 composed of semiconductor material nanowires 203, and a metal electrode 5, such as silver (Ag) or gold, is vapor-deposited on the substrate 4. (Au) electrode, the metal electrode 5 is not in contact with the insulating medium layer 3;
步骤5.微透镜阵列光束合成:Step 5. Microlens array beam combining:
在ITO电极的上面盖上一块ITO玻璃,ITO玻璃的导电面与步骤4中溅射的ITO电极相接触;在ITO玻璃的非导电面上,采用光刻工艺刻蚀成微透镜阵列7,使用微透镜阵列将每束单根纳米线发射的激光合成为一束激光。A piece of ITO glass is covered on the top of the ITO electrode, and the conductive surface of the ITO glass is in contact with the ITO electrode sputtered in step 4; on the non-conductive surface of the ITO glass, adopt photolithography process to etch into microlens array 7, use The microlens array combines the laser light emitted by each individual nanowire into a single laser beam.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明将半导体纳米激光器和等离子体光泵浦激光器的双重优点相结合,实现了电泵浦和表面等离子体的限制约束作用及场局域增强效应相结合,并在两者的基础上,进行了光束合成,最终实现了电泵浦半导体纳米等离子体激光器的激光发射,并在激光功率等方面有较大的提高。The present invention combines the dual advantages of semiconductor nano lasers and plasma optical pumping lasers, realizes the combination of electrical pumping and surface plasmon confinement and field enhancement effects, and on the basis of the two, carries out The beam synthesis was achieved, and the laser emission of the electrically pumped semiconductor nanoplasma laser was finally realized, and the laser power was greatly improved.
附图说明Description of drawings
图1为本发明提供的纳米等离子体激光器的结构示意图;Fig. 1 is the structural representation of the nanoplasma laser provided by the present invention;
图2为本发明提供的纳米等离子体激光器的结构拆分示意图;Fig. 2 is the structural disassembly schematic diagram of the nanoplasmonic laser provided by the present invention;
图3为纳米线横截面示意图;3 is a schematic diagram of a cross-section of a nanowire;
图4为六角密排阵列排布示意图;Figure 4 is a schematic diagram of the arrangement of a hexagonal close-packed array;
图5为实施例提供的纳米等离子体激光器的呈六角密排的阵列光源位置示意图;Figure 5 is a schematic diagram of the position of the hexagonal close-packed array light source of the nanoplasma laser provided by the embodiment;
图6为实施例提供的纳米等离子体激光器的阵列光光强分布;Fig. 6 is the array light intensity distribution of the nanoplasmonic laser provided by the embodiment;
图7为实施例提供的纳米等离子体激光器的阵列光合成灰度图。Fig. 7 is a grayscale image of the array photosynthesis of the nanoplasmonic laser provided in the embodiment.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步说明。The present invention will be further described below in conjunction with embodiment.
实施例Example
本实施例提供一种纳米等离子体阵列激光器,其结构如图1所示,图2是其结构拆分示意图,纳米线阵列由19个相干光源组成,如图5所示,每个相干光源完全相同,工作模式为TEM00模,部分具体材料、参数及尺寸如下:This embodiment provides a nanoplasma array laser, the structure of which is shown in Figure 1, and Figure 2 is a schematic diagram of its structural disassembly, the nanowire array is composed of 19 coherent light sources, as shown in Figure 5, each coherent light source is completely Same, the working mode is TEM 00 mode, some specific materials, parameters and dimensions are as follows:
所述半导体衬底4为氮化镓(GaN)衬底;The semiconductor substrate 4 is a gallium nitride (GaN) substrate;
所述绝缘介质层3为SiO2薄膜层,其厚度为300nm;Described insulating dielectric layer 3 is SiO 2 film layer, and its thickness is 300nm;
所述SiO2薄膜层3开设有呈六角密排阵列排布的圆形通孔阵列,如图4所示,通孔直径为200nm,相邻通孔的中心间距为1μm;每个通孔位置均生长有ZnO纳米线203,其长度为3μm;The SiO2 thin film layer 3 is provided with a circular through-hole array arranged in a hexagonal close-packed array, as shown in Figure 4, the diameter of the through-hole is 200nm, and the center-to-center distance between adjacent through-holes is 1 μm; the position of each through-hole All grow ZnO nanowires 203, the length of which is 3 μm;
所述ZnO纳米线侧面由内至外依次覆盖有一层厚度为10nm的SiO2薄膜202和一层厚度为30nm的Ag薄膜201;The side of the ZnO nanowire is covered with a layer of SiO2 film 202 with a thickness of 10nm and an Ag film 201 with a thickness of 30nm from the inside to the outside;
ITO电极1上表面设置的微透镜阵列7中,每个微透镜的直径及其曲率半径均相同,且分别为100μm和50μm;In the microlens array 7 provided on the upper surface of the ITO electrode 1, the diameter and radius of curvature of each microlens are the same, and are 100 μm and 50 μm respectively;
氮化镓衬底4上表面设有不与SiO2薄膜层3接触的Au电极5,使用时,将金属电极5与ITO电极1分别连至电压电流源6的两端,加载合适的电流即可发射激光。The upper surface of the gallium nitride substrate 4 is provided with an Au electrode 5 that is not in contact with the SiO2 thin film layer 3. When in use, the metal electrode 5 and the ITO electrode 1 are respectively connected to the two ends of the voltage and current source 6, and an appropriate current is applied. Can emit laser light.
本实施例利用matlab建立相应的程序来模拟相干合成的效果模拟,模拟了距离激光光源5m处的相干合成效果,阵列光光强分布、阵列光合成灰度图分别如图6、7所示,并得到合成效率即z平面与光源位置对应区域的能量占系统总功率的比值为54.9%。This embodiment uses matlab to establish a corresponding program to simulate the effect of coherent combination. The coherent combination effect at a distance of 5m from the laser light source is simulated. The light intensity distribution of the array light and the grayscale image of the array light synthesis are shown in Figures 6 and 7 respectively, and The combined efficiency, that is, the ratio of the energy in the area corresponding to the z-plane and the position of the light source to the total power of the system, is 54.9%.
本实施例提供的纳米等离子体阵列激光器的制作方法具体如下:The fabrication method of the nanoplasma array laser provided in this embodiment is specifically as follows:
步骤1.衬底的加工制备:Step 1. Processing and preparation of the substrate:
在p型氮化镓(GaN)衬底4上溅射一层SiO2薄膜层3,使用电子束蚀刻技术(EBL)将SiO2薄膜层刻蚀出孔洞阵列结构,刻蚀深度即为SiO2薄膜层厚度以达到刚好刻蚀穿SiO2薄膜层;A layer of SiO 2 film layer 3 is sputtered on a p-type gallium nitride (GaN) substrate 4, and the SiO 2 film layer is etched into a hole array structure using electron beam etching technology (EBL), and the etching depth is SiO 2 The thickness of the film layer is so as to achieve just etching through the SiO2 film layer;
步骤2.ZnO纳米线的生长制备:Step 2. Growth and preparation of ZnO nanowires:
采用化学气相沉积法(CVD),在SiO2薄膜层3的孔洞上生长n型ZnO纳米线203;Using chemical vapor deposition (CVD), grow n-type ZnO nanowires 203 on the holes in the SiO2 film layer 3;
一般于700℃环境中以锌(Zn)片为Zn源生长ZnO纳米线203,生长时间30min,生长完成后自然降温;Generally, ZnO nanowires 203 are grown in a 700°C environment using zinc (Zn) sheets as the Zn source, and the growth time is 30 minutes, and the temperature is naturally cooled after the growth is completed;
步骤3.溅射镀膜:Step 3. Sputter Coating:
采用磁控溅射工艺,在每根ZnO纳米线203的侧面由内向外依次溅射一层SiO2薄膜层202及Ag薄膜201;Ag薄膜的作用是光激发产生表面等离子体实现对光场的反馈和调控,SiO2薄膜层的作用是防止Ag薄膜与衬底接触导致纳米线顶端和衬底间的电极短路;Using the magnetron sputtering process, a layer of SiO2 thin film 202 and Ag thin film 201 are sequentially sputtered on the side of each ZnO nanowire 203 from the inside to the outside; Feedback and regulation, the function of the SiO 2 thin film layer is to prevent the contact between the Ag thin film and the substrate and cause the electrode short circuit between the top of the nanowire and the substrate;
步骤4.电极工艺:Step 4. Electrode process:
采用磁控溅射工艺,在纳米线阵列2顶端溅射一层ITO电极1,在氮化镓衬底4上蒸镀金属电极5,例如银(Ag)或金(Au)电极,所述电极5不与SiO2层3接触;Using the magnetron sputtering process, a layer of ITO electrode 1 is sputtered on the top of the nanowire array 2, and a metal electrode 5, such as a silver (Ag) or gold (Au) electrode, is evaporated on the gallium nitride substrate 4. 5 is not in contact with the SiO 2 layer 3;
步骤5.微透镜阵列光束合成:Step 5. Microlens array beam combining:
在ITO电极的上面,盖上一块ITO玻璃,ITO玻璃的导电面与步骤4中溅射的ITO电极相接触,并在ITO电极和ITO玻璃导电面的接触夹层中间引出一个电极便于连接电源;在ITO玻璃的非导电面上,采用光刻工艺刻蚀成微透镜阵列7,使用微透镜阵列将每束单根纳米线发射的激光合成为一束激光。Above the ITO electrode, cover a piece of ITO glass, the conductive surface of the ITO glass is in contact with the ITO electrode sputtered in step 4, and draws an electrode in the middle of the contact interlayer between the ITO electrode and the ITO glass conductive surface to facilitate connection to the power supply; The non-conductive surface of the ITO glass is etched into a microlens array 7 by a photolithography process, and the laser light emitted by each single nanowire is synthesized into a laser beam by using the microlens array.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510013055.0A CN104538837B (en) | 2015-01-09 | 2015-01-09 | Nanometer plasma array laser device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510013055.0A CN104538837B (en) | 2015-01-09 | 2015-01-09 | Nanometer plasma array laser device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104538837A true CN104538837A (en) | 2015-04-22 |
CN104538837B CN104538837B (en) | 2017-05-10 |
Family
ID=52854330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510013055.0A Expired - Fee Related CN104538837B (en) | 2015-01-09 | 2015-01-09 | Nanometer plasma array laser device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104538837B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105154974A (en) * | 2015-09-28 | 2015-12-16 | 中国科学院重庆绿色智能技术研究院 | Method for stroke growth of ZnO |
CN105322439A (en) * | 2015-11-24 | 2016-02-10 | 电子科技大学 | Light-beam-controllable nanowire laser based on patterning growth |
CN105807466A (en) * | 2016-05-11 | 2016-07-27 | 电子科技大学 | Production of photoelectric regulation metal nanoparticle and liquid crystal array structural box |
CN109553066A (en) * | 2018-11-20 | 2019-04-02 | 上海交通大学 | A kind of method of nano material plasma surface transformation |
CN109830886A (en) * | 2019-03-19 | 2019-05-31 | 北京工业大学 | A kind of nano plasma laser array and preparation method thereof of multi-cavity coupling enhancing |
CN113013731A (en) * | 2021-02-19 | 2021-06-22 | 苏州科技大学 | Flexible electric pumping ZnO nanowire laser array structure and preparation method thereof |
CN114256737A (en) * | 2021-12-15 | 2022-03-29 | 电子科技大学 | Narrow linewidth DFB nanoplasma laser and preparation method thereof |
CN114678760A (en) * | 2022-03-25 | 2022-06-28 | 苏州浪潮智能科技有限公司 | Nanowire laser |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1804350A1 (en) * | 2005-12-27 | 2007-07-04 | Interuniversitair Microelektronica Centrum | A semiconductor laser comprising elongate nanostructures |
US20090045720A1 (en) * | 2005-11-10 | 2009-02-19 | Eun Kyung Lee | Method for producing nanowires using porous glass template, and multi-probe, field emission tip and devices employing the nanowires |
CN102130422A (en) * | 2011-01-28 | 2011-07-20 | 北京航空航天大学 | Nanowire surface plasma laser |
CN102780156A (en) * | 2011-05-13 | 2012-11-14 | 中国科学院物理研究所 | Aluminum nitride solid-state laser and preparation method thereof |
CN102957086A (en) * | 2012-10-25 | 2013-03-06 | 电子科技大学 | Deep sub-wavelength surface plasma laser |
CN103901538A (en) * | 2012-12-28 | 2014-07-02 | 中国兵器装备研究院 | Manufacturing method of N*1 high-power fiber laser beam combiner |
-
2015
- 2015-01-09 CN CN201510013055.0A patent/CN104538837B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090045720A1 (en) * | 2005-11-10 | 2009-02-19 | Eun Kyung Lee | Method for producing nanowires using porous glass template, and multi-probe, field emission tip and devices employing the nanowires |
EP1804350A1 (en) * | 2005-12-27 | 2007-07-04 | Interuniversitair Microelektronica Centrum | A semiconductor laser comprising elongate nanostructures |
CN102130422A (en) * | 2011-01-28 | 2011-07-20 | 北京航空航天大学 | Nanowire surface plasma laser |
CN102780156A (en) * | 2011-05-13 | 2012-11-14 | 中国科学院物理研究所 | Aluminum nitride solid-state laser and preparation method thereof |
CN102957086A (en) * | 2012-10-25 | 2013-03-06 | 电子科技大学 | Deep sub-wavelength surface plasma laser |
CN103901538A (en) * | 2012-12-28 | 2014-07-02 | 中国兵器装备研究院 | Manufacturing method of N*1 high-power fiber laser beam combiner |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105154974B (en) * | 2015-09-28 | 2018-01-26 | 中国科学院重庆绿色智能技术研究院 | A kind of method of stroke growth ZnO |
CN105154974A (en) * | 2015-09-28 | 2015-12-16 | 中国科学院重庆绿色智能技术研究院 | Method for stroke growth of ZnO |
CN105322439A (en) * | 2015-11-24 | 2016-02-10 | 电子科技大学 | Light-beam-controllable nanowire laser based on patterning growth |
CN105322439B (en) * | 2015-11-24 | 2018-06-19 | 电子科技大学 | It is a kind of based on growing patterned light beam controllable nano laser line generator |
CN105807466B (en) * | 2016-05-11 | 2019-06-21 | 电子科技大学 | Fabrication of an optoelectronically regulated metal nanoparticle-liquid crystal array cell |
CN105807466A (en) * | 2016-05-11 | 2016-07-27 | 电子科技大学 | Production of photoelectric regulation metal nanoparticle and liquid crystal array structural box |
CN109553066A (en) * | 2018-11-20 | 2019-04-02 | 上海交通大学 | A kind of method of nano material plasma surface transformation |
CN109830886A (en) * | 2019-03-19 | 2019-05-31 | 北京工业大学 | A kind of nano plasma laser array and preparation method thereof of multi-cavity coupling enhancing |
CN113013731A (en) * | 2021-02-19 | 2021-06-22 | 苏州科技大学 | Flexible electric pumping ZnO nanowire laser array structure and preparation method thereof |
CN113013731B (en) * | 2021-02-19 | 2023-12-12 | 苏州科技大学 | Flexible electric pumping ZnO nanowire laser array structure and preparation method thereof |
CN114256737A (en) * | 2021-12-15 | 2022-03-29 | 电子科技大学 | Narrow linewidth DFB nanoplasma laser and preparation method thereof |
CN114256737B (en) * | 2021-12-15 | 2023-09-26 | 电子科技大学 | A narrow linewidth DFB nanoplasma laser and its preparation method |
CN114678760A (en) * | 2022-03-25 | 2022-06-28 | 苏州浪潮智能科技有限公司 | Nanowire laser |
CN114678760B (en) * | 2022-03-25 | 2023-11-07 | 苏州浪潮智能科技有限公司 | Nanowire laser |
Also Published As
Publication number | Publication date |
---|---|
CN104538837B (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104538837B (en) | Nanometer plasma array laser device and manufacturing method thereof | |
Wood et al. | Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture | |
US11837971B2 (en) | Systems for driving the generation of products using quantum vacuum fluctuations | |
CN104851929A (en) | Photoelectric material adjustable absorption enhancing layer based on graphene surface plasmon | |
Kim et al. | Indium tin oxide-free transparent conductive electrode for GaN-based ultraviolet light-emitting diodes | |
US9484553B2 (en) | Organic light-emitting diode device and manufacturing method thereof | |
CN111200043B (en) | Electrically pumped quantum dot single photon source and preparation method thereof | |
CN105552716A (en) | Surface plasma enhancement-based nano laser | |
CN110233427A (en) | A kind of two dimension exciton laser and preparation method thereof based on silicon based gallium nitride and tungsten disulfide monofilm | |
Chang et al. | Characteristics of high-power impulse magnetron sputtering ITO/Ag/ITO films for application in transparent micro-LED displays | |
WO2015072751A1 (en) | Light extraction substrate for organic light emitting element, method for manufacturing same, and organic light emitting element comprising same | |
CN104701729B (en) | Silicon substrate laser and preparation method thereof | |
CN105508165B (en) | A kind of micro-nano integrated laser propulsion plant based on surface plasma | |
CN103227419A (en) | ZnO nanotube/SiO2 quantum dot pumped random laser emitter | |
KR20140074446A (en) | Light emitting device having improved light extraction efficiency and method of fabricating the same | |
CN104124317A (en) | Neodymium-dope inorganic electroluminescent infrared light-emitting device and manufacturing method thereof | |
KR20030027885A (en) | Method of generating ballistic electrons and ballistic electron solid semiconductor element and light emitting element and display device | |
CN114256737B (en) | A narrow linewidth DFB nanoplasma laser and its preparation method | |
CN105679628B (en) | A kind of Field Electron Emission device architecture with reverse bias nano junction | |
CN105322439B (en) | It is a kind of based on growing patterned light beam controllable nano laser line generator | |
CN104934545A (en) | Organic light-emitting diode device and preparing method thereof | |
Yang et al. | Improvement of GaN light-emitting diodes with surface-treated Al-doped ZnO transparent Ohmic contacts by holographic photonic crystal | |
KR20070050143A (en) | Transparent Oxide Electrode Manufacturing Method | |
Zhang et al. | Design of a horizontally aligned perovskite nanowire LED with improved light extraction | |
CN111755577A (en) | Light source with high quantum yield and high bandwidth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170510 Termination date: 20200109 |
|
CF01 | Termination of patent right due to non-payment of annual fee |